SE505431C2 - Hybrid drive road vehicle - Google Patents

Hybrid drive road vehicle

Info

Publication number
SE505431C2
SE505431C2 SE8903987A SE8903987A SE505431C2 SE 505431 C2 SE505431 C2 SE 505431C2 SE 8903987 A SE8903987 A SE 8903987A SE 8903987 A SE8903987 A SE 8903987A SE 505431 C2 SE505431 C2 SE 505431C2
Authority
SE
Sweden
Prior art keywords
generator
battery
accumulator
energy
drive
Prior art date
Application number
SE8903987A
Other languages
Swedish (sv)
Other versions
SE8903987L (en
SE8903987D0 (en
Inventor
Rudolf Abelin
Erik Sundberg
Original Assignee
Rudolf Abelin
Erik Sundberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rudolf Abelin, Erik Sundberg filed Critical Rudolf Abelin
Priority to SE8903987A priority Critical patent/SE505431C2/en
Publication of SE8903987D0 publication Critical patent/SE8903987D0/en
Priority to EP90850384A priority patent/EP0578837A1/en
Publication of SE8903987L publication Critical patent/SE8903987L/en
Publication of SE505431C2 publication Critical patent/SE505431C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The electric generator both drives the motor and charges the energy- and effect balancing battery. The primary engine effect is suitable via the generator and drive motor to move the vehicle in normal traffic conditions, whilst the battery is used as an addition when a greater energy requirement arises e.g. for faster start, acceleration and reversing and with generative braking from the drive motor. With normal drive conditions, the energy received from the regenerative braking is suitable for charging the battery. The battery is cooled during both charging and discharge by use of Peltier elements, and the primary engine and generator can be replaced by fuel cells or aluminium-air-cells, in which case the Peltier elements are located on the top side of the cells. The battery is sufficiently large to move the vehicle through environmentally sensitive areas without additional power from the generator. The primary drive engine can be a Stiri Otto, Wankel, Diesel, steam or turbine type.

Description

505 431 L: Värmemotor och generator kan även utbytas mot bränsleceller. Det finns även en mindre elektrisk ackumulator, som används som buffert ovh som ger en tillsats till generatorströmmen vid start, acceleration och extra belastningar i exempelvis uppförsbackar. 505 431 L: Heat engine and generator can also be replaced with fuel cells. There is also a smaller electric accumulator, which is used as a buffer and which provides an addition to the generator current at start-up, acceleration and extra loads in, for example, uphill slopes.

Vid normal "marschfart" utnyttjas inte ackumulatorn.At normal "cruising speed" the accumulator is not used.

Eftersom fordonets rörelseenergi àstadkommits såväl av värmemotorn som av ackumulatorns energi kan man vid bromsning med regenerativa elmotorer återfå mer energi än man tidigare tagit ut av ackumulatorn. Förlusterna i energi genom verkningsgraden hos bl a den regenexativa bromsningen, ackumulatorn (med ca 202 skillnad i laddnings- och urladdningsspänning), rullmotstånd etc bestämmer hur man ska dimensionera primarmotorn, vars avgivna energi ska motsvara dessa förluster. Primärmotorn eller bränslecellerna behöver då inte dimensioneras för att ladda ackumulatorn utan endast för genomsnittet av den effekt, som krävs för framförandet av fordonet och dessa förluster. om fordonet flyttas till en högre belägen plats under ex. ett dygn blir ackumulatorn inte fulladdad och kan behöva tillsatsenergi från generatorn.Since the vehicle's kinetic energy has been provided by both the heat engine and the battery's energy, braking with regenerative electric motors can regain more energy than previously taken out of the accumulator. The losses in energy through the efficiency of, among other things, the regenexative braking, the accumulator (with approx. 202 difference in charging and discharging voltage), rolling resistance, etc. determine how to dimension the primary motor, whose emitted energy must correspond to these losses. The primary engine or fuel cells then do not need to be dimensioned to charge the accumulator but only for the average of the power required for the operation of the vehicle and these losses. if the vehicle is moved to a higher location during ex. for 24 hours the accumulator will not be fully charged and may need additional energy from the generator.

Ackumulatorns vikt och yttre dimensioner ska vara så små som möjligt. Den utsätts därför för stora belastningar. dvs höga strömstyrkor såväl vid urladdning som vid laddning. Totala kapaciteteten motsvarar t ex inte mer än 5 min. urladdning.The weight and external dimensions of the accumulator should be as small as possible. It is therefore exposed to large loads. ie high currents both when discharging and when charging. The total capacity corresponds, for example, to no more than 5 minutes. discharge.

