SE461183B - WORK-GENERATING DEVICE, OPERATED BY AN ELECTRIC ENGINE - Google Patents

WORK-GENERATING DEVICE, OPERATED BY AN ELECTRIC ENGINE

Info

Publication number
SE461183B
SE461183B SE8801910A SE8801910A SE461183B SE 461183 B SE461183 B SE 461183B SE 8801910 A SE8801910 A SE 8801910A SE 8801910 A SE8801910 A SE 8801910A SE 461183 B SE461183 B SE 461183B
Authority
SE
Sweden
Prior art keywords
motor
piston
rotor
compressor
torque
Prior art date
Application number
SE8801910A
Other languages
Swedish (sv)
Other versions
SE8801910D0 (en
SE8801910L (en
Inventor
L G Moren
Original Assignee
Electrolux Mecatronik Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrolux Mecatronik Ab filed Critical Electrolux Mecatronik Ab
Priority to SE8801910A priority Critical patent/SE461183B/en
Publication of SE8801910D0 publication Critical patent/SE8801910D0/en
Priority to BR898906989A priority patent/BR8906989A/en
Priority to GR890100335A priority patent/GR890100335A/en
Priority to EP19890906201 priority patent/EP0380600A1/en
Priority to ES8901693A priority patent/ES2012003A6/en
Priority to AU36852/89A priority patent/AU606529B2/en
Priority to PCT/SE1989/000283 priority patent/WO1989011750A1/en
Priority to PT9061689A priority patent/PT90616A/en
Priority to JP50575389A priority patent/JPH02504460A/en
Publication of SE8801910L publication Critical patent/SE8801910L/en
Publication of SE461183B publication Critical patent/SE461183B/en
Priority to DK013190A priority patent/DK13190A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/04Synchronous motors for single-phase current
    • H02K19/06Motors having windings on the stator and a variable-reluctance soft-iron rotor without windings, e.g. inductor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Synchronous Machinery (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Electric Motors In General (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

461 183' fig. 3 med den övre delen av ett kompressorn omslutande hölje avlägsnat. Fig. 5 är ett schematiskt horisontalsnitt längs linjen V - V i fig. 3. Fig. 6 visar schematiskt de inbördes relationerna mellan kolv och motor. Fig. 7 - 9, slutligen, visar schematiskt en rotationskompressor med rotorn belägen i olika positioner. l diagrammet i fig. 1 har momentet Mk hos en kolvkompressor avsatts som funktion av vridningsvinkeln för en kolven drivande, med en drivmotor förbunden vridskiva. Kolvens arbetscykel motsvarar vridning av skivan ett varv eller 360 grader. Som framgår av diagrammet är momentbehovet mycket lagt eller t.o.m. negativt under de första 180 graderna för att öka nagot mellan 180 och 210 grader. 461 183 'Fig. 3 with the upper part of a compressor enclosing housing removed. Fig. 5 is a schematic horizontal section along the line V - V in Fig. 3. Fig. 6 schematically shows the mutual relations between piston and engine. Figs. 7 - 9, finally, schematically show a rotary compressor with the rotor located in different positions. In the diagram in Fig. 1, the torque Mk of a piston compressor has been plotted as a function of the rotation angle of a piston drive, with a drive motor connected to a turntable. The working cycle of the piston corresponds to rotation of the disc one revolution or 360 degrees. As can be seen from the diagram, the torque requirement is very much added or even negative during the first 180 degrees to increase slightly between 180 and 210 degrees.

Den följande ökningen sker allt snabbare och en momenttopp infaller i omrâdet strax efter 270 grader. Momenthehovet är fortfarande högt vid 300 grader men sjunker därefter snabbt innan en ny arbetscykel tar vid.The following increase is happening faster and faster and a torque peak falls in the area just after 270 degrees. The torque level is still high at 300 degrees but then drops rapidly before a new work cycle takes over.

