SE505080C2 - Heating systems for collecting heat radiation, preferably from the sun - Google Patents
Heating systems for collecting heat radiation, preferably from the sunInfo
- Publication number
- SE505080C2 SE505080C2 SE9600717A SE9600717A SE505080C2 SE 505080 C2 SE505080 C2 SE 505080C2 SE 9600717 A SE9600717 A SE 9600717A SE 9600717 A SE9600717 A SE 9600717A SE 505080 C2 SE505080 C2 SE 505080C2
- Authority
- SE
- Sweden
- Prior art keywords
- vacuum
- absorber
- sheets
- gap
- liquid
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 8
- 238000010438 heat treatment Methods 0.000 title claims description 16
- 239000007788 liquid Substances 0.000 claims abstract description 39
- 239000006096 absorbing agent Substances 0.000 claims abstract description 26
- 239000006059 cover glass Substances 0.000 abstract 1
- 230000001681 protective effect Effects 0.000 abstract 1
- 239000012530 fluid Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S80/00—Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
- F24S80/50—Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
- F24S80/54—Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings using evacuated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/50—Solar heat collectors using working fluids the working fluids being conveyed between plates
- F24S10/502—Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits formed by paired plates and internal partition means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S80/00—Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
- F24S80/50—Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
- F24S80/58—Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by their mountings or fixing means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Joining Of Glass To Other Materials (AREA)
- Laminated Bodies (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
505 oso 2 utbuktningar; och Fig 3 visar en modifikation av systemet enligt Fig 1. 505 oso 2 bulges; and Fig. 3 shows a modification of the system according to Fig. 1.
FÖREDRAGEN UTFÖRINGSFORM Värmesystemet enligt Fig1 omfattar en värmeabsorbator10för mottagning av värme- strålning, företrädesvis från solen, samt en vakuumskapande cirkulationsslinga11.PREFERRED EMBODIMENT The heating system of Fig. 1 comprises a heat absorber 10 for receiving heat radiation, preferably from the sun, and a vacuum-creating circulation loop11.
Absorbatorn omfattar två planparallella skivor 101, 102, se Fig 2, vilka medelst mellan- liggande, företrädesvis cirkulära utbuktningar103, 104, 105 hålls på visst på förhand bestämt avstånd från varandra. Detta avstånd ligger inom intervallet 0,01-10,0 mm, och uppgår lämpligen till 1,0 mm. På så sätt förefinns en spalt 106 mellan skivorna 101, 102 i huvudsak utmed hela deras yta. l denna spalt 106 upprätthålles kontinuerligt va- kuum medelst den vakuumskapande cirkulationsslingan 11. Spalten är fylld med vätska.The absorber comprises two plane-parallel discs 101, 102, see Fig. 2, which by means of intermediate horizontal, preferably circular bulges 103, 104, 105 are held at some advance certain distance from each other. This distance is in the range 0.01-10.0 mm, and suitably amounts to 1.0 mm. In this way there is a gap 106 between the discs 101, 102 substantially along their entire surface. In this column 106, continuous water is maintained. vacuum by means of the vacuum-creating circulation loop 11. The gap is filled with liquid.
De i Fig 2 antydda utbuktningarna placeras lämpligen i hörnen på tänkta kvadrater med tex. 25 mm sida. Utbuktningarnas höjd blir beroende av graden av önskat vakuum, vil- ket i sin tur avgör vätskans kokpunkt.The bulges indicated in Fig. 2 are suitably placed in the corners of imaginary squares with for example. 25 mm side. The height of the bulges will depend on the degree of vacuum desired, which ket in turn determines the boiling point of the liquid.
