SE527701C2 - Capacitor with changeable dielectric properties and device for electrical pulse modulation with such capacitor - Google Patents

Capacitor with changeable dielectric properties and device for electrical pulse modulation with such capacitor

Info

Publication number
SE527701C2
SE527701C2 SE0401102A SE0401102A SE527701C2 SE 527701 C2 SE527701 C2 SE 527701C2 SE 0401102 A SE0401102 A SE 0401102A SE 0401102 A SE0401102 A SE 0401102A SE 527701 C2 SE527701 C2 SE 527701C2
Authority
SE
Sweden
Prior art keywords
capacitor
dielectric
explosive
capacitor according
dielectric properties
Prior art date
Application number
SE0401102A
Other languages
Swedish (sv)
Other versions
SE0401102L (en
SE0401102D0 (en
Inventor
Anders Larsson
Torgny Carlsson
Original Assignee
Totalfoersvarets Forskningsins
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalfoersvarets Forskningsins filed Critical Totalfoersvarets Forskningsins
Priority to SE0401102A priority Critical patent/SE527701C2/en
Publication of SE0401102D0 publication Critical patent/SE0401102D0/en
Priority to PCT/SE2005/000630 priority patent/WO2005106904A1/en
Publication of SE0401102L publication Critical patent/SE0401102L/en
Publication of SE527701C2 publication Critical patent/SE527701C2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/14Protection against electric or thermal overload
    • H01G2/16Protection against electric or thermal overload with fusing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/13Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material current responsive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Air Bags (AREA)

Abstract

The invention relates to a capacitor with changeable dielectric properties, and a device for electric pulse modulation comprising such a capacitor, for instance an HPM source (High-Power Microwave, high-power microwave radiation). The invention is shown as a capacitor comprising two electrodes (1, 2) spaced from each other by a dielectric (3) comprising an explosive. When the explosive detonates/has detonated, it gives rise to residual products (4) with new dielectric properties. The permittivity of the residual gases is lower than that of the explosive. Depending on the field of application, the electric conductivity of the residual gases is either good or poor. Poor conductivity means that the reduced permittivity gives a voltage amplification across the capacitor. Good conductivity means that the residual gas is short circuited, thus resulting in a voltage reduction across the capacitor.

Description

20 25 30 35 527 701 Uppfinningen skall i det följande närmare beskrivas med hänvisning till bifogade figurer: Fig. 1 visar en kondensator enligt teknikens ståndpunkt Fig. 2 visar en kondensator enligt uppfinningen. The invention will be described in more detail below with reference to the accompanying figures: Fig. 1 shows a capacitor according to the prior art Fig. 2 shows a capacitor according to the invention.

Fig. 3 visar en första utföringsform av uppfinningen.Fig. 3 shows a first embodiment of the invention.

Fig. 4 visar en andra utföringsform av uppfinningen.Fig. 4 shows a second embodiment of the invention.

Fig. 5 visar en HPM-källa med en kondensator enligt uppfinningen Fig. 6 visar en strömbrytare med en kondensator enligt uppfinningen Figur 1 visar en kondensator enligt teknikens ståndpunkt, här illustrerad som en plattkondensator. Elektrodema (1,2) är separerade med ett dielektriskt material (3) med en given relativ permittivitet (ef) och en given elektrisk ledningsförmàga (o).Fig. 5 shows an HPM source with a capacitor according to the invention Fig. 6 shows a switch with a capacitor according to the invention Fig. 1 shows a capacitor according to the prior art, illustrated here as a plate capacitor. The electrodes (1,2) are separated by a dielectric material (3) with a given relative permittivity (ef) and a given electrical conductivity (o).

Ledningsförmågan äri normalfallet försumbar och den relativa permittiviteten bestämmer kondensatorns kapacitans. Principen för en kondensator är att kondensatorladdningen Q är lika med produkten av kondensatorns kapacitans C och spänningen över kondensatorn U.The conductivity is normally negligible and the relative permittivity determines the capacitance of the capacitor. The principle of a capacitor is that the capacitor charge Q is equal to the product of the capacitance C of the capacitor and the voltage across the capacitor U.

Q=c-U För en uppladdad kondensator är kondensatorladdningen Q konstant. Om kapacitansen C ändras, ändras således även spänningen U. Detta betyder att om kapacitansen minskas/ökas snabbt ástadkoms en ökning/minskning av spänningen över kondensatorn.Q = c-U For a charged capacitor, the capacitor charge Q is constant. Thus, if the capacitance C changes, so does the voltage U. This means that if the capacitance decreases / increases rapidly, an increase / decrease of the voltage across the capacitor is achieved.