Fig. 2 visar liksom fig. l ett momentdiagrarn men här gällande en reluktans- motor av tvafastyp. Den använda motorn bestar av tva korsvis anordnade stator- polpar vilka samverkar med diametralt motsatt belägna rotorpoler anordnade pa en av mjukmagnetiskt material bestående rotor. Som framgår av diagrammet uppvisar motorn ett pulserande moment som under ett vridningsvarv för rotorn uppvisar fyra maximivärden eller toppar.Fig. 2 shows, like Fig. 1, a torque diagram, but in this case a reluctance motor of the two-phase type. The motor used consists of two cross-arranged stator poles which cooperate with diametrically opposite rotor poles arranged on a rotor consisting of soft magnetic material. As can be seen from the diagram, the motor has a pulsating torque which, during a rotational revolution of the rotor, has four maximum values or peaks.

Enligt uppfinningstanken skall nu momentkurvorna enligt f ig. l och 2 anpassas till varandra sa att motorns momentkurva uppvisar en topp samtidigt som kom- prcssorns momentbehov har sitt maximivärde. Uppgiften blir nu att rent fysiskt koppla samman motor och kompressor sa att den önskade anpassningen uppnas. i fig. 3 visas ett vertikalsnitt genom en kompressor 10 som drivs av en reluktansmotor ll. Kompressor-n innefattar en kolv 12 som löper i en cylinder 13 som är tillsluten av ett lock 14. l locket är icke visade ventiler anordnade för insugning av köldmedium i cylindern respektive utmatning av detsamma till ett icke visat kylsystem. Kolven är med en kolvtapp 15 ansluten till ena änden av en vevstake 16, vars andra ände är vridbart lagrad på en tapp 17 som är excentriskt placerad pa en cirkulär skiva 18 fäst pa en axel 19 som samtidigt utgör rotoraxel i reluktansmotorn ll. En motvikt 20 är pa vanligt sätt anordnad att balansera ut vevstakens rörelse.According to the inventive idea, the torque curves according to figs. 1 and 2 are adapted to each other so that the engine's torque curve has a peak at the same time as the compressor's torque requirements have their maximum value. The task will now be to physically connect the motor and compressor so that the desired adaptation is achieved. Fig. 3 shows a vertical section through a compressor 10 driven by a reluctance motor 11. The compressor comprises a piston 12 which runs in a cylinder 13 which is closed by a lid 14. In the lid, valves (not shown) are arranged for sucking in refrigerant in the cylinder and discharging the same to a cooling system (not shown). The piston is connected by a piston pin 15 to one end of a connecting rod 16, the other end of which is rotatably mounted on a pin 17 which is eccentrically placed on a circular disc 18 attached to a shaft 19 which at the same time constitutes a rotor shaft in the reluctance motor 11. A counterweight 20 is arranged in the usual way to balance out the movement of the connecting rod.

Som angivits inledningsvis utgörs kompressormotorn av en reluktansmotor som har den speciella egenskapen att dess moment pulserar. Den valda motorn bestar av tva statorpolpar 21, 22, 23, 24, se fig. 6, av vilka paret 21, 22 även visas i fig. 3.As stated in the introduction, the compressor motor consists of a reluctance motor which has the special property that its torque pulsates. The selected motor consists of two stator poles 21, 22, 23, 24, see Fig. 6, of which the pair 21, 22 is also shown in Fig. 3.