Skivorna 101, 102 är sammanfogade i sina kanter på sätt som medger viss rörelse mel- lan skivorna. Sammanfogningen sker t.ex. medelst svetsning eller limning i en tät, flexi- bel konstruktion. Skivorna består av strålning absorberande material, tex. metall. Anvis- ningar i skivorna utformas så att kapillaritet uppstår i den vätskefyllda spalten mellan ski- vorna, samt adheslonseffekt mellan vätskan och skivornas mot varandra vända ytor. I vätskefilmen uppstår därvid en kohesionskraft, vars attraherande verkan åstadkommer stor draghållfasthet i vätskan. Vidare sammanhålls skivorna av det kontinuerliga va- kuum som medelst pumptryck skapas i absorptionsspalten. Vätskeflödet genom spalten blir uppåtriktat. Medelst denna utformning av konstruktionen blir den "våta ytan” i princip ca 100%.The discs 101, 102 are joined at their edges in a manner which allows some movement between the lan discs. The merging takes place e.g. by welding or gluing in a dense, flexible bel construction. The discs consist of radiation-absorbing material, e.g. metal. Instructions discs in the discs are designed so that capillarity occurs in the fluid-filled gap between the discs and the adhesion effect between the liquid and the facing surfaces of the discs. IN the liquid film thereby creates a cohesive force, the attractive effect of which is achieved high tensile strength in the liquid. Furthermore, the discs are held together by the continuous kuum which is created in the absorption gap by means of pump pressure. The fluid flow through the gap becomes upward. By means of this design of the construction, the "wet surface" becomes in principle about 100%.
Med detta utförande uppnås, att om det, vid t.ex. ledningsbrott, skulle uppstå övertryck i spalten kan skivorna momentant förskjutas från varandra (utom vid kanterna), varige- nom förhindras sprängning av konstruktionen.With this embodiment it is achieved that if, at e.g. line breakage, overpressure would occur in gap, the discs can be momentarily displaced from each other (except at the edges), lasting explosion of the structure is prevented.
Vid den fasta monteringen av skivorna kan dessa bilda en vinkel inom området 10 - 90 , med horisontalplanet, företrädesvis inom området 25 - 45 . Härigenom kommer all luft och ev. bildad gas att evakueras så att inga ”fickor” bildas, som skulle försämra absorba- torns effektivitet..During the fixed mounting of the discs, these can form an angle in the range 10 - 90, with the horizontal plane, preferably in the range 25 - 45. This gives all the air and possibly formed gas to be evacuated so that no ‘pockets’ are formed, which would impair the absorption tower efficiency ..
Den vakuumskapande cirkulationsslingan 11 innefattar tryckpump 110 för vätska som är ansluten på sin ingångssida till en vätskebehållare 116 och på sin utgångssida via en första ventil 111 till en tilledning 112. Denna är ansluten till en vakuumsluss 113 vid ab- sorbatorns 10 övre del för vakuumgenerering i värmeabsorbatorns 10 spalt 106, och till en returledning 114, som via en värmeväxlare 115 leder tillbaka till vätskebehållaren 116.The vacuum generating circulation loop 11 includes pressure pump 110 for liquid which is connected on its inlet side to a liquid container 116 and on its outlet side via a first valve 111 to a line 112. This is connected to a vacuum lock 113 at the ab- the upper part of the sorbent 10 for vacuum generation in the space 106 of the heat absorber 10, and to a return line 114, which via a heat exchanger 115 leads back to the liquid container 116.
Tryckpumpen110 är vidare, via en andra ventil 117, ansluten till en tryckledning 118, som leder till absorbentens nedre del , och till en tryckbalansledning 119, som leder till 3 505 080 en öppen ledning 120 (atmosfärstryck). En by-pass -ledning 121 förbinder vätskebehâl- larens 16 övre del med den öppna ledningen 120.The pressure pump 110 is further, via a second valve 117, connected to a pressure line 118, which leads to the lower part of the absorbent, and to a pressure balance line 119, which leads to 3 505 080 an open line 120 (atmospheric pressure). A bypass line 121 connects the fluid reservoir- upper part 16 with the open conduit 120.
När vätska från behållaren 116 pumpas upp till absorbatorn 10 genomgår den en adia- batisk tillståndsförändring utan att värme tillföres från omgivningen. Vid tryckändringen kan gas bildas som ger upphov till temperatursänkning i vätskan.When liquid from the container 116 is pumped up to the absorber 10, it undergoes an additional batic state change without heat being supplied from the surroundings. At the pressure change gas can be formed which gives rise to a temperature drop in the liquid.