Förutsättningen för denna typ av drift är därför att ackumulatorn är utförd för strömstyrkor mot-svarande ett bilstartbatteri och dessutom kyls kraftigt såväl under urladdning som laddning.The prerequisite for this type of operation is therefore that the accumulator is designed for currents corresponding to a car starter battery and in addition is heavily cooled both during discharge and charging.

Exempel 1.Example 1.

En buss som väger 12 ton kräver för acceleration till 50 km/h under 10 s en effekt av 130 kw eller en energi av 0.35 kwh. Av denna energi är ca 300 Wh kinetisk energi, levande kraft, som kan utnyttjas vid inbromsning. Antar vi att bussen har en primärmotor, som inräknat generatorn ger 60 kw, har 70 kw tagits ur ackumulatorn under 10 s eller knappt 200 Wh. Även med hänsyn till verkningsgrad hos elmotorn-generatorn och ackumulatorn är alltså den kinetiska energin tillräcklig för att återladda LJ lfl BNSDOCID: .'_\_| 505 431 ackumulatorn.A bus that weighs 12 tons requires for acceleration to 50 km / h for 10 s an output of 130 kw or an energy of 0.35 kwh. Of this energy, about 300 Wh is kinetic energy, living force, which can be used during deceleration. Assuming that the bus has a primary engine, which including the generator gives 60 kw, 70 kw has been taken out of the accumulator for 10 s or just under 200 Wh. Thus, even with respect to the efficiency of the electric motor generator and the accumulator, the kinetic energy is sufficient to recharge LJ l fl BNSDOCID: .'_ \ _ | 505 431 accumulator.

För detta tunga fordon fordon kan man välja ett ackumulator~ batteri vars spänning ar 240 V nominellt vilket om man valjer blybatterier motsvarar 120 celler.Genomsnittliga spänningen vid dessa höga urladdningar blir ca 1.5 V/cell eller 180 volt total Vid 70 kW belastning blir stromstyrkan närmare 600 A. Detta motsvarar ett "heavy duty" dieselstartbatteri med en vikt per 2f voltsenhet av ca 40 kg eller totalt ca 400 kg. Totala urladdningstiden vid dessa höga strömstyrkor ligger vid ca 9~6 min och det användbara energiinnehället ca 6 kwh.For this heavy vehicle vehicle, you can choose an accumulator ~ battery whose voltage is 240 V nominal, which if you choose lead batteries corresponds to 120 cells. The average voltage at these high discharges will be about 1.5 V / cell or 180 volts total. At 70 kW load, the current will be closer 600 A. This corresponds to a "heavy duty" diesel starter battery with a weight per 2f volt unit of about 40 kg or a total of about 400 kg. The total discharge time at these high currents is about 9 ~ 6 min and the usable energy content about 6 kwh.

Men batteriets storlek måste naturligtvis anpassas till topografin. Om bussen behöver ta ut 70 kwh i en uppförsbacke bor man behålla en tredjedel av energin ur säkerhetssynpunkt dvs endast ta ut 4 kwh. Det motsvarar en uppforsbacke pâ 4 km vid en hastighet av 60 km/h.But the size of the battery must of course be adapted to the topography. If the bus needs to take out 70 kwh on an uphill slope, you should keep a third of the energy from a safety point of view, ie only take out 4 kwh. This corresponds to an uphill slope of 4 km at a speed of 60 km / h.

Om vi antar att batteriets verkningsgrad, inre motstånd etc gör att en fjärdedel av maxeffekten 70 kw måste kylas bort och att batteriet är i drift S0 Z av tiden, så måste man i genomsnitt kyla bort kanske 18 kw eller 150 W/cell.If we assume that the battery's efficiency, internal resistance etc means that a quarter of the maximum power 70 kw must be cooled off and that the battery is in operation S0 Z of the time, then you have to cool off on average maybe 18 kw or 150 W / cell.

Exempel 2.Example 2.

