SE467729B - MAKE TO JOIN PLASTIC MATERIAL MEDIUM EXPLOSION WELDING. - Google Patents

MAKE TO JOIN PLASTIC MATERIAL MEDIUM EXPLOSION WELDING.

Info

Publication number
SE467729B
SE467729B SE8701846A SE8701846A SE467729B SE 467729 B SE467729 B SE 467729B SE 8701846 A SE8701846 A SE 8701846A SE 8701846 A SE8701846 A SE 8701846A SE 467729 B SE467729 B SE 467729B
Authority
SE
Sweden
Prior art keywords
collision
parts
material parts
joint plane
acc
Prior art date
Application number
SE8701846A
Other languages
Swedish (sv)
Other versions
SE8701846D0 (en
SE8701846L (en
Inventor
P I Persson
Original Assignee
Exploweld Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exploweld Ab filed Critical Exploweld Ab
Priority to SE8701846A priority Critical patent/SE467729B/en
Publication of SE8701846D0 publication Critical patent/SE8701846D0/en
Priority to PCT/SE1988/000223 priority patent/WO1988008785A1/en
Publication of SE8701846L publication Critical patent/SE8701846L/en
Publication of SE467729B publication Critical patent/SE467729B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/002Joining methods not otherwise provided for
    • B29C65/004Cold joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/022Particular heating or welding methods not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • B29C66/73521Thickness, e.g. very thin of different thickness, i.e. the thickness of one of the parts to be joined being different from the thickness of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/133Fin-type joints, the parts to be joined being flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

Ett annat speceillt användningsområde är sanunanfogniiig av kolfiberarmerade plastmaterial för flygindustrin. Another special application is the use of carbon fiber reinforced plastic materials for the aerospace industry.

Det är dock uppenbart att föreliggande uppfinning kan tillänpas för de flesta Inakrolrnolelcylära material.It is to be understood, however, that the present invention is applicable to most inacrylonolecular materials.

Nedan förklaras och beskrives föreliggande uppfinning i samband med bifogade ritningar, där - fig. 1 visar en schematisk skiss av ett æqzbalosionssvetsningsförlopp. - fig. 2 visar ett hastighetsdiagram. - fig. 3 visar ytterligare ett hastighetsdiagram. - fig. 4 illustrerar olika zoner i ett explosionssvetsningsförlopp. - fig. 5 - 10 visar olika principiella uppställningar av två materialparter, sam skall explosionssvetsas till varandra. - fig. 11 a - 11 e visar olika exercplifieraride Ilppställniiigar för att samnanfoga plattor eller rör.The present invention is explained and described below in connection with the accompanying drawings, in which - Fig. 1 shows a schematic sketch of an equilibration welding process. Fig. 2 shows a speed diagram. Fig. 3 shows another speed diagram. Fig. 4 illustrates different zones in an explosion welding process. - fig. 5 - 10 show different basic arrangements of two material parts, which must be exploded welded to each other. Figs. 11 a - 11 e show different exercplifier rider arrangements for joining plates or pipes.

Fig. 1 visar scliexnatislct de materialflödenf, som sker vid en explosionssvets- ningsprocess. En första materialpart 1 aocelereras mot en andra materialpart 2. Kollisionszonen har betecknats med a. I verkligheten rör sig kollisions- fronten a från höger mot vänster i bilden. ' Utan att parternas relativa rörelseschema förändras kan man teoretiskt tänka sig kollisionszonen stationär och att inaterialparterna 1,2 rör sig från vanster" mot höger i bilden.Fig. 1 shows the flow of material which takes place in an explosion welding process. A first material part 1 is accelerated towards a second material part 2. The collision zone has been denoted by a. In reality, the collision front a moves from right to left in the image. 'Without the parties' relative movement scheme changing, one can theoretically imagine the collision zone stationary and that the material parts 1,2 move from left "to the right in the image.

Processens kontinuitetsvillkor ger att hastigheten D är konstant överallt i lnaterialparternas Vektordiagranmxet i fig. 2 visar att den hastighet v , med vilken den första materialparten 1 slungas mot den andra materialparten 2 har argumentet 4> = ß/2 relativt normalen till den yta, som rör sig nedåt och som under processen bildar en vinkel ß mot överytan av den andra rnaterialparten 2.The continuity condition of the process means that the velocity D is constant throughout the vector diagram of the material parts in Fig. 2 shows that the velocity v at which the first part of the material 1 is thrown towards the second part of the material 2 has the argument 4> = ß / 2 relative to the surface downwards and which during the process forms an angle ß towards the surface of the other material part 2.