I absorbatorn påverkas vätskan av ett yttre ”kraftfälffl nämligen av värmestrålning. Ett nytt rörelsetillstånd inträffar, enligt kvantteorin. Allteftersom vätska flödar upp i absorbatorn tillförs termisk energi utan att temperaturen höjs i samma utsträckning som vid oföränd- rat tryck. Absorbatorn antager samma temperatur som vätskan, vilket ger lägre förlus- ter genom värmeledning i konstruktionen.In the absorber, the liquid is affected by an external 'force field', namely by heat radiation. A new movement states occur, according to quantum theory. As liquid flows up into the absorber thermal energy is supplied without raising the temperature to the same extent as in the case of unchanged rat pressure. The absorber assumes the same temperature as the liquid, which results in lower losses. through heat conduction in the construction.
Av de tidigare nämnda rörslingorna harslingan 11 (ledning 112 och ledning 114) till uppgift att skapa vakuum, (vakuumslinga).Of the previously mentioned pipe loops, the resin loop 11 (line 112 and line 114) to task to create vacuum, (vacuum loop).
Tilledningen 118 och returledningen 114 bildar en slinga 12 med uppgift att cirkulera vätska till absorbatorn, (värmeslinga).The supply line 118 and the return line 114 form a loop 12 with the task of circulating liquid to the absorber, (heating coil).
Tryckbalansledningen 119 och by-pass - ledningen 121 bildar en slinga 13 med uppgift att balansera variationer i atmosfärstrycket, samt att utgöra säkerhetsrör, (by-pass - slin- 98)- Vakuumslingan (112,114) och värmeslingan (118, 114) har som synes gemensam re- turledning. I värmeslingan finns vakuumslussen 113, som ger flödet genom absorbatorn . När flödestrycket+ vätskans hydrauliska tryck understiger atmosfärstrycket startar vätskeflödet i absorbatorns 10 spalt 106. Detta sker automatiskt och oberoende av va- riationer i atmosfärstrycket.Pressure balance line 119 and bypass line 121 form a loop 13 with task to balance variations in atmospheric pressure, as well as to form safety pipes, (by-pass 98) - The vacuum loop (112, 114) and the heating loop (118, 114) appear to have common features. tour guide. In the heating loop there is the vacuum lock 113, which provides the flow through the absorber . When the flow pressure + the hydraulic pressure of the liquid below the atmospheric pressure starts the liquid flow in the gap 106 of the absorber 10. This takes place automatically and independently of variations in atmospheric pressure.
När vätska lämnar absorbatorn 10 inträder adiabatisk kompression i kombination med kondensation av ev. gas i vätskan, vilket ger en temperaturhöjning i vätskan före passa- gen genom värmeväxlaren 115.As fluid leaves the absorber 10, adiabatic compression occurs in combination with condensation of ev. gas in the liquid, which gives a temperature increase in the liquid before through the heat exchanger 115.
Sammantaget ger det nu beskrivna värmesystemet ett utökat utbyte när det integreras i t.ex. ett solvärmesystem.Overall, the heating system now described provides an increased yield when integrated into for example a solar heating system.
När värmesystemet startas upp och tryckpumpen 110 börjar arbeta stiger vätska uppi ledningarna 112, 118 och 119. Vätskan rinner sedan tillbaka genom fritt fall i ledningen 114 till vätskebehållaren 116. Flödeshastigheten i denna ledning är ca 10 gånger högre än jämviktshastigheten (hastigheten vid full drift); vätskan drar med sig luft via vakuum- slussen 113, och ett tryck understigande atmosfärstryck uppstår i spalten 106 i värmeab- sorbatorn 10. l tilledningen 118 stiger vätskenivån upp mot absorbatorn 10, och i tryckbalansledning- en 119 till anslutningspunkten till by-pass - ledningen 121, varifrån vätska sedan ström- mar tillbaka till vätskebehållaren 116.When the heating system is started up and the pressure pump 110 starts working, liquid rises lines 112, 118 and 119. The liquid then flows back through a free fall in the line 114 to the liquid container 116. The flow rate in this line is about 10 times higher than the equilibrium speed (the speed at full operation); the liquid draws air through the vacuum lock 113, and a pressure below atmospheric pressure occurs in the gap 106 in the heat sink. sorbatorn 10. In the line 118 the liquid level rises towards the absorber 10, and in the pressure balance line a 119 to the connection point to the by-pass line 121, from which liquid then flows back to the liquid container 116.