Figur 2a-c visar en kondensator enligt uppfinningen. Uppfinningen är här visad som en plattkondensator med elektroder (1,2) och dielektrikum (3) med dielektriska egenskaper (snföm om), men uppfinningen kan även användas i andra typer av kondensatorer. För att snabbt förändra dielektrikumets dielektriska egenskaper så används ett dielektrikum som kan bringas att detonera. Dielektrikumet innefattar antingen ett sprängämne eller ett inert dielektrikum dopat med sprängämne. Då dielektrikumet detonerar ändras de dielektriska egenskapema hos materialet efter detonationsfronten (4) till egenskaperna hos restprodukterna/-gasema (stenen dem).Figures 2a-c show a capacitor according to the invention. The invention is shown here as a plate capacitor with electrodes (1,2) and dielectric (3) with dielectric properties (snföm om), but the invention can also be used in other types of capacitors. To quickly change the dielectric properties of the dielectric, a dielectric that can be detonated is used. The dielectric comprises either an explosive or an inert dielectric doped with explosive. As the dielectric detonates, the dielectric properties of the material after the detonation front (4) change to the properties of the residual products / gases (the stone them).

Här kan tvâ olika funktionsmoder utnyttjas. 10 15 20 25 30 527 701 III II I I' Û u o a o a 2 o o o"o n n. e' I I O I O I I O Û I I I O I I O IOC O I I I I I OIOÛ I I I II I I O 0 0 0 o 0 o Q Q Q . . u u n a o n u a." a 3 Figur 3a-c visar en första utföringsform av uppfinningen med elektroder (1 ,2) ursprungligt dielektrikum (3) och restgas (4). Om den elektriska ledningsförmàgan hos restgaserna (crew) är försumbar så erhålls en spänningsförstärkning över kondensatorn enligt följande analys med en plattkondensator som exempel. En plattkondensator har kapacitansen: C=g0.gr.å d där so är permittiviteten för vakuum, s,är dielektrikumets relativa permittivitet, A är elektrodarean och d är gapavståndet i kondensatom. För att få en spänningsförstärkning ändras den relativa pennittiviteten sà att permittiviteten före är större än perrnittiviteten efter, dvs. sm", > em". Detta ger en spänningsförstärkning pà: Uefrer _ SfM/bre Ume fre/ur Figur 4a-c visar en andra utföringsform av uppfinningen med elektroder (1,2) och ursprungligt dielektrikum (3). Om den elektriska ledningsförmágan hos restgaserna (oem) är god så erhålls i praktiken en kortslutning över restgaserna (4) vilket kan representeras av två delkapacitanser i serie. Spänningssänkning över kondensatom ges enligt följande analys med en plattkondensator som exempel. Dà Iedningsförmàgan hos restgaserna är god så kortsluts området med restgaser (4) och den resterande kapacitansen gàr mot oändligheten då detonationsfronten närmar sig elektroderna (1,2), vilket ges av att gapavstándet (d) går mot noll. Då kapacitansen närmar sig oändligheten så närmar sig spänningen över kondensatorn noll.Here, two different function modes can be used. " a 3 Figure 3a-c shows a first embodiment of the invention with electrodes (1, 2) originally dielectric (3) and residual gas (4). If the electrical conductivity of the residual gases (crew) is negligible, a voltage gain across the capacitor is obtained according to the following analysis with a plate capacitor as an example. A plate capacitor has the capacitance: C = g0.gr.å d where so is the permittivity of vacuum, s, is the relative permittivity of the dielectric, A is the electrode area and d is the gap distance in the capacitor. In order to obtain a voltage amplification, the relative pennivity is changed so that the permittivity before is greater than the permittivity after, ie. sm ",> em". This gives a voltage gain of: Uefrer _ SfM / bre Ume fre / ur Figure 4a-c shows a second embodiment of the invention with electrodes (1,2) and original dielectric (3). If the electrical conductivity of the residual gases (oem) is good, a short circuit across the residual gases (4) is obtained in practice, which can be represented by two sub-capacitances in series. Voltage reduction across the capacitor is given according to the following analysis with a plate capacitor as an example. Since the conductivity of the residual gases is good, the area with residual gases (4) is short-circuited and the remaining capacitance goes towards infinity as the detonation front approaches the electrodes (1,2), which is given by the gap distance (d) approaching zero. As the capacitance approaches infinity, the voltage across the capacitor approaches zero.

Vilken av dessa tvà funktionsmoder som inträffar bestäms av materialegenskaperna hos dielektrikumet.Which of these two modes of operation occurs is determined by the material properties of the dielectric.

Figur 5 visar en tillämpning av den första utföringsformen. Spänningskällan (10) laddar upp kondensatom (12) via uppladdningsmotstàndet (11). Dà kondensatom är uppladdad så bringas den att detonera och därmed förstärka spänningen. Vid 0000 10 15 527 701 4 önskad tidpunkt sluts därefter en slutare (13) och spänningen kommuterar över lasten (14) här exemplifierad med en HPM-källa.Figure 5 shows an application of the first embodiment. The voltage source (10) charges the capacitor (12) via the charging resistor (11). When the capacitor is charged, it is caused to detonate and thereby amplify the voltage. At the desired time, a shutter (13) is then closed and the voltage commutates over the load (14) here exemplified by an HPM source.

Figur 6 visar en tillämpning av den andra utföringsformen, här i form av en strömbrytare. Spänningskällan (10) matar lasten (15) via laddningsmotstándet (11) och brytaren (13). För att brytaren (13) ska kunna öppnas så måste strömmen vara nära noll. Genom att låta kondensatorn (12) detonera sänks spänningen över lasten och när denna spänning närmar sig noll kan brytaren (13) öppnas.Figure 6 shows an application of the second embodiment, here in the form of a switch. The voltage source (10) supplies the load (15) via the charging resistor (11) and the switch (13). In order for the switch (13) to be able to be opened, the current must be close to zero. By letting the capacitor (12) detonate, the voltage across the load is lowered and when this voltage approaches zero, the switch (13) can be opened.

Uppfinningen är visad som en kondensator innefattande två elektroder (1,2) åtskilda av ett dielektrikum (3) innefattande ett sprängämne. När sprängämnet detonerar/har detonerat ger det upphov till restprodukter (4) med andra dietektriska egenskaper.The invention is shown as a capacitor comprising two electrodes (1,2) separated by a dielectric (3) comprising an explosive. When the explosive detonates / has detonated, it gives rise to residual products (4) with other dietetic properties.

Restgasernas permittivitet är lägre än sprängämnets. Beroende på användningsområde så är aningen restgasernas elektriska ledningsförmåga god eller dålig. Dålig ledningsförmåga innebär att den minskade permittiviteten ger en spänningsförstârkning över kondensatorn. God Iedningsfönnàga ger att restgasen kortsluts och effekten blir en spänningsreduktion över kondensatom.The permittivity of the residual gases is lower than that of the explosive. Depending on the area of use, the electrical conductivity of the residual gases is slightly good or poor. Poor conductivity means that the reduced permittivity results in a voltage gain across the capacitor. Good conductivity means that the residual gas is short-circuited and the effect is a voltage reduction across the capacitor.

Claims (10)

10 15 20 25 30 35 527 701 PATENTKRAV10 15 20 25 30 35 527 701 PATENT REQUIREMENTS 1. Kondensator innefattande ett dielektrikum (3) med dielektriska egenskaper (anwa orm) som år förändringsbara, k ä n n e t e c k n a d a v att dielektrikumet (3) innefattar ett sprängämne.Capacitor comprising a dielectric (3) with dielectric properties (anwa orm) that are changeable, characterized in that the dielectric (3) comprises an explosive. 2. Kondensator enligt patentkrav 1, k ä n n e t e c k n a d a v att sprängämnet vid en detonation ger upphov till restprodukter (4) med nya dielektriska egenskaper.Capacitor according to Claim 1, characterized in that the explosive during a detonation gives rise to residual products (4) with new dielectric properties. 3. Kondensator enligt krav 2, k ä n n e t e c k n a d a v att restproduktemas permittivitet (sneflef) är mindre än dielektrikumets permittivitet (snfme) före detonationen, det vill säga (afmæefßftef).Capacitor according to Claim 2, characterized in that the permittivity (sne fl ef) of the residual products is less than the permittivity (snfme) of the dielectric before the detonation, i.e. (afmæefßftef). 4. Kondensator enligt krav 3, k ä n n e t e c k n a d a v att restproduktemas elektriska ledningsförmåga (oem) åstadkommer en kortslutning.4. A capacitor according to claim 3, characterized in that the electrical conductivity (oem) of the residual products causes a short circuit. 5. Kondensator enligt krav 3, k ä n n e t e c k n a d a v att restprodukternas elektriska ledningsförmàga (oem) åstadkommer en spänningsförstårkning.Capacitor according to Claim 3, characterized in that the electrical conductivity (oem) of the residual products produces a voltage amplification. 6. Kondensator enligt något av ovanstående patentkrav, k ä n n e t e c k n a d a v att dielektrikumet innefattar ett dielektriskt ämne dopat med sprängämne.A capacitor according to any one of the preceding claims, characterized in that the dielectric comprises a dielectric substance doped with explosive. 7. Kondensator enligt något av patentkraven 1-6, k 'a n n e t e c k n a d a v att kondensatorn innefattar två elektroder (1,2) åtskilda av dielektrikumet (3).A capacitor according to any one of claims 1-6, characterized in that the capacitor comprises two electrodes (1,2) separated by the dielectric (3). 8. Anordning för elektrisk pulsmodulering, k ä n n e t e c k n a d a v att anordningen innefattar en kondensator enligt något av patentkraven 1-7.Device for electrical pulse modulation, characterized in that the device comprises a capacitor according to any one of claims 1-7. 9. Anordning enligt patentkrav 8, k ä n n e t e c k n a d a v att anordningen innefattar en källa för elektromagnetisk strålning (14).Device according to claim 8, characterized in that the device comprises a source of electromagnetic radiation (14). 10. Anordning enligt patentkrav 8, k ä n n e t e c k n a d a v att anordningen innefattar en brytare (13).Device according to claim 8, characterized in that the device comprises a switch (13).
SE0401102A 2004-04-29 2004-04-29 Capacitor with changeable dielectric properties and device for electrical pulse modulation with such capacitor SE527701C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE0401102A SE527701C2 (en) 2004-04-29 2004-04-29 Capacitor with changeable dielectric properties and device for electrical pulse modulation with such capacitor
PCT/SE2005/000630 WO2005106904A1 (en) 2004-04-29 2005-04-29 Capacitor and device for electric pulse modulation with such capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0401102A SE527701C2 (en) 2004-04-29 2004-04-29 Capacitor with changeable dielectric properties and device for electrical pulse modulation with such capacitor

Publications (3)

Publication Number Publication Date
SE0401102D0 SE0401102D0 (en) 2004-04-29
SE0401102L SE0401102L (en) 2005-10-30
SE527701C2 true SE527701C2 (en) 2006-05-16

Family

ID=32322700

Family Applications (1)

Application Number Title Priority Date Filing Date
SE0401102A SE527701C2 (en) 2004-04-29 2004-04-29 Capacitor with changeable dielectric properties and device for electrical pulse modulation with such capacitor

Country Status (2)

Country Link
SE (1) SE527701C2 (en)
WO (1) WO2005106904A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586743A (en) * 1965-05-04 1971-06-22 Philippe F Van Eeck Process for making solid state current limiters and other solid state devices
US5771148A (en) * 1995-11-17 1998-06-23 Motorola, Inc. Intercalation-based voltage variable capacitor

Also Published As

Publication number Publication date
WO2005106904A1 (en) 2005-11-10
SE0401102L (en) 2005-10-30
SE0401102D0 (en) 2004-04-29

Similar Documents

Publication Publication Date Title
US7795758B2 (en) Method and device for production and emission of a high-power microwave pulse
US8102635B2 (en) Method and arrangement for triggering a series spark gap
US20120249224A1 (en) Dual mode charge pump
EP2178208A2 (en) Systems and methods to overcome DC offsets in amplifiers used to start resonant micro-electro mechanical systems
US7986505B2 (en) Dual power source pulse generator for a triggering system
SE523509C2 (en) Method and switching device for pulsed energy input in magnetron discharges
WO2009076444A1 (en) End cap voltage control of ion traps
US5173570A (en) Detonator ignition circuitry
US20060006872A1 (en) Variable damping induction coil for metal detection
WO2017168282A1 (en) Systems and methods for effective gap filtering and atmospheric pressure rf heating of ions
US6634298B1 (en) Fireset for a low energy exploding foil initiator: SCR driven MOSFET switch
US8976503B2 (en) Voltage monitoring for fireset
US20210291195A1 (en) Method for operating a high-voltage pulse system
SE527701C2 (en) Capacitor with changeable dielectric properties and device for electrical pulse modulation with such capacitor
US8890413B2 (en) Ignition circuit for igniting a plasma fed with alternating power
WO2012053799A1 (en) Fourier transform ion cyclotron resonance mass spectrometer using ultra-wideband rf amplifier and method for improving signal of fourier transform ion cyclotron resonance mass spectrometer
CN114038731B (en) Ion screening method and system of mass spectrometer
US3746920A (en) Lightweight xenon lamp igniter
RU2479826C1 (en) Target capacitance sensor for firing device
US20140132113A1 (en) Electric circuit with power amplifier for piezoeletric actuators
US9683817B1 (en) Detection and detonation of improvised explosive device with magnetic fields
US10101411B2 (en) Anti-static circuit and electronic device using the same
Zeng et al. Fabrication and testing of metal foil planar switch
US20190148919A1 (en) Power amplification device
GB2525008A (en) Spark-Gap Switch

Legal Events

Date Code Title Description
NUG Patent has lapsed