Statorpolerna uppbär lindningar 25 vilka aktiveras sa att de tva polerna i varje statorpolpar är verksamma samtidigt. Pa axeln 19 är en rotor 26 anordnad som är utförd av mjukmagnetiskt material och som har tvâ diametralt motsatt belägna poler 26a, 26b. Polerna består vardera av tvâ lika delar 20, 29, den ena 28 med större luftgap och den andra 29 med mindre luftgap relativt de likadant utformade (m: 461 183 statorpolerna. De tva poldelarna är så anordnade att i rotationsriktningen sett delen med större luftgap 28 kommer först in över en statorpol. Genom den beskrivna rotorpolformen kan man driva rotorn under större vridningsvinkel och polens periferiella utsträckning är vidare så vald att när delen 29 med mindre luftgap är belägen mitt för en statorpol, delen 28 med större luftgap står i begrepp att passera in över en av polerna i det andra statorpolparet. Alternativt kan polutsträckningen väljas så att i det beskrivna läget rotorpoldelen 28 med större luftgap något överlappar statorpolen. ~ Reluktansmotorns statorpollindningar 25 magnetiseras växelvis och drar pa detta sätt med sig rotorn i den riktning som bestämts av rotorpolernas utformning, nämligen så att poldelen 28 med störst luftgap ligger först. För att motorn skall fungera krävs att magnetiseringsström tillförs statorlindningarna 25 i rätt ordning och detta ombesörjes av en elektronisk styranordning som generellt betecknats med 30. Vidare erfordras en indikeringsanordning som till styranordningen ger uppgift om rotorns position. I exemplet enligt fig. l - 6 utnyttjas en hallgivare 31 som samverkar med en på rotoraxeln fäst vinge 32 med i huvudsak samma utsträckning som rotorn, sett i fig. 6.The stator poles carry windings which are activated so that the two poles in each stator pole pair operate simultaneously. Arranged on the shaft 19 is a rotor 26 which is made of soft magnetic material and which has two diametrically opposite poles 26a, 26b. The poles each consist of two equal parts 20, 29, one 28 with a larger air gap and the other 29 with a smaller air gap relative to the similarly designed (m: 461 183 stator poles. The two pole parts are arranged so that in the direction of rotation the part with a larger air gap 28). Through the described rotor pole shape, the rotor can be driven at a greater angle of rotation and the peripheral extent of the pole is further chosen so that when the part 29 with a smaller air gap is located in the middle of a stator pole, the part 28 with a larger air gap is about to pass Alternatively, the pole extension can be selected so that in the described position the rotor pole part 28 with a larger air gap slightly overlaps the stator pole. The stator pole windings 25 of the reluctance motor are alternately magnetized and thus pull the rotor with them in the direction determined by the rotor poles. design, namely so that the pole part 28 with the largest air gap is first in order for the engine to operate it is required that excitation current is supplied to the stator windings 25 in the correct order and this is provided by an electronic control device which is generally denoted by 30. Furthermore, an indicating device is required which gives the control device information about the position of the rotor. In the example according to Figs. 1-6, a hall sensor 31 is used which cooperates with a wing 32 attached to the rotor shaft to substantially the same extent as the rotor, seen in Fig. 6.

Den schcmatiska figuren 6 visar hur vridningsmässigt rotorn och den cirkulära skivan 18 förhåller sig till varandra i det ögonblick momentbehovet är rnaximalt.The schematic figure 6 shows how rotationally the rotor and the circular disc 18 relate to each other at the moment the torque requirement is maximal.

Man skulle kunna tro att detta inträffar vid kolvens övre dödpunkt, men så är inte fallet. I stället inträffar kompressorns maximala momentbehov något innan kolven når sin övre dödpunkt vilket svarar mot vinkeln °< i figuren. Det har visat sig att för optimala resultat vinkeln 06. bör ligga inom omradet 2D - 55 grader och före- trädesvis uppgå till 47 grader.One might think that this occurs at the top dead center of the piston, but this is not the case. Instead, the maximum torque requirement of the compressor occurs slightly before the piston reaches its upper dead center, which corresponds to the angle ° <in the figure. It has been shown that for optimal results the angle 06. should be in the range 2D - 55 degrees and preferably amount to 47 degrees.

I fig. 7 - 9 visas ett exempel på hur uppfinningen kan utnyttjas i en rotations- kompressor 33. Denna innefattar ett cylindriskt rum 34 i vilket en rotor 35 drivs runt av en icke närmare visad reluktansmotor, exempelvis av det slag som beskrivits i anslutning till fig. l - 6. Rotorn är excentriskt lagrad och lämpligen fäst direkt på motorns rotoraxel 36. En slid 37 är fjäderförspänd mot rotorns periferiyta 38 och tätar mot denna. Det bildas därigenom mellan cylinderväggen 39, rotorns periferi- yta 38 och sliden 37 ett rum 40, vars storlek ständigt ändras under rotorns vridning. l fig. 7 visas rotorn i ett läge svarande mot övre dödpunkten för kolvkompressorn. I fig. 8 har kolven för-flyttat sig ett stycke och här har insugning påbörjats. l fig. 9 har rotorn natt ett läge där rummet 40 är som minst och i detta läge skall motorn ge maximalt moment. Även i detta fall bör kompressorrotorn 35 och motorrotorn har ett sådant inbördes förhållande att kompressorrotorn befinner sig 20 - 55 grader före det mot övre dödpunkten svarande läget.Figs. 7-9 show an example of how the invention can be used in a rotary compressor 33. This comprises a cylindrical space 34 in which a rotor 35 is driven around by a reluctance motor (not shown), for example of the type described in connection with Figs. 1-6. The rotor is eccentrically mounted and suitably attached directly to the rotor shaft 36 of the motor. A slide 37 is spring biased against the peripheral surface 38 of the rotor and seals against it. Thereby, a space 40 is formed between the cylinder wall 39, the peripheral surface 38 of the rotor and the slide 37, the size of which is constantly changing during the rotation of the rotor. Fig. 7 shows the rotor in a position corresponding to the upper dead center of the piston compressor. In Fig. 8, the piston has moved a distance and here suction has begun. In Fig. 9, the rotor at night has a position where the space 40 is at its smallest and in this position the motor must provide maximum torque. Also in this case, the compressor rotor 35 and the motor rotor should have such an interrelationship that the compressor rotor is 20 - 55 degrees before the position corresponding to the upper dead center.