En personbil med en totalvikt av 700-1000 kg behöver 20-30 kw fo snabb acceleration till 50 km/h under 3-5 s eller ca 25 Wh. Av detta kommer 6-12 kw från primärmotorn och generatorn och 15-20 kW från batteriet. Men detta motsvarar endast ca 15 Wh och även här är energin i levande kraften tillräcklig för att ladda upp batteriet utan hjälp från primärmotorn.A car with a total weight of 700-1000 kg needs 20-30 kw for fast acceleration to 50 km / h for 3-5 s or about 25 Wh. Of this, 6-12 kw comes from the primary engine and generator and 15-20 kW from the battery. But this corresponds to only about 15 Wh and even here the energy in the living power is sufficient to charge the battery without help from the primary motor.

Ett blybatteri för denna tillämpning kan ha en nominell spänning av 72 volt. Detta ger en urladdning av 300 A. vilket är normalt för ett startbatteri vid en temperatur av 30oC och en vikt av ca 15 kg per 12-voltsenhet. Totalvikten av batteriet blir då ca 90 kg.A lead-acid battery for this application may have a rated voltage of 72 volts. This gives a discharge of 300 A. which is normal for a starter battery at a temperature of 30oC and a weight of about 15 kg per 12-volt unit. The total weight of the battery will then be about 90 kg.

För att få god livslängd på blybatteriet krävs först att laddningsspänningen begränsas till 2.35-2.37 V/cell. När batterierna är fulladdade upphör då laddningen. Batteriet bor BNSDOCID 505 431 ~ arbeta mellan 20~90 % av sin kapacitet. Vid 20 kw belastning är förlusterna ca 5 kw och om batterierna är i drift en tredjedel av tiden blir genomsnittliga energiförlusten 1,7 kw eller ca SOW/cell.To get a good life for the lead-acid battery, it is first required that the charging voltage is limited to 2.35-2.37 V / cell. When the batteries are fully charged, charging stops. The battery should BNSDOCID 505 431 ~ work between 20 ~ 90% of its capacity. At 20 kw load, the losses are about 5 kw and if the batteries are in operation a third of the time, the average energy loss will be 1.7 kw or about SOW / cell.

Ett villkor för denna typ av drift är att batterierna kyles, så att temperaturen endast i undantagsfall överskrider 3000. För att få en effektiv kylning kan man använda sig av Peltiereffekten. eftersom man har elström till förfogande och placera kylelementen just där man behöver dem. Kylning kan åstadkommas pa olika satt, t ex enligt svensk patentansökan 8801318-O, där de negativa elektroderna är dubbla med en kopparfolie mellan sig kopplade till en kylfläns på lockets ovansida. Han kan aven anvanda vattenkylning av elektrolytens övre del, vilket ar möjligt vid fri elektrolyt. Om elektrolyten är bunden, vilket är fallet i slutna celler med oxygenrekombination, är denna senare typ av kylning inte alltid möilig för helastningar av denna stoilek eftersom elektrolyten inte cirkulerar och nedre delen av cellerna kan överhettas.A condition for this type of operation is that the batteries are cooled, so that the temperature only in exceptional cases exceeds 3000. To get an efficient cooling, you can use the Peltiere effect. because you have electricity available and place the cooling elements exactly where you need them. Cooling can be achieved in various ways, for example according to Swedish patent application 8801318-O, where the negative electrodes are double with a copper foil between them connected to a cooling flange on the top of the lid. He can also use water cooling of the upper part of the electrolyte, which is possible with free electrolyte. If the electrolyte is bound, as is the case in closed cells with oxygen recombination, this latter type of cooling is not always possible for full loads of this stool because the electrolyte does not circulate and the lower part of the cells can overheat.

I dessa exempel har vi räknat med de billigare blvbatterieina. men naturligtvis kan man även använda dyrare alkaliska batterier.In these examples, we have counted on the cheaper blv batteries. but of course you can also use more expensive alkaline batteries.

I den man dessa har plâtkärl och ett fatal elektroder med stor yta kan det för mindre fordon vara tillräckligt med forcerad kylning av kärlens utsidor, men i regel bör batteriet kylas på i princip samma sätt som angivits för blybatterierna ovan.If you have tin vessels and a fatal electrode with a large surface area, for smaller vehicles, forced cooling of the outside of the vessels may be sufficient, but as a rule the battery should be cooled in basically the same way as stated for the lead batteries above.

Fordonets räckvidd blir beroende av den bränslemängd man har med sig och inte av ackumulatorns storlek. Den medförda energin i bränsle blir upp till 100 ggr större än energin i batteriet.The range of the vehicle will depend on the amount of fuel you have with you and not on the size of the accumulator. The entrained energy in fuel is up to 100 times greater than the energy in the battery.