Ifig. 2ärq>+6+90=180°ochß+26=180°varförqb=ß/2. 467 729 3 I fig. 3 åskådliggöres hastigheterna i anslutning till en explosionssvets- ningsprocess .Ifig. 2ärq> + 6 + 90 = 180 ° andß + 26 = 180 ° whyqb = ß / 2. 467 729 3 Fig. 3 illustrates the speeds in connection with an explosion welding process.

Hastighetsvektorn v har koznposanterna vv vinkelrätt mot den andra material- partens 2 kollisionsyta och vh parallellt med denna.The velocity vector v has the components vv perpendicular to the collision surface of the other material part 2 and vh parallel thereto.

Koniposanten vv uppbromsas momentant vid kollisionen och ger upphov till en tryokvåg, vilken rör sig dels uppåt i materialparten 1 och dels nedåt i materialparten 2.The coniposity vv is momentarily decelerated in the collision and gives rise to a pressure wave, which moves partly upwards in the material part 1 and partly downwards in the material part 2.

Om kornposanten vvzs belopp är tillräckligt stort blir det alstrade trycket nära kollisionsytan tillräckligt högt för att fluidisera materialet. Inom vissa gränser kan viskositeten hos det fluidiserade materialet påverkas.If the amount of the grain poscent vvz is large enough, the pressure generated near the collision surface becomes high enough to fluidize the material. Within certain limits, the viscosity of the fluidized material may be affected.

Vidare påverkas fluidiserirxgsdjripet på båda sidor om kollisionsytan med beloppet av vv.Furthermore, the fluidization depth on both sides of the collision surface is affected by the amount of vv.

Kcmposanten vh är hastighetssldllruaden mellan de kolliderande ytorna av materialparterna 1,2, vilken påverkar fogens bildning på så sätt att när dess belopp uppnår ett visst värde övergår strömnirxgen mellan de fluidiserade sliilrten hos materialparterna 1,2 från laminär till turlaulent Nämnda värde sammanhänger på känt sätt med viskositeten.The component vh is the velocity difference between the colliding surfaces of the material parts 1,2, which affects the formation of the joint in such a way that when its amount reaches a certain value, the current between the fluidized slides of the material parts 1,2 changes from laminar to turlaulent. with the viscosity.

När trycket upphör i fogytan stelnar det fluidiserade skiktet närmast kollisionsytan och det turbulenta vågmönstret "fryses", såsom illustreras i fig. 4.When the pressure in the joint surface ceases, the fluidized bed closest to the collision surface solidifies and the turbulent wave pattern is "frozen", as illustrated in Fig. 4.

Den vid kollisionen uppkomna tryckvågen reflekteras mot de ytor av material- parterna 1,2, som är motståeride kollisionsytorna. Efter reflektionen återkommer tryckvågen till fogytan som en dragvåg, varvid fogområdet avlastas.The pressure wave generated during the collision is reflected against the surfaces of the material parts 1,2, which are opposite the collision surfaces. After the reflection, the pressure wave returns to the joint surface as a tensile wave, whereby the joint area is relieved.

I fig. 4 illustreras den flytande zon av material, som Iippkomxner med ett rastrerat område 3. Med linjerna 4 resp. pilarna 5 illustreras den vid kollisionen mellan materialparterna uppkomna tryckvågens utbredning resp. rikiznizig. Med linjerna 6 resp. pilarna 7 illustreras den mot ytorna 8,9 reflekterade tryckvågens utbredning resp. riktning.Fig. 4 illustrates the liquid zone of material, which Iippkomxner with a rasterized area 3. With the lines 4 resp. arrows 5 illustrate the distribution wave resp., respectively, resulting from the collision between the material parts. rikiznizig. With lines 6 resp. arrows 7 illustrate the distribution of the pressure wave reflected towards the surfaces 8,9, resp. direction.

Reflektionsplinkterna anges med siffrorna 10 och 11. ~l>~ PJ xO Såsom illustreras i fig. 4 stelnar den flytande zonen när denna p.g.a. att den från ytorna 8,9 inåt löpande dragvågen når fogoxnrådet, varvid nämnda 12 frysas.The reflection points are indicated by the numbers 10 and 11. ~ l> ~ PJ xO As illustrated in Fig. 4, the liquid zone solidifies when it p.g.a. that the traction wave running inwards from the surfaces 8,9 reaches the fogox node, the said 12 being frozen.

Med linjerna 13,14 illustreras det stelnade fogområdets utbredning.Lines 13, 14 illustrate the extent of the solidified joint area.