I den öppna ledningen 120 råder alltid atmosfärstryck. Allteftersom luft evakueras via re- turledningen 114 stiger vätskenivån i tilledningen 118 upp till absorbatorn 10, som nu står under kontinuerligt undertryck. 505 oso 4 När all luft evakuerats startar cirkulationen i värmeslingan 118, 114 enligt hävertprinci- pen. Flödeshastigheten styrs av nivåskillnaden mellan vätskeyta Bitilledningen 118 och vätskeytaC ivätskebehållaren 116. Vätskeyta A i tryckbalansledningen 119 be- stäms genom injustering av ventilen 117.Atmospheric pressure always prevails in the open line 120. As air is evacuated via re- the flow line 114 rises the liquid level in the line 118 up to the absorber 10, as now is under continuous negative pressure. 505 oso 4 When all air has been evacuated, the circulation in the heating coil 118, 114 starts according to the siphon principle. pen. The flow rate is controlled by the level difference between the liquid surface Bit line 118 and liquid surface C in the liquid container 116. Liquid surface A in the pressure balance line 119 is adjusted by adjusting the valve 117.
Vakuumslussen 113 består i princip av en ledning mellan absorbatorn 10 och returled- ningen 114. Dess area är ca 50% av övriga ledningars area. l det modifierade systemet enligt Fig 3 har bl.a. den ändringen gjorts att vakuumslingan och värmeslingan har skilda returledningar; vakuumslingan har en returledning 314 som går från vakuumslussens utgångssida till by-pass -ledningen 121, och värme- slingan har som tidigare returledningen 114, som nu går från vakuumslussens ingångssida till värmevàxlaren 115. I detta alternativ har vakuumslussen 113 en ledningsarea av ca 10% av övriga ledningars area för att så het vätska som möjligt skall nå värmevàxlaren 115.The vacuum lock 113 basically consists of a line between the absorber 10 and the return line. 114. Its area is about 50% of the area of other pipelines. In the modified system according to Fig. 3, i.a. the change made to the vacuum loop and the heating coil has different return lines; the vacuum loop has a return line 314 going from the exit side of the vacuum lock to the by-pass line 121, and the heating as before, the loop has the return line 114, which now runs from the vacuum lock inlet side of the heat exchanger 115. In this alternative, the vacuum lock 113 has a pipe area of about 10% of the area of other pipes in order for as hot a liquid as possible reach the heat exchanger 115.
Med denna utformning går flödet genom värmeslingan diekt till värmevàxlaren 115 utan att bli nedkylt av flödeti vakuumslingan. Härigenom blir ingångstemperaturen till värme- växlaren 115 högre, d.v.s. ungefär densamma som utgångstemperaturen från absorba- torn 10, och vakuumslingans flödeshastighet störs ej av förändringar i värmeslingans flödeshastighet.With this design, the flow through the heat loop goes smoothly to the heat exchanger 115 without to be cooled by the flow in the vacuum loop. As a result, the inlet temperature becomes the exchanger 115 higher, i.e. approximately the same as the starting temperature from the absorber tower 10, and the flow rate of the vacuum loop is not disturbed by changes in the heating loop flow rate.
Undertrycket i absorbatorn väljes i viss mån i beroende av avståndet mellan vätskebe- hållare och absorbator. Som exempel kan nämnas ett fall där avståndet är 4m och un- dertrycket 700 millibar; i ett annat fall är avståndet 10 m och undertrycket 70 millibar.The negative pressure in the absorber is selected to some extent depending on the distance between the liquid holder and absorber. An example is a case where the distance is 4m and the pressure 700 millibar; in another case the distance is 10 m and the negative pressure 70 millibar.
Undertrycket kan vidare regleras genom variering av vätskeflödet i vakuumslingan eller värmeslingan eller eventuellt i båda slingorna.The negative pressure can be further regulated by varying the liquid flow in the vacuum loop or the heating loop or possibly in both loops.