Claims (8)

461 183 P a t e n t k r a v461 183 P a t e n t k r a v 1. l. Arbetsgenererande anordning innefattande en rörlig arbetsdel (12;35) som är driven av en elektrisk motor (ll) och som under en arbetscykel har ett varierande momentbehov innefattande åtminstone ett maximivärde, k ä n n e t e c k n a d d ä r a v, att motorn (ll) utgörs av en elektroniskt styrd reluktansmotor som innefattar med lindningar (25) försedda statorpoler (21,Z2;23,24) liksom med stator- polerna samverkande rotorpoler (26a,26b) anordnade pa en av mjukmagnetískt material bestoende rotor (26), varvid motorn (11) är så förbunden med arbetsdelen (12;35) att nagon av de rotorposítioner där motorns pulserande moment uppvisar ett maximum sammanfaller med det läge för arbetsdelen där momentbehovet har sitt maximivärde.1. A work-generating device comprising a movable working part (12; 35) which is driven by an electric motor (11) and which during a working cycle has a varying torque requirement comprising at least one maximum value, characterized in that the motor (11) consists of an electronically controlled reluctance motor which comprises stator poles (21, Z2; 23,24) provided with windings (25) as well as rotor poles (26a, 26b) cooperating with the stator poles arranged on a rotor (26) consisting of soft magnetic material, the motor (11) are so connected to the working part (12; 35) that any of the rotor positions where the pulsating torque of the motor has a maximum coincides with the position of the working part where the torque requirement has its maximum value. 2. Anordning enligt patentkravet 1, k ä n n e t e c k n a d d ä r a v, att den ut- görs av en kompressor.Device according to claim 1, characterized in that it consists of a compressor. 3. Anordning enligt patentkravet 2, k ä n n e t e c k n a d d ä r a v, att kom- pressorn utgörs av en kylmediekompressor.Device according to claim 2, characterized in that the compressor consists of a refrigerant compressor. 4. Anordning enligt patentkravet 2 eller 3, k ä n n e t e c k n a d d ä r a v, att arbetsdelen utgörs av kolven (12) i en kolvkompressor (10), varvid motorn (11) är så förbunden med kolven (12) att en av momenttopparna i motorns pulserande moment sammanfaller med ett läge för kolven (12) som den passerar pá väg mot sin övre dödpunkt och som motsvarar ett vinkelavstand för rotorn (26) från det rotorläge som svarar mot kolvens övre dödpunkt uppgående till 20 - 55 grader.Device according to claim 2 or 3, characterized in that the working part consists of the piston (12) in a piston compressor (10), the motor (11) being so connected to the piston (12) that one of the torque peaks in the pulsating motor torque coincides with a position of the piston (12) which it passes on its way to its upper dead center and which corresponds to an angular distance of the rotor (26) from the rotor position corresponding to the upper dead center of the piston amounting to 20 - 55 degrees. 5. Anordning enligt patentkravet 4, k ä n n e t e c k n a d d ä r a v, att vinkel- avståndet uppgår till 47 grader.Device according to claim 4, characterized in that the angular distance amounts to 47 degrees. 6. Anordning enligt patentkravet 4 eller 5, k ä n n e t e c k n a d d ä r a v, att kolven (12) löper i en cylinder (13) sa belägen att kolvens rörelseriktning är vinkelrät mot motorns rotoraxel (19), varvid kolven (12) via en vevstake (16) är förbunden med en tapp (17) som är excentrískt belägen pà en skiva (18) fäst pa rotoraxeln (19).Device according to claim 4 or 5, characterized in that the piston (12) runs in a cylinder (13) located so that the direction of movement of the piston is perpendicular to the rotor shaft (19) of the engine, the piston (12) via a connecting rod ( 16) is connected to a pin (17) which is eccentrically located on a disc (18) attached to the rotor shaft (19). 7. Anordning enligt patentkravet 2 eller 3, k ä n n e t e c k n a d d ä r a v, att arbetsdelen utgörs av en excentriskt lagrad, cylíndrisk rotationsdel (35) som roterar i ett likaledes cylindriskt rum (34) i en rotationskompressor (33) och mot vars periferiyta (38) en rörlig slid (37) tätande anligger, varvid motorn (11) är sa förbunden med rotationsdelen (35) att en av momenttopparna i motorns pulserande moment sammanfaller med ett läge för rotationsdelen som i rotationsriktningen sett är beläget pa ett vinkelavstand uppgående till 20 - 55 grader före det läge där den av rotationsdelen (35), cylinderrumsväggen (39) och sliden (37) avgränsade volymen är som minst.7. Device according to claim 2 or 3, characterized in that the working part consists of an eccentrically mounted, cylindrical rotating part (35) which rotates in a similarly cylindrical space (34) in a rotary compressor (33) and against whose peripheral surface (38 a movable slide (37) sealingly abuts, the motor (11) being so connected to the rotating part (35) that one of the torque peaks in the pulsating moment of the motor coincides with a position of the rotating part which in the direction of rotation is located at an angular distance of 20 - 55 degrees before the position where the volume delimited by the rotating part (35), the cylinder wall (39) and the slide (37) is at least. 8. Anordning enligt patentkravet 7, k ä n n e t e c k n a d d ä r a v, att den cy- lindriska rotationsdelen (35) är anordnad direkt pa motorns rotoraxel (36). i:Device according to claim 7, characterized in that the cylindrical rotating part (35) is arranged directly on the rotor shaft (36) of the motor. in:
SE8801910A 1988-05-20 1988-05-20 WORK-GENERATING DEVICE, OPERATED BY AN ELECTRIC ENGINE SE461183B (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
SE8801910A SE461183B (en) 1988-05-20 1988-05-20 WORK-GENERATING DEVICE, OPERATED BY AN ELECTRIC ENGINE
JP50575389A JPH02504460A (en) 1988-05-20 1989-05-19 Work generating device driven by an electric motor
ES8901693A ES2012003A6 (en) 1988-05-20 1989-05-19 A work generating device driven by an electric motor.
GR890100335A GR890100335A (en) 1988-05-20 1989-05-19 Power production apparatus quided by an electric motor
EP19890906201 EP0380600A1 (en) 1988-05-20 1989-05-19 A work generating device driven by an electric motor
BR898906989A BR8906989A (en) 1988-05-20 1989-05-19 WORK GENERATOR DEVICE
AU36852/89A AU606529B2 (en) 1988-05-20 1989-05-19 A work generating device driven by an electric motor
PCT/SE1989/000283 WO1989011750A1 (en) 1988-05-20 1989-05-19 A work generating device driven by an electric motor
PT9061689A PT90616A (en) 1988-05-20 1989-05-19 DEVICE GENERATING WORK OPERATED BY AN ELECTRIC MOTOR
DK013190A DK13190A (en) 1988-05-20 1990-01-16 WORK-GENERATING DEVICE POWERED BY AN ELECTRIC ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8801910A SE461183B (en) 1988-05-20 1988-05-20 WORK-GENERATING DEVICE, OPERATED BY AN ELECTRIC ENGINE

Publications (3)

Publication Number Publication Date
SE8801910D0 SE8801910D0 (en) 1988-05-20
SE8801910L SE8801910L (en) 1989-11-21
SE461183B true SE461183B (en) 1990-01-15

Family

ID=20372395

Family Applications (1)

Application Number Title Priority Date Filing Date
SE8801910A SE461183B (en) 1988-05-20 1988-05-20 WORK-GENERATING DEVICE, OPERATED BY AN ELECTRIC ENGINE

Country Status (10)

Country Link
EP (1) EP0380600A1 (en)
JP (1) JPH02504460A (en)
AU (1) AU606529B2 (en)
BR (1) BR8906989A (en)
DK (1) DK13190A (en)
ES (1) ES2012003A6 (en)
GR (1) GR890100335A (en)
PT (1) PT90616A (en)
SE (1) SE461183B (en)
WO (1) WO1989011750A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2570994A (en) * 1948-01-28 1951-10-09 Jr William E Vaughan Device for aligning sheets
GB2273349B (en) * 1992-11-21 1996-03-13 Normalair Garrett Air cycle air conditioning systems
JP5442378B2 (en) * 2009-09-29 2014-03-12 三洋電機株式会社 Rotary compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1463076A1 (en) * 1964-10-31 1968-12-05 Danfoss As Motor compressors, especially for small refrigeration machines
US4062640A (en) * 1976-09-24 1977-12-13 Bethlehem Steel Corporation Method and means for controlling long stroke pumping units
JPS5779285A (en) * 1980-10-31 1982-05-18 Toshiba Corp Compressor equipped with brushless dc motor
IE56528B1 (en) * 1985-01-15 1991-08-28 John V Byrne Electrical drive systems incorporating variable reluctance motors
US4678537A (en) * 1985-05-23 1987-07-07 Sony Corporation Method of manufacturing semiconductor devices
DE3521526A1 (en) * 1985-06-15 1986-12-18 Danfoss A/S, Nordborg ENGINE COMPRESSOR UNIT

Also Published As

Publication number Publication date
SE8801910D0 (en) 1988-05-20
GR890100335A (en) 1990-03-12
AU3685289A (en) 1989-12-12
DK13190D0 (en) 1990-01-16
PT90616A (en) 1989-11-30
EP0380600A1 (en) 1990-08-08
SE8801910L (en) 1989-11-21
JPH02504460A (en) 1990-12-13
WO1989011750A1 (en) 1989-11-30
AU606529B2 (en) 1991-02-07
DK13190A (en) 1990-01-16
BR8906989A (en) 1990-06-19
ES2012003A6 (en) 1990-02-16

Similar Documents

Publication Publication Date Title
EP0310426B1 (en) Turbocharger with rotary electric machine
JP2003289648A (en) Electronic control actuator
KR970004810B1 (en) Compressor
JP2002262534A5 (en)
JP2005180456A (en) Variable displacement turbocharger of automobile internal combustion engine with moving blade type turbine
US7112958B2 (en) Rotational speed and position detector for supercharger
EP2208978A2 (en) Compact magnetic torque sensing systems
US4502853A (en) Rotational speed sensor for vane compressors
SE461183B (en) WORK-GENERATING DEVICE, OPERATED BY AN ELECTRIC ENGINE
JPH036878Y2 (en)
CN111226384A (en) Electric motor vehicle fluid pump
JPH07236259A (en) Permanent magnet type generator
CN100535734C (en) Sector drive apparatus for use in optical apparatus
JP6907543B2 (en) Vacuum valve
EP1883787A2 (en) Dual pole magnet structure having two magnets 90 degrees out of phase for position sensing in an actuator
GB2156906A (en) Fluid compressor
CN2380758Y (en) Electric ceramic valve
JP3125036B2 (en) Method and apparatus for detecting mover position of synchronous motor
CN219754046U (en) Vibration leveling machine
JP2687835B2 (en) Compressor
JP2023163096A (en) rotary encoder
EP1279926A3 (en) Mechanical design for a sensor to prevent an ice lock condition
JP3635485B2 (en) Permanent magnet type motor and its magnetizing method
RU60812U1 (en) MAGNETIC ENGINE
JPH03226256A (en) Separation type rotating apparatus

Legal Events

Date Code Title Description
NUG Patent has lapsed

Ref document number: 8801910-4

Effective date: 19911209

Format of ref document f/p: F