Det är känt vid explosionssvetsning av metaller att det "frysta" vågmönstrets anxplitiid och våglängd ökar om tiden till dess dragvågen avlastar fogolnrådet ökar. Detta att den vid kollisionens front initierade turbulensen eller vâgbilaen ökar i anplium och våg1ängd“ waer den tia sem meterieiekm- ten rxärmast fogen är flytande. Ökande Inaterialtjoclšlelí hOS nlaterialparterna att den tidpunkt, vid vilken dragvågen koxumer till fogområdet är senare, relativt kollisionstidpunkten, varför vågmönstrets arrplitud och våglängd därvid ökar. Nämnda tid är givetvis också i hög grad beroende av Inaterialens stötvågshastigheter.It is known in explosion welding of metals that the anxiety and wavelength of the "frozen" wave pattern increases if the time until the tensile wave relieves the fogol range increases. This is because the turbulence or weighing car initiated at the front of the collision increases in amplitude and wavelength “when the tens of meters closest to the joint is liquid. Increasing Inaterialtjoclšlelí hOS nlaterialpartene that the time at which the tensile wave coexists to the joint area is later, relative to the time of collision, so that the wave pattern and wavelength of the wave pattern thereby increases. The said time is of course also highly dependent on the material's shock wave velocities.

Stötvågshastigheten för ett material är lika med ljudhastigheten för materialet vid stötvågor med lägre amplitud och en funktion av ljudhastighe- ten vid högre stötvågsalxplitmid.The shock wave velocity of a material is equal to the sound velocity of the material at shock waves with lower amplitude and a function of the sound velocity at higher shock wave splits.

Om tiden mellan den tidpunlct då materialparterna kolliderar till den tidpunkt då vågmönstret fryses blir lång t.ex. på grund av låg stötvågshastighet tenderar turbulensen att öka så mycket att kraftiga virvelbildnizxgar uppkonuner, vilka i sin tur förorsakar så hög temperatur genom inre friktion att materialet smälter tenniskt. Detta ger kaviteter i den färdiga fogen, Vilket Itünskar dess hållfasthet.If the time between the time when the material parts collide to the time when the wave pattern is frozen becomes long, e.g. Due to the low shock wave velocity, the turbulence tends to increase so much that strong vortex images accumulate, which in turn cause such a high temperature through internal friction that the material melts tennis. This gives cavities in the finished joint, which Itünskar its strength.

Det ovan sagda angående explosionssvetsningens förlopp gäller även vid explosionssvetsning av metaller.The above regarding the course of explosion welding also applies to explosion welding of metals.

Stötvågshastigheten för nxalu-anolelqlära organiska material är som regel betydligt lägre än för metaller. Detta medför att närma tid till dess fogområdet blir avlastat blir lång. Detta ger enl. den ovan sagda upphov till stor turlnulens och virvelbildnirngar med inre kaviteter som följd.The shock wave velocity for nxalu-anolelgla organic materials is generally significantly lower than for metals. This means approaching the time until the joint area is relieved to be long. This gives acc. the above-mentioned cause of great turbulence and vortex formations with internal cavities as a result.

Eftersom dessutom snältterrperatxzren för makronlolekylära material är mycket låg jämfört med den för metalliska material, uppstår lätt en betydande termisk smältning av materialet i fogområdet. 467 729 Ebzplosionssvetsning av makwroznolekylära material, såsom plaster, kan därför ej utföras med hjälp av de parametersanlbarxd, som tillämpas vid explosions- svetsning av metaller.In addition, since the melting temperature of macronolecular materials is very low compared to that of metallic materials, a significant thermal melting of the material easily occurs in the joint area. 467 729 Explosion welding of macrosolecular materials, such as plastics, can therefore not be performed using the parameters applied in explosion welding of metals.

Föreliggande mippfiimirag anger ett sätt att sammanfoga material, som består av eller som beståndsdel irmeluållder Inakronzolekylära organiska föreningar, där minst en första av de materialparter, som skall sanunanfogas accelereras till hög hastighet med hjälp av en eller flera detonerande sprängladdningar och tillåtes kollidera med en andra materialpart i ett fogplan, d.v.s. ett sätt ett expleeieneevetee micremelelqlåra material.The present mippfiimag discloses a method of joining materials consisting of or as a constituent in the age of inachronzolecular organic compounds, in which at least a first of the material parts to be joined is accelerated to high speed by means of one or more detonating explosive charges and allowed to collide with a second part in a joint plane, ie one way an expleeieneevetee micremeleclare material.

Det har överraskande konstaterats att om argument och belopp för den nämnda vektorn v anpassas på nedan angivet sätt till de lnakronnlelqlära materialens flytgräns, stötvågsliastighet och sxnältteilperatxzr erhålles en explosionsfog av hög kvalitet.It has surprisingly been found that if the arguments and amounts of the said vector v are adapted in the manner indicated below to the yield strength of the macronutrient materials, shock wave velocity and velocity of the particles, a high quality explosion joint is obtained.

Enl. uppfinningen skall den relativa hastighet vv i en riktning vinkelrätt mot den nämnda andra materialpartens mot den första materialpartens vända yta, d.v.s. vinkelrätt mot fogplanet, med vilken hastighet naterialparterna kolliderar med varandra, bringas att vara sådan att det tryck, som uppstår mellan materialparterna 1,2 vid kollisionen dem emellan är högre än materia- lens flytgärns, men understiganae zo gånger flytgränsen samtidigt sem kollisionen successivt i en riktning parallellt med en nämnda andra material- partens nämnda yta, d.v.s. parallellt med fogplanet, bringas att löpa med en hastighet D mellan cnnkriilg 1000 m/s och 2000 m/s, företrädesvis mellan 1400 m/s och 1700 m/s.According to. According to the invention, the relative velocity vv in a direction perpendicular to the said surface of said second material part towards the first material part, i.e. perpendicular to the joint plane, at which speed the material parts collide with each other, is made such that the pressure which arises between the material parts 1,2 at the collision between them is higher than the material's buoyancy, but less than twice the yield strength while the collision successively direction parallel to said surface of said second material part, i.e. parallel to the joint plane, is caused to run at a speed D between cnnkriilg 1000 m / s and 2000 m / s, preferably between 1400 m / s and 1700 m / s.

Enl. en föredragen utföringsform är nämnda kollisionstryck mellan 5 och 20 ggr flytgränsen.According to. a preferred embodiment is said collision pressure between 5 and 20 times the yield strength.

Som en jämförelse kan sägas att vid explosionssvetsning av metaller är kollisionstrycket över 50 ggr högre än flytgränsen för de metalliska materia- len.As a comparison, it can be said that in explosion welding of metals, the collision pressure is more than 50 times higher than the yield strength of the metallic materials.

Det har befunnits att en högre hastighet än omkring 2000 m/s meför alltför la-aftiga stötvågor, vilka efter nämnda reflektion förstör fogoxnrådet och/eller materialet i materialparterna. 467 729 De sprängämnen, som skall användas vid föreliggande förfarande är således sprängämnen med låg detonationshastighet. Exempelvis kan pulverformiga sprängämnen utspädda med ett inert material användas. Antalet tänkbara sprängämnen är mycket stort. mempelvis är nitroglyceriilgsprärxgänmen lämpliga. Ett sådant är ett sprängämne, som marknadsförs av Nitro Nobel, _ Sverige under varunamnet GURIT. Ett annat lämpligt sprängämne är Nitroguani- dine (CH4N4O2) . Fackmarmen kan lätt anordna ett sprängämne med för förelig- gande tillämpning lälnplig detonationshastighet.It has been found that a speed higher than about 2000 m / s causes too low-noise shock waves, which after said reflection destroy the fogox node and / or the material in the material parts. 467 729 The explosives to be used in the present process are thus explosives with a low detonation rate. For example, powdered explosives diluted with an inert material can be used. The number of possible explosives is very large. for example, nitroglycerin excipients are suitable. One such is an explosive, which is marketed by Nitro Nobel, _ Sweden under the brand name GURIT. Another suitable explosive is Nitroguanidine (CH4N4O2). The specialist arm can easily arrange an explosive with a detonation speed suitable for the present application.

Om, vilket är vanligt vid saimnanfogniiig av plasünaterial, lnaterialparternas tjocklek ooh etötvågereetigneter är like, erhålles enl. det ovan sagda en kollision av de båda reflekterade tryckvågorrxa just i det nybildade och ännu ej stelnade fogskiktet, vilken kollision tenderar att slita isär fogen.If, as is usual in the combination of plasma materials, the thickness of the material parts and the wave weight characteristics are equal, it is obtained according to the above-mentioned collision of the two reflected pressure wave grooves precisely in the newly formed and not yet solidified joint layer, which collision tends to tear the joint apart.

I särskilt hög grad är detta ett problem när explosionssvetsning skall utföras av lnalcoxrnolelqzlära material.This is particularly problematic when explosion welding is to be performed on non-carbon materials.

Detta problem undvikes enl. flera föredragna utföringsfonner av uppfinningen.This problem is avoided according to several preferred embodiments of the invention.

Enl. en första utföringsform, där båda materialparterna 1,2 har i huvudsak eller exakt sanna tjocklek vinkelrätt mot fogplanet, förefinns vid den ena materialpartens fria yta ett buffertmaterial, vars stötvågsimpedans, d.v.s. tätheten x ljudhastigheten, i huvudsak är densamma som stötvågsimpedansen för den materialpart, som hiffertnxaterialet anligger mot.According to. a first embodiment, in which both material parts 1,2 have a substantially or exactly true thickness perpendicular to the joint plane, there is present at the free surface of one material part a buffer material, the shock wave impedance, i.e. the density x the speed of sound, is essentially the same as the shock wave impedance of the material part against which the hiffertnx material abuts.

I fig. 5 och 6 betecknar siffrorna 1 och 2 nlaterialparterna, siffran 15 buffet-materialet och siffran 16 sprängämnet eller det impulsgivande organet.In Figs. 5 and 6, the numbers 1 and 2 denote the parts of the material, the number 15 the buffet material and the number 16 the explosive or the impulse means.

Enl. en annan utföringsform utnyttjas materialparter 1,2 med olika tjocklek vinkelrätt fogplanet, såsom illustreras i fig. 7 och 8, där sprängladdningen betecknas med siffran 16. Härigenom undvikes en lcraftig dragvåg i fogområdet.According to. In another embodiment, material parts 1,2 with different thicknesses perpendicular to the joint plane are used, as illustrated in Figs. 7 and 8, where the explosive charge is denoted by the number 16. This avoids a strong tensile wave in the joint area.

Fig. 7 illustrerar en vanlig uppställning före detonation av sprängladdning- en, där de båda materialparterna 1,2 är inbördes parallella. Vid en dylik *uppställning måste således kollisionsfrontens hastighet D regleras enbart medelst val av sprängämne.Fig. 7 illustrates a common arrangement before detonation of the explosive charge, where the two material parts 1,2 are mutually parallel. In such an * arrangement, the speed D of the collision front must thus be regulated only by means of the choice of explosive.

'N 467 729 7 Enl. en föredragen utföringsform, vilken illustreras i fig. 8 har de två materialparterna 1,2, före fogning, de ytor, som skall sanzmanfogas, så arrangerade att de bildar en vinkel mot varandra. Enl. denna utföringsform kan kollisionsfrontens hastighet D justeras genom att justera vinkeln mellan materialparterna 1,2.'N 467 729 7 Enl. In a preferred embodiment, which is illustrated in Fig. 8, the two material parts 1,2, before joining, have the surfaces to be joined together so arranged that they form an angle towards each other. According to. In this embodiment, the speed D of the collision front can be adjusted by adjusting the angle between the material parts 1,2.

För lnakrornolelcylära material, vilka kräver att kollisionsfrontens hastighet är i det lägre av det ovan angivna hastighetsintervallet är det fördelaktigt att dels välja ett sprängämne med låg detonationshastighet, dels arrangera Inaterialparterna 1,2 med en inbördes vinkel, såsom illustreras i fig. 8.For macronolecular materials which require the velocity of the collision front to be in the lower of the above speed range, it is advantageous to select a low detonation velocity explosive and to arrange the material parts 1,2 at a mutual angle, as illustrated in Fig. 8.

Vid arrangemangen enl. fig. 6 och 7 bringas sprängladdningen att verka direkt på den materialpart 1, som skall accelereras.At the events according to Figs. 6 and 7, the explosive charge is caused to act directly on the material part 1 to be accelerated.

Ett alternativ, för främst material, där kollisionsfrontens hastighet måste vara låg, är enl. en ytterligare föredragen utföringsform att sprängladdnigen bringas att indirekt påverka den materialpart 1, som skall aocelereras via ett genemot detonationen inert material, vilket illustreras i fig. 9.An alternative, mainly for materials, where the speed of the collision front must be low, is acc. a further preferred embodiment that the explosive charge is caused to indirectly affect the material part 1 to be accelerated via a material inert to the detonation, which is illustrated in Fig. 9.

I fig. 9 betecknar siffran 17 det inerta materialet. Detta material eller izryclcöverföringsmedimn kan utgöras av till exempel plast, gunmi, Install, gips, paraffin eller en vätska efter lämpligt val och ordning, för att nedbringa kollisionsfrontens hastighet D till ett önskat värde.In Fig. 9, the numeral 17 denotes the inert material. This material or ice transfer medium can be, for example, plastic, gunmi, Install, plaster, paraffin or a liquid of suitable choice and order, in order to reduce the speed D of the collision front to a desired value.

Enl. en annan utförirngsform, vilken är illustrerad i fig. 10, utgöres nämnda inerta material av en projektillafopp 18, vilken bringas att accelere- ras medelst sprängladdnirlgen 16 mot den första materialparten 1 och kollidera med denna för att därvid accelerera den första rnaterialparten 1 mot den andra materialparten 2. Härvid nedbringas kollisionsfrontens hastighet.According to. In another embodiment, which is illustrated in Fig. 10, said inert material is constituted by a projectile flange 18, which is caused to be accelerated by means of the explosive charge 16 towards the first material part 1 and collide therewith to thereby accelerate the first material part 1 towards the second material part 2. This reduces the speed of the collision front.

Projektillcroppen 18 kan utföras i plast, glmuni, metall, gips, träfiber etc. och kan antingen vara planparallell, såsom visas i fig. 10, eller ha ett varierande tvärsnitt.The projectile body 18 can be made of plastic, glmuni, metal, plaster, wood fiber, etc. and can either be plane-parallel, as shown in Fig. 10, or have a varying cross-section.

Projektilkroppen 18 kan även vara sådan att den svetsas till den första materialparten 1. 467 729 8 Vid utförandet enl. fig. 9 och 10 medför även det inerta materialet att nämnda tryck, som uppstår mellan de två :materialparterna 1,2 vid dessas kollision nedbringas jämfört med om sprängladdnjrxgen verkar direkt mot den första materialparten 1.The projectile body 18 can also be such that it is welded to the first part of the material 1. In the embodiment according to Figs. 9 and 10 also cause the inert material to reduce the pressure which arises between the two: the material parts 1,2 in their collision compared with if the explosive charge gene acts directly against the first material part 1.

I fig. 11a - lle visas schematiskt olika exemplifierande uppställningar för explosionssvetsning av två materialparter 1,2 av Inakroxnolelqlära material, där materialen har formen av plana plattor eller är rörformade.Figs. 11a-11e schematically show various exemplary arrangements for explosion welding of two material parts 1,2 of Inacroxnollable material, where the materials are in the form of flat plates or are tubular.

När rörfonnade material avses visar fig. 11a - lle ett snitt utmed en radie. Siffran 19 anger sprängladdningar. _ Enl. en utföringsform består vardera av nämnda materialparter 1,2 av ett homogent material.When pipe-shaped materials are meant, Figs. 11a-11 show a section along a radius. The number 19 indicates explosive charges. _ According to. one embodiment each of said material parts 1,2 consists of a homogeneous material.

Ernellertid kan enl. en arman utföringsfonn den ena eller båda materialparter- na bestå av ett sammansatt material, såsom ett kompositmaterial eller ett laminat.However, according to In another embodiment, one or both parts of the material consist of a composite material, such as a composite material or a laminate.

Praktiska experiment har visat att en överraskande god fog erhålles när två materialparter av plast sanunarxfogas enl. föreliggande uppfinning.Practical experiments have shown that a surprisingly good joint is obtained when two material parts of plastic are sanunarx jointed according to present invention.

Föreliggande uppfinning anger således ett sätt att explosionssvetsa malcromo- lekylära material till varandra.The present invention thus provides a method of explosion welding malcromolecular materials to each other.

Givetvis måste val av och av lnaterialparterna före fogning, av lsufferünaterial, ett mot detonationen inert material eller en projelctilloropp, liksom vinkeln mellan materialparterna före fogning anpassas till det eller de ifrågavarande makroxnolekylära materialen, för att därvid åstadkomma de i patentkraven angivna förhållandena. En dylik anpassning bereder inte fackmannen några problem.Of course, the choice of and of the material parts before joining, of superfluous material, a material inert to the detonation or a projectile shell, as well as the angle between the material parts before joining must be adapted to the macro-molecular material in question, in order to achieve the conditions stated in the claims. Such an adaptation does not present any problems to the person skilled in the art.

Föreliggande uppfinning skall inte anses begränsad till de ovan angivna utföriragsfonnerna eller de i figurerna exemplifierarxde utföringsfonnerna, utan kan varieras inom dess av bifogade patentkrav angivna ram.The present invention is not to be construed as limited to the embodiments set forth above or the embodiments exemplified in the figures, but may be varied within the scope of the appended claims.