Claims (3)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9600717A SE505080C2 (en) | 1996-02-26 | 1996-02-26 | Heating systems for collecting heat radiation, preferably from the sun |
PCT/SE1997/000228 WO1997031225A1 (en) | 1996-02-26 | 1997-02-13 | A system for recovering thermal radiation, especially solar radiation |
AU21075/97A AU2107597A (en) | 1996-02-26 | 1997-02-13 | A system for recovering thermal radiation, especially solar radiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9600717A SE505080C2 (en) | 1996-02-26 | 1996-02-26 | Heating systems for collecting heat radiation, preferably from the sun |
Publications (3)
Publication Number | Publication Date |
---|---|
SE9600717D0 SE9600717D0 (en) | 1996-02-26 |
SE9600717L SE9600717L (en) | 1997-06-23 |
SE505080C2 true SE505080C2 (en) | 1997-06-23 |
Family
ID=20401547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE9600717A SE505080C2 (en) | 1996-02-26 | 1996-02-26 | Heating systems for collecting heat radiation, preferably from the sun |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2107597A (en) |
SE (1) | SE505080C2 (en) |
WO (1) | WO1997031225A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3120173A1 (en) * | 1981-05-21 | 1982-12-09 | Hoechst Ag | AREA FLEXIBLE HEAT EXCHANGE ELEMENT |
BE892528A (en) * | 1982-03-17 | 1982-07-16 | Studiecentrum Kernenergi | SOLAR HEATING INSTALLATION |
-
1996
- 1996-02-26 SE SE9600717A patent/SE505080C2/en not_active IP Right Cessation
-
1997
- 1997-02-13 AU AU21075/97A patent/AU2107597A/en not_active Abandoned
- 1997-02-13 WO PCT/SE1997/000228 patent/WO1997031225A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
AU2107597A (en) | 1997-09-10 |
SE9600717D0 (en) | 1996-02-26 |
SE9600717L (en) | 1997-06-23 |
WO1997031225A1 (en) | 1997-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160145838A1 (en) | System, and Associated Method, for Recovering Water From Air | |
US3620206A (en) | Fluid heating by radiation | |
Prasad et al. | Analysis of double effect active solar distillation | |
US20050258261A1 (en) | Method for operating heating systems, heating system for carrying out the method and use thereof | |
SE531566C2 (en) | A solar concentrator | |
Emam et al. | Analysis of a new hybrid water-phase change material heat sink for low concentrated photovoltaic systems | |
US4320743A (en) | Solar energy system and solar collector therefor | |
SE505080C2 (en) | Heating systems for collecting heat radiation, preferably from the sun | |
US4305380A (en) | Solar energy system and solar powered tracking apparatus therefor | |
NL1029168C2 (en) | Solar collector with integrated heat storage II. | |
US4270522A (en) | Solar heat collection and transfer system | |
US4333314A (en) | Solar energy system and heat engine therefor | |
EP2093808A2 (en) | Multiple cooling systems of photovoltaic panels | |
Aboabboud et al. | The use of a thermal energy recycle unit in conjunction with a basin-type solar still for enhanced productivity | |
JP6861965B2 (en) | Solar heat collector | |
Khalilmoghadam et al. | An improved passive solar still integrated with pulsating heat pipes and phase change materials | |
NL1027486C1 (en) | Solar energy module involves construction for simultaneous recovery of heat and electrical energy from sun radiation reaching photo voltaic panel via thermically insulated window and light-permeating water layer | |
JP2018179462A (en) | Solar energy collector and solar heat hot water system | |
US20240263841A1 (en) | Solar thermal collector | |
NL2017469B1 (en) | Combined photovoltaic and thermal module. | |
ES2533506A2 (en) | Aerothermic solar collector | |
CN205403197U (en) | Plate solar collector of sprue slope | |
SE415926B (en) | DEVICE FOR DOUBLE-ACTING SOLAR COLLECTORS | |
JPS5812949A (en) | Convection type water heater utilizing solar heat | |
JP2016032312A (en) | Solar cell panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |