SE518471C2 - Detonation device for pulse detonation motor, contains spiral for accelerating flame front of ignited fuel air mixture - Google Patents

Detonation device for pulse detonation motor, contains spiral for accelerating flame front of ignited fuel air mixture

Info

Publication number
SE518471C2
SE518471C2 SE0100401A SE0100401A SE518471C2 SE 518471 C2 SE518471 C2 SE 518471C2 SE 0100401 A SE0100401 A SE 0100401A SE 0100401 A SE0100401 A SE 0100401A SE 518471 C2 SE518471 C2 SE 518471C2
Authority
SE
Sweden
Prior art keywords
air
fuel
spiral
combustion chamber
pulse detonation
Prior art date
Application number
SE0100401A
Other languages
Swedish (sv)
Other versions
SE0100401D0 (en
SE0100401L (en
Inventor
Henrik Almstroem
Original Assignee
Totalfoersvarets Forskningsins
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalfoersvarets Forskningsins filed Critical Totalfoersvarets Forskningsins
Priority to SE0100401A priority Critical patent/SE518471C2/en
Publication of SE0100401D0 publication Critical patent/SE0100401D0/en
Publication of SE0100401L publication Critical patent/SE0100401L/en
Publication of SE518471C2 publication Critical patent/SE518471C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/02Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

The combustion chamber (5) contains an acceleration path in the form of a spiral (50) for accelerating the flame front of the ignited fuel-air mixture. An Independent claim is also included for a method for generating detonations in a pulse detonation motor (PDM) using this device.

Description

:sony rasa» 10 15 20 25 30 35 518 471 2 . a Q a ~ . | ~ Q se I föreliggande uppfinning skapas den nödvändiga accelerationssträckan genom att tvinga brinnfronten att accelerera i en spiral. : sony rasa »10 15 20 25 30 35 518 471 2. a Q a ~. | In the present invention, the necessary acceleration distance is created by forcing the burn front to accelerate in a spiral.

Uppfinningen skall i det följande närmare beskrivas med hänvisning till bifogade figurer: Fig. 1 Robot med pulsdetonationsmotor.The invention will be described in more detail below with reference to the accompanying figures: Fig. 1 Robot with pulse detonation motor.

Fig. 2 Robot med pulsdetonationsmotori genomskäming.Fig. 2 Robot with pulse detonation motor cross-section.

F ig. 3 Pulsdetonationsmotoms arbetscykel Fig. 4 visar pulsmotoms arbetscykel- luftintag.F ig. 3 Work cycle of the pulse detonation motor Fig. 4 shows the work cycle air intake of the pulse motor.

Fig. 5 visar pulsmotoms arbetscykel- bränsletillförsel.Fig. 5 shows the pulse cycle supply of the pulse motor.

Fig. 6 visar pulsmotoms arbetscykel- fyllning av brännkammare.Fig. 6 shows the pulse cycle filling of the combustion chamber of the pulse motor.

Fig. 7 visar pulsmotoms arbetscykel- tändning.Fig. 7 shows the operating cycle ignition of the pulse motor.

Fig. 8 visar ett exempel på luftens väg genom pulsdetonationsmotom.Fig. 8 shows an example of the air path through the pulse detonation motor.

Figur 1 visar en robot (1) med en nyttolast (2), innefattande bl.a. styr- och reglennedel, stridsspets och motorbränsle, samt en pulsmotor (3). Figur 2 visar en genomskäming av roboten (1). Pulsmotom (3) innefattar bl.a. ett luftintag (4) och en brännkammare (5). Luftintaget (4) äri denna utföringsforrn koncentriskt anordnat kring nyttolasten (2) och utformat med ett antal Iedskenor eller ett antal intill varandra liggande spiralforrnade rör med successivt minskande stigning. Luft tas in genom luftintaget (4) och komprimeras under vägen fram till brännkammaren (5).Figure 1 shows a robot (1) with a payload (2), comprising i.a. steering and control unit, warhead and motor fuel, and a pulse motor (3). Figure 2 shows a cross-section of the robot (1). The pulse motor (3) comprises i.a. an air intake (4) and a combustion chamber (5). The air intake (4) in this embodiment is arranged concentrically around the payload (2) and formed with a number of guide rails or a number of adjacent spirally shaped pipes with successively decreasing pitch. Air is taken in through the air intake (4) and compressed along the way to the combustion chamber (5).