Claims (10)

f 467 729 Patentkravf 467 729 Patent claims 1. Sätt att sammanfoga material, som består av eller väsentligen består av makromolekylära organiska föreningar, där minst en första (1) av de mate- ' rialparter, som skall sammanfogas med en andra (2) materiaipart accelereras -till hög hastighet med hjälp av en eller flera detonerade sprängladdningar (16;19) och tillåtes kollidera med den andra materialparten (2) i ett fog- plan, k ä n n e t e c k n a d a v, att den relativa hastighet (vv) i en riktning vinkelrätt mot fogplanet, med vilken hastighet materialparterna (1, 2) kolliderar med varandra, bringas att”varå sådan att det tryck, som uppstår mellan materialparterna (1,2) vid kollisionen är högre än erforderligt tryck för att erhålla plastisk deformation av resp. materiaipart men understigande 20 gånger det erforderliga trycket, samtidigt som kollisionen successivt i en riktning parallellt med fogplanet bringas att löpa med en hastighet (D) mel- lan omkring 1000 m/s och 2000m/s, företrädesvis mellan 1000 m/s och 1700 m/s.A method of joining materials consisting of or consisting essentially of macromolecular organic compounds, in which at least one first (1) of the material parts to be joined with a second (2) part of material is accelerated - at high speed by means of one or more detonated explosive charges (16; 19) and is allowed to collide with the other material part (2) in a joint plane, characterized in that the relative velocity (vv) in a direction perpendicular to the joint plane, at which speed the material parts (1 , 2) collide with each other, are caused to “be such that the pressure which arises between the material parts (1,2) in the collision is higher than the required pressure to obtain plastic deformation of resp. matter but less than 20 times the required pressure, at the same time as the collision is successively run in a direction parallel to the joint plane at a speed (D) between about 1000 m / s and 2000 m / s, preferably between 1000 m / s and 1700 m / s. 2. Sätt enl. krav 1, k ä n n e t e c k n a t a v, att nämnda kollisions- tryck är mellan 5 och 20 gånger nämnda erforderliga tryck.2. Set acc. claim 1, characterized in that said collision pressure is between 5 and 20 times said required pressure. 3. Sätt enl. krav 1 eller 2, där båda materialparterna (1,2) vinkelrätt mot fogplanet har i huvudsak eller exakt samma tjocklek, k ä n n e t e c k - n a t a v, att den ena materialparten (1;2) vid sin fria yta anligger mot ett buffertmaterial (15), vars stötvågsimpedans i huvudsak är densamma som stöt- vågsimpedansen för den materiaipart (1;2), som buffertmaterialet (15) anligger mot. Ä.3. Set acc. claim 1 or 2, wherein both material parts (1,2) perpendicular to the joint plane have substantially or exactly the same thickness, characterized in that one part of the material (1; 2) abuts against a buffer material (15) at its free surface , whose shock wave impedance is substantially the same as the shock wave impedance of the matter (1; 2) of matter against which the buffer material (15) abuts. Ä. 4. Sätt enl. krav 1 eller 2, k ä n n e t e c k n a t a v, att material- parterna vinkelrätt mot fogplanet har olika tjocklek.4. Set acc. claim 1 or 2, characterized in that the material parts perpendicular to the joint plane have different thicknesses. 5. Sätt enl. krav 1, 2, 3 eller Å, k ä n n e t e c k n a t a v, att ma- terialparterna (1,2) före fogning har de ytor, som skall sammanfogas arrange- rade så att de bildar en vinkel mot varandra.5. Set according to claim 1, 2, 3 or Å, characterized in that the material parts (1,2) before joining have the surfaces to be joined arranged so that they form an angle towards each other. 6. Sätt enl. något av föregående krav, k ä n n e t e c k n a t a v, att sprängladdningen (l6;19) bringas att verka direkt på den materiaipart (1;2), som skall accelereras.6. Set acc. any of the preceding claims, characterized in that the explosive charge (16; 19) is caused to act directly on the part of matter (1; 2) which is to be accelerated. 7. Sätt enl. något av kraven 1 - 5, k ä n n e t e c k n a t a v, att sprängladdningen (16) bringas att indirekt påverka den materiaipart (1), som skall accelereras via ett gentemot detonationen inert material (17;18). /0 467 7297. Set acc. one of claims 1 to 5, characterized in that the explosive charge (16) is caused to indirectly affect the material part (1) which is to be accelerated via a material inert to the detonation (17; 18). / 0 467 729 8. Sätt enl. krav 7, k ä n n e t e c k n a t a v, att nämnda ínerta mate- rial är en kropp (18), vilken brlngas att medelst sprängladdnlngen (l6) accele- reras mot den första materialparten (1) och kollidera med denna för att därvid accelerera den första materialparten (1) mot den andra materlalparten (2). u8. Set according to claim 7, characterized in that said inert material is a body (18) which is caused to accelerate towards the first material part (1) by means of the explosive charge (16) and collide with it so as to thereby accelerate the first material part ( 1) towards the other materlal part (2). u 9. Sätt enl. något av föregående krav, k a n n e t e c k n a t a vr att vardera av nämnda materialparter (1,2) består av homogent material.9. Set acc. any of the preceding claims, it may be that each of said material parts (1,2) consists of homogeneous material. 10. a v, att den ena eller båda materíalparterna (l;2) består av ett sammanaatt material, såsom Sätt enl. något av kraven l - 8, k ä n n e t e c k n a t ett komposítmaterial eller ett laminat. _ ää10. a v, that one or both material parts (1; 2) consist of a combined material, such as Set acc. any of claims 1 - 8, characterized by a composite material or a laminate. _ ää
SE8701846A 1987-05-05 1987-05-05 MAKE TO JOIN PLASTIC MATERIAL MEDIUM EXPLOSION WELDING. SE467729B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE8701846A SE467729B (en) 1987-05-05 1987-05-05 MAKE TO JOIN PLASTIC MATERIAL MEDIUM EXPLOSION WELDING.
PCT/SE1988/000223 WO1988008785A1 (en) 1987-05-05 1988-05-02 Method of joining plastic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8701846A SE467729B (en) 1987-05-05 1987-05-05 MAKE TO JOIN PLASTIC MATERIAL MEDIUM EXPLOSION WELDING.

Publications (3)

Publication Number Publication Date
SE8701846D0 SE8701846D0 (en) 1987-05-05
SE8701846L SE8701846L (en) 1988-11-06
SE467729B true SE467729B (en) 1992-09-07

Family

ID=20368417

Family Applications (1)

Application Number Title Priority Date Filing Date
SE8701846A SE467729B (en) 1987-05-05 1987-05-05 MAKE TO JOIN PLASTIC MATERIAL MEDIUM EXPLOSION WELDING.

Country Status (2)

Country Link
SE (1) SE467729B (en)
WO (1) WO1988008785A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997500A (en) * 1989-08-28 1991-03-05 At&T Bell Laboratories Method for joining thermoplastic parts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434197A (en) * 1964-08-03 1969-03-25 Singer General Precision Explosive welding

Also Published As

Publication number Publication date
WO1988008785A1 (en) 1988-11-17
SE8701846D0 (en) 1987-05-05
SE8701846L (en) 1988-11-06

Similar Documents

Publication Publication Date Title
CN105383060B (en) A kind of 3D printing feed, fluxing and crystallization in motion leveling integrated apparatus
Bahrani et al. The mechanics of wave formation in explosive welding
Doktycz et al. Interparticle collisions driven by ultrasound
SE467729B (en) MAKE TO JOIN PLASTIC MATERIAL MEDIUM EXPLOSION WELDING.
CN111468723A (en) Metal matrix composite material composite additive manufacturing device and manufacturing method
GB2213754A (en) Multi-laminar explosive bonding
SE460527B (en) PROCEDURE FOR EXPLOSION WELDING AND METAL SHEET MADE BY THE PROCEDURE
Göbel et al. Dissimilar metal joining: macro-and microscopic effects of MPW
SE456805B (en) SET TO EXPLOSION WELD Alloy Aluminum
RU2537671C1 (en) Production of bimetallic pipes by explosion welding
US3910478A (en) Dual high explosive shape detonation
US3583062A (en) Explosion bonding of aluminum to steel
Saw et al. Microstructure evaluation of different materials after friction surfacing-a review
Hema Experimental investigations on AA 6061 alloy welded joints by friction stir welding
RU2243871C1 (en) Explosion welding method
US3562897A (en) Explosion bonding of tubes
US3608490A (en) Porous materials
RU2711284C1 (en) Method of obtaining wear-resistant coatings on surfaces of plates from copper and aluminum alloy
Zlobin et al. The peculiarities of wave formation at explosive welding via thin interlayer
WO2016073349A1 (en) Titanium welding wire, ultrasonically inspectable welds and parts therefrom, and associated methods
RU2353487C1 (en) Method of producing objects with inner cavities by explosion welding
Drennov et al. On deformation of beryllium under high‐velocity oblique collision
Kirsch et al. Hydrodynamics of a low-cost, high-throughput, and compact high-explosive ejecta platform
Drennov State of the contact boundary separating layers of metal over a broad range of changes in the velocity of oblique collision
SU1391493A3 (en) Method of thermal reinforcement of glass

Legal Events

Date Code Title Description
NUG Patent has lapsed

Ref document number: 8701846-1

Effective date: 19931210

Format of ref document f/p: F