I stället för att medföra ett batteri. som i timmar skall lämna energi till drivmotorn, kan man alltså nu klara sig med ett batteri som normalt endast används under några sekunder eller minuter beroende på topografi och önskade köregenskaper. Om fordonet huvudsakligen skall användas i miljökänsliga områden kan batterikapaciteten ökas något. I så fall kan relationen i storlek mellan batteriet, primär- och sekundärmotorer ändras så att bromsning inte ger tillräcklig energi för uppladdning av BNSDOCID; un 505 431 batterierna utan hjälp från primärmotorn. Även i detta fall bli det samma hårda belastning på batteriet och även om detta skull dimensioneras med kapacitet för 10-15 min krävs fortfarande kylning under urladdninmg och laddning och detta är fortfarandc del av uppfinningen.Instead of carrying a battery. which for hours should provide energy to the drive motor, you can now manage with a battery that is normally only used for a few seconds or minutes depending on the topography and desired driving characteristics. If the vehicle is to be used mainly in environmentally sensitive areas, the battery capacity can be increased slightly. In this case, the ratio in size between the battery, primary and secondary motors can be changed so that braking does not provide sufficient energy for charging BNSDOCID; un 505 431 batteries without assistance from the primary engine. Also in this case it will be the same hard load on the battery and even if this is to be dimensioned with capacity for 10-15 minutes, cooling is still required during discharge and charging and this is still part of the invention.

Batterierna konstrueras liksom startbatterier för höga strömstyrkor, men med tonvikten lagd pa god livslängd.The batteries are designed like starter batteries for high currents, but with the emphasis on good life.

Batteriernas vikt och pris kan pà så sätt reduceras till en bråkdel av vad som krävs för batteridrivna fordon.The weight and price of the batteries can thus be reduced to a fraction of what is required for battery-powered vehicles.

Systemet kan med fördel utnyttjas med en Stirling-eller en ängmotor, där man kan bygga en sluten enhet med primärmotorn oc inbyggda generatorer.The system can be used to advantage with a Stirling or a meadow engine, where you can build a closed unit with the primary engine and built-in generators.

Dessa motorer kan dessutom med fördel använda lågemissionsbräns som etanol, naturgas eller rentav vatgas lagrat i hydrider och helt eliminera avgasproblemet.In addition, these engines can advantageously use low-emission fuels such as ethanol, natural gas or even hydrogen gas stored in hydrides and completely eliminate the exhaust problem.

Samma kan sägas om bränsleceller om och när dessa utvecklats oc blivit pålitliga. Men även Otto-, wankel-, diesel eller turbinmotorer kan vid konstant belastning optimeras för att ge minimum avgaser. Storleken på primärmotorn blir endast brâkdele av nuvarande motorer och totala avgasmängden blir därför motsvarande mindre.The same can be said about fuel cells if and when these have developed and become reliable. But even Otto, Wankel, diesel or turbine engines can be optimized at constant load to provide minimum exhaust gases. The size of the primary engine will only be a fraction of current engines and the total amount of exhaust gas will therefore be correspondingly smaller.

BNSDOCID: BNSDOCID:

Claims (3)

G* 505 431 PRTENTKRAV.G * 505 431 PRENT REQUIREMENTS. 1. l. Hybridfordon med en primärmotor som driver en elektrisk generator, elektriska motorer som drivs av elektrisk ström fràn generatorn och är kopplade till drivhjulen och en energi- och effektutjämnande elektrisk ackumulator varvid primärmotorns effekt är tillräcklig för att via generatorn och drivmotorn framföra fordonet i normal trafik medan ackumulatorn användes som tillsats då ett större energibehov uppstår, t.ex. för snabbare start, acceleration och backtagningsförmàga och regenerativ bromsning fràn drivmotorn kännetecknad av att ackumulatorn är utförd för höga strömstyrkor och kraftigt kyld såväl vid laddning som urladdning och att dess kapacitet inte är större än att vid normala driftsförhállanden den energi som erhålles fràn den regenerativa bromsningen är tillräcklig för uppladdning av ackumulatorn.1. l. Hybrid vehicles with a primary motor driving an electric generator, electric motors powered by electric current from the generator and connected to the drive wheels and an energy and power equalizing electric accumulator whereby the primary motor power is sufficient to drive the vehicle in the generator and drive motor. normal traffic while the accumulator is used as an additive when a greater energy need arises, e.g. for faster starting, acceleration and reversing ability and regenerative braking from the drive motor characterized in that the accumulator is designed for high currents and heavily cooled both during charging and discharging and that its capacity is not greater than that under normal operating conditions the energy obtained from the regenerative braking is sufficient to charge the accumulator. 2. Hybridfordon enligt patentkrav 1 kännetecknat därav att ackumulatorn är tillräckligt stor för att tillfälligt framföra fordonet genom miljökänsliga områden utan tillsats från generatorn.Hybrid vehicle according to claim 1, characterized in that the accumulator is large enough to temporarily propel the vehicle through environmentally sensitive areas without addition from the generator. 3. Hybridfordon enligt något av patentkrav 1 eller 2 kännetecknat därav att den primära drivmotorn är en Stirling-, Otto-, Wankel- diesel-, àng- eller turbinmotor, som oberoende av fordonets hastighet trimmats in att ge bästa verkningsgrad och ett minimum av avgaser. BNSDOCID:Hybrid vehicle according to one of Claims 1 or 2, characterized in that the primary drive engine is a Stirling, Otto, Wankel diesel, steam or turbine engine, which, regardless of the vehicle's speed, is tuned to provide the best efficiency and a minimum of exhaust gases. . BNSDOCID:
SE8903987A 1989-08-31 1989-11-27 Hybrid drive road vehicle SE505431C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE8903987A SE505431C2 (en) 1989-08-31 1989-11-27 Hybrid drive road vehicle
EP90850384A EP0578837A1 (en) 1989-11-27 1990-11-26 Hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8902887 1989-08-31
SE8903987A SE505431C2 (en) 1989-08-31 1989-11-27 Hybrid drive road vehicle

Publications (3)

Publication Number Publication Date
SE8903987D0 SE8903987D0 (en) 1989-11-27
SE8903987L SE8903987L (en) 1991-03-01
SE505431C2 true SE505431C2 (en) 1997-08-25

Family

ID=26660586

Family Applications (1)

Application Number Title Priority Date Filing Date
SE8903987A SE505431C2 (en) 1989-08-31 1989-11-27 Hybrid drive road vehicle

Country Status (1)

Country Link
SE (1) SE505431C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007018776U1 (en) 2007-10-30 2009-06-25 Hoh, Manfred Steam engine with rotating steam inlet and outlet pipes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017131370A1 (en) * 2017-12-28 2019-07-04 Martin Esser Vehicle, method for starting a means of locomotion, use of a low-temperature fuel cell as a secondary energy source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007018776U1 (en) 2007-10-30 2009-06-25 Hoh, Manfred Steam engine with rotating steam inlet and outlet pipes

Also Published As

Publication number Publication date
SE8903987L (en) 1991-03-01
SE8903987D0 (en) 1989-11-27

Similar Documents

Publication Publication Date Title
US7570012B2 (en) Energy storage device for loads having variable power rates
US7866425B2 (en) Hybrid electric propulsion system and method
Thounthong et al. The benefits of hybridization
US5713426A (en) Hybrid vehicle
JP4206630B2 (en) DC power supply with fuel cell
JP4218202B2 (en) DC power supply with fuel cell
US9385543B2 (en) Hybrid storage cell, vehicle and power storage unit employing same, smart grid vehicle system employing vehicle, and power supply network system employing power storage unit
US20080113226A1 (en) Energy storage device for loads having variable power rates
JPH10271611A (en) Power supply system for electric vehicle
JPH10295045A (en) Control apparatus for power generation of hybrid electric vehicle
CN101186185A (en) Hybrid motor vehicle energy storage device and method for using the device to energy regulation
JP4737533B2 (en) Vehicle control device
US20200016990A1 (en) On-board charging system for electric vehicles
JP2010279124A (en) Moving vehicle
KR20010089643A (en) Hybrid drive system
JP3389324B2 (en) Hybrid power supply for electric vehicles
JP2024028397A (en) Vehicle travel system and vehicle
EP0578837A1 (en) Hybrid vehicle
SE505431C2 (en) Hybrid drive road vehicle
JPH06319204A (en) Electric motor car apparatus
JPH08126119A (en) Electric automobile
Herizi et al. Backstepping control and energy management of hybrid DC source based electric vehicle
JP2010184538A (en) Low floor type electric vehicle
EP3960522A1 (en) Vehicle energy storage
JP2003070106A (en) Power storage system for automobile