Brännkammaren (5) börjar med en spiralforrnad accelerationssträcka (50) och övergår sedan i en rak cylindrisk del (56). Accelerationssträckan (50) kan t.ex. innefatta ett antal Iedskenor eller ett eller flera intill varandra liggande spiralformade rör med successivt ökande stigvinkel. Hål, spalter eller flänsar kan även vara upptagna i spiralens väggar för att påverka blandningen och orsaka turbulens innan flamfronten når fram.The combustion chamber (5) begins with a helical acceleration distance (50) and then merges into a straight cylindrical part (56). The acceleration distance (50) can e.g. comprise a number of guide rails or one or more adjacent helical tubes with successively increasing pitch angle. Holes, gaps or flanges can also be included in the walls of the coil to affect the mixture and cause turbulence before the flame front reaches.

Figur 3 visar en utföringsform av uppfinningen. Uppfinningen består av ett Iuftintag (4), en brännkammare (5), bränsletillförsel (6) samt tändanordning (7). Luft (40) tas in genom luftintaget (4) och leds igenom en spiral (41) med minskande stigningsvinkel, det vill säga spiralens tvärsnittsareor (42) minskar. Detta betyder att den intagna luften (40) komprimeras. Bränsletillförseln (6) sker i ett koncentriskt utrymme (51) där bränslet (60)(här antas att bränslet är flytande) sprejas in via ett sugna :ryss 10 15 20 25 30 35 518 471 3 munstrycke (61) eller liknande, beroende på typ av bränsle. Bränsleluftblandningen fortsätter in i brännkammaren (5). Den första delen av brännkammaren (5) innefattar en spiralformad accelerationssträcka (50) med successivt ökande stigningsvinkel. Efter accelerationssträckan (50) avslutas brännkammaren i en rak kammare (56). I början av brännkammaren (5) finns även en tändanordning (7) som antänder bränsleluftblandningen när brännkammaren (5) är full.Figure 3 shows an embodiment of the invention. The invention consists of an air intake (4), a combustion chamber (5), fuel supply (6) and ignition device (7). Air (40) is taken in through the air intake (4) and is passed through a spiral (41) with decreasing pitch angle, i.e. the cross-sectional areas (42) of the spiral decrease. This means that the intake air (40) is compressed. The fuel supply (6) takes place in a concentric space (51) where the fuel (60) (here it is assumed that the fuel is liquid) is sprayed in via a suction: Russian 10 15 20 25 30 35 518 471 3 nozzle pressure (61) or the like, depending on type of fuel. The fuel-air mixture continues into the combustion chamber (5). The first part of the combustion chamber (5) comprises a helical acceleration distance (50) with successively increasing pitch angle. After the acceleration distance (50), the combustion chamber ends in a straight chamber (56). At the beginning of the combustion chamber (5) there is also an ignition device (7) which ignites the fuel-air mixture when the combustion chamber (5) is full.

Figur 3 visar hur tvärsnittsarean (52,53,54,55) ökar i den spiralformade accelerationssträckan (50). Areaökningen beror av spiralens stigningsvinkel och avsmalningen av nyttolasten (20). En för snabb areaökning kan få en uppnådd detonation att återgå till en deflagration. Areaökningen i spiralen avpassas därför till de speciella förhållandena som varje bränsle och bränsleluftblandning uppvisar.Figure 3 shows how the cross-sectional area (52,53,54,55) increases in the helical acceleration distance (50). The increase in area depends on the angle of inclination of the spiral and the narrowing of the payload (20). A too rapid area increase can cause an achieved detonation to return to a deflagration. The area increase in the spiral is therefore adapted to the special conditions that each fuel and fuel-air mixture exhibits.

Figurema 4-7 visar en arbetscykel hos en pulsdetonationsmotom enligt ovanstående utföringsexempel. I figur 4 tas luft (40) in genom luftintagen. Luften komprimeras genom att den tas in genom en spiral (41) med minskande stigningsvinkel och därmed minskande tvärsnittsarea (42). I figur 5 har luften passerat luftintaget (4) och bränsleinsprutningen (6) har sprutat in bränsle (60) i den komprimerade luften. Bränsleluftblandningen fortsätter att röra sig i en spiral men nu med en ökande stigningsvinkel (fig.6). Under det att bränslet och luften blandas åstadkoms även turbulens i blandningen. Detta görs genom att anordna hål, spalter eller flänsar i spiralen (50). Anledningen är att en turbulent blandning snabbare når upp till detonationshastighet. Efter det att bränsleluftblandningen lämnat spiralen (50) fortsätter den uti brännkammarens raka del (56). l figur 7 har blandningen fyllt hela brännkammaren (5) och det är nu tändningen sker. Tändanordningen (7) som lämpligtvis är ett eller flera tändstift, tänder blandningen i början av brännkammaren (5). Den tända blandningens flamfront accelererari spiralen (50) och når detonationshastighet när den lämnar spiralen (5). Detonationen fortsätter sedan fram genom brännkammarens raka del (56) med detonationshastighet och lämnar brännkammaren (5). När reaktionsproduktema lämnar brännkammaren (5) så skapas ett undertryck som suger in ny luft (40) genom luftintaget (4) och förloppet börjar om.Figures 4-7 show a duty cycle of a pulse detonation motor according to the above embodiment. In Figure 4, air (40) is taken in through the air intakes. The air is compressed by being taken in through a spiral (41) with decreasing pitch angle and thus decreasing cross-sectional area (42). In Figure 5, the air has passed the air intake (4) and the fuel injection (6) has injected fuel (60) into the compressed air. The fuel-air mixture continues to move in a spiral but now with an increasing pitch angle (Fig. 6). While mixing the fuel and air, turbulence is also created in the mixture. This is done by arranging holes, gaps or fl grooves in the spiral (50). The reason is that a turbulent mixture reaches detonation speed faster. After the fuel-air mixture has left the coil (50), it continues outside the straight part (56) of the combustion chamber. In Fig. 7, the mixture has filled the entire combustion chamber (5) and it is now the ignition that takes place. The igniter (7), which is suitably one or more spark plugs, ignites the mixture at the beginning of the combustion chamber (5). The flame front of the ignited mixture accelerates in the coil (50) and reaches detonation velocity as it leaves the coil (5). The detonation then continues through the straight part (56) of the combustion chamber at detonation speed and leaves the combustion chamber (5). When the reaction products leave the combustion chamber (5), a negative pressure is created which sucks in new air (40) through the air intake (4) and the process begins again.

Figur 8 visar ett exempel på hur luft (40) tas in i pulsdetonationsmotom och sedan leds i de olika spiralema och uti brännkammarens raka del. 10 518 471 _š .s": 'I=.s".:ï': n o o ~ en 4 Exempel på hur accelerationsspiralen kan beräknas. Om brännkammaren har en diameter på 15 cm kan medelradien i spiralen ansättas till r = 5 cm. Spiralens accelerationssträcka L är: L = 2 - rr - r - N där N är antal varv i spiralen. Ökningen av stigvinkeln i spiralen avpassas så att detonationen i spiralen är stabil trots det ökande tvärsnittet i spiralen. Om N är lika med 4 erhålls accelerationssträckan till 125 cm. Spiralens axiella längd blir ca 20 cm dvs. ca 20% av brännkammarlängden om denna är 100 cm.Figure 8 shows an example of how air (40) is taken into the pulse detonation motor and then led into the various spirals and into the straight part of the combustion chamber. 10 518 471 _š .s ": 'I = .s".: Ï': n o o ~ en 4 Example of how the acceleration coil can be calculated. If the combustion chamber has a diameter of 15 cm, the average radius of the spiral can be set to r = 5 cm. The acceleration distance L of the spiral is: L = 2 - rr - r - N where N is the number of revolutions in the spiral. The increase of the pitch angle in the spiral is adjusted so that the detonation in the spiral is stable despite the increasing cross section of the spiral. If N is equal to 4, the acceleration distance to 125 cm is obtained. The axial length of the spiral is about 20 cm, ie. about 20% of the combustion chamber length if this is 100 cm.

Claims (11)

nn|an v».;: 10 15 20 25 30 35 518 471 5 ø c | c c u ø o Q oc PATENTKRAVnn | an v ».;: 10 15 20 25 30 35 518 471 5 ø c | c c u ø o Q oc PATENT CLAIMS 1. Pulsdetonationsmotor (3) innefattande luftintag (4) samt brännkammare (5) innefattande bränsletillförsel (6) och antändningsanordning (7), k ä n n e t e c k n a d a v att brännkammaren (5) innefattar en accelerationssträcka i form av en spiral (50).Pulse detonation engine (3) comprising air inlet (4) and combustion chamber (5) comprising fuel supply (6) and ignition device (7), characterized in that the combustion chamber (5) comprises an acceleration distance in the form of a spiral (50). 2. Pulsdetonationsmotor (3) enligt patentkrav 1, k ä n n e t e c k n a d a v att spiralen (50) har en successivt ökande stigvinkel, dvs. tvärsnittsarean (52,53, 54, 55) blir större och större.Pulse detonation motor (3) according to claim 1, characterized in that the spiral (50) has a gradually increasing pitch angle, i.e. the cross-sectional area (52.53, 54, 55) becomes larger and larger. 3. Pulsdetonationsmotor (3) enligt något av patentkraven 1-2, k ä n n e t e c k n a d a v att brännkammaren (5) innefattar en eller flera spiraler (50).Pulse detonation motor (3) according to any one of claims 1-2, characterized in that the combustion chamber (5) comprises one or more spirals (50). 4. Pulsdetonationsmotor (3) enligt något av patentkraven 1-3, k ä n n e t e c k n a d a v att luftintaget (4) innefattar en eller flera spiraler (41) med successivt minskande stigvinkel.Pulse detonation motor (3) according to one of Claims 1 to 3, characterized in that the air intake (4) comprises one or more spirals (41) with a gradually decreasing pitch angle. 5. Pulsdetonationsmotor (3) enligt något av patentkraven 1-4, k ä n n e t e c k n a d a v att spiralen (50) i brännkammaren (5) innefattar en anordning som orsakar turbulens hos bränsleluftblandningen, t.ex. hål, spalter eller flänsar.Pulse detonation engine (3) according to any one of claims 1-4, characterized in that the coil (50) in the combustion chamber (5) comprises a device which causes turbulence of the fuel-air mixture, e.g. holes, gaps or flanges. 6. Pulsdetonationsmotor enligt något av patentkraven 1-5, k ä n n e t e c k n a d a v att bränslet är en gas, t.ex. acetylen eller väte, vätskeformigt, t.ex. vätskedroppar (aerosol) av flygfotogen, eller i fast form, t.ex. ett finkomigt pulver av bor eller kol.Pulse detonation engine according to one of Claims 1 to 5, characterized in that the fuel is a gas, e.g. acetylene or hydrogen, liquid, e.g. liquid droplets (aerosol) of aviation kerosene, or in solid form, e.g. a fine powder of boron or carbon. 7. Metod att åstadkomma detonationeri en pulsdetonationsmotor innefattande följande steg: -Tillföra luft (40), -Tillföra bränsle (so) :m luften (40), -Blanda bränslet (60) med luften (40), -Antända bränsleluftblandningen, samt kännetecknad av att 10 15 20 518 471 6 -den antända bränsleluftblandningens flamfront bringas att accelerera i en spiral (50).A method of effecting detonations in a pulse detonation engine comprising the following steps: -Supply air (40), -Supply fuel (so): m the air (40), -Mix the fuel (60) with the air (40), -Fire the fuel-air mixture, and characterized by causing the flame front of the ignited fuel-air mixture to accelerate in a spiral (50). 8. Metod enligt patentkrav 7, k ä n n e t e c k n a d a v att accelerationen sker i en spiral (50) med successivt ökande stigvinkel.Method according to claim 7, characterized in that the acceleration takes place in a spiral (50) with successively increasing pitch angle. 9. Metod enligt något av patentkraven 7-8, k ä n n e t e c k n a d a v att den accelererande bränsleluftblandningens flamfront når detonationshastighet innan den lämnar spiralen (50).A method according to any one of claims 7-8, characterized in that the flame front of the accelerating fuel-air mixture reaches detonation speed before leaving the coil (50). 10. Metod enligt något av patentkraven 7-9, k ä n n e t e c k n a d a v att komprimerad luft tillförs brännkammaren (50). a v att luften (40) komprimeras genom att den leds i en spiral (41) med successivt minskandeMethod according to one of Claims 7 to 9, characterized in that compressed air is supplied to the combustion chamber (50). in that the air (40) is compressed by being led in a spiral (41) with successively decreasing 11. Metod enligt patentkrav 10, k ä n n e t e c k n a d stigvinkel.Method according to claim 10, characterized by a pitch angle.
SE0100401A 2001-02-08 2001-02-08 Detonation device for pulse detonation motor, contains spiral for accelerating flame front of ignited fuel air mixture SE518471C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE0100401A SE518471C2 (en) 2001-02-08 2001-02-08 Detonation device for pulse detonation motor, contains spiral for accelerating flame front of ignited fuel air mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0100401A SE518471C2 (en) 2001-02-08 2001-02-08 Detonation device for pulse detonation motor, contains spiral for accelerating flame front of ignited fuel air mixture

Publications (3)

Publication Number Publication Date
SE0100401D0 SE0100401D0 (en) 2001-02-08
SE0100401L SE0100401L (en) 2002-08-09
SE518471C2 true SE518471C2 (en) 2002-10-15

Family

ID=20282894

Family Applications (1)

Application Number Title Priority Date Filing Date
SE0100401A SE518471C2 (en) 2001-02-08 2001-02-08 Detonation device for pulse detonation motor, contains spiral for accelerating flame front of ignited fuel air mixture

Country Status (1)

Country Link
SE (1) SE518471C2 (en)

Also Published As

Publication number Publication date
SE0100401D0 (en) 2001-02-08
SE0100401L (en) 2002-08-09

Similar Documents

Publication Publication Date Title
US6736376B1 (en) Anti-detonation fuel delivery system
US7669405B2 (en) Shaped walls for enhancement of deflagration-to-detonation transition
US7980056B2 (en) Methods and apparatus for controlling air flow within a pulse detonation engine
US8650856B2 (en) Fluidic deflagration-to-detonation initiation obstacles
US4938112A (en) Apparatus and method for the acceleration of projectiles to hypervelocities
CN205779304U (en) A kind of pulse-knocking engine booster based on jet
JP2008025589A (en) Fuel injection device
CN103134082A (en) Method for positioning deflagration-detonation transition during operation of a pulse detonation combustor
CN106837608A (en) Fire change propulsive solid-liquid rocket structure in a kind of decking end
CN103134081B (en) For the variable initiation position system of pulse detonation combustion device
CN206397619U (en) A kind of pulse-knocking engine of side exhaust
US9217392B2 (en) Vortex cannon with enhanced ring vortex generation
SE518471C2 (en) Detonation device for pulse detonation motor, contains spiral for accelerating flame front of ignited fuel air mixture
CN117128107A (en) Dual-mode knocking thrust chamber
US20050138933A1 (en) Pulse detonation engine and method for initiating detonations
JP7045213B2 (en) Fuel combustion device
CN106640421B (en) A kind of pulse-knocking engine of side exhaust
CN107218155B (en) A kind of pulse ignite in advance can steady operation detonation engine
RU2315193C1 (en) Ramjet engine with lengthwise heat-mass distribution
Pelosi-Pinhas et al. Solid-fuel ramjet regulation by means of an air-division valve
WO2021146779A1 (en) Pulse detonation jet engine (propulsor) vujin
CN107143432B (en) High-piezoelectricity plasma gas relay couples spark knock engine before a kind of detonation wave
RU192351U1 (en) BURNER
NZ542544A (en) Gas-operated apparatuses with precompression chamber and propulsion chamber
RU2765672C1 (en) Method for forcing a dual-flow ejector pulse jet engine and forced dual-flow ejector pulse jet engine

Legal Events

Date Code Title Description
NUG Patent has lapsed