SE454221B - Fibre optic transmission system - Google Patents

Fibre optic transmission system

Info

Publication number
SE454221B
SE454221B SE8203597A SE8203597A SE454221B SE 454221 B SE454221 B SE 454221B SE 8203597 A SE8203597 A SE 8203597A SE 8203597 A SE8203597 A SE 8203597A SE 454221 B SE454221 B SE 454221B
Authority
SE
Sweden
Prior art keywords
sensor
lens
fibre
fiber
numerical aperture
Prior art date
Application number
SE8203597A
Other languages
Swedish (sv)
Other versions
SE8203597L (en
Inventor
M Adolfsson
B Hok
H Johansson
A Linge
Original Assignee
Asea Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Ab filed Critical Asea Ab
Priority to SE8203597A priority Critical patent/SE454221B/en
Publication of SE8203597L publication Critical patent/SE8203597L/en
Publication of SE454221B publication Critical patent/SE454221B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The fibre optic transmitter is of the high effect type, and involves a photo-luminescence sensor with a sensor fibre (1) with appropriate numerical aperture. Excitation light from the sensor fibre is formed on a sensor material (3) using a positive lens. This causes the formation of a luminescent area (2). By selection of the distance between the fibre and lens as greater than that between the lens and the sensor material, the fibre end surface is formed on a reduced scale. Excitation light from the sensor fibre (1) can be transformed into a parallel bunch of beams by a graded-index lens (5), and projected by a second such lens (6) on the sensor material (3). Where no lens is used, excitation light from the sensor fibre creates a luminescent area (2) of virtually the same size as the fibre end surface. The part of the luminescent light connected into the fibre is determined by a cone with an appropriate half peak angle. (Provisional Basic advised week 84/06)

Description

10 20 25 30 _ 35 454 221 Funktionen hos uppfinningen och dess olika utföringsformer visas i anslutning till bifogade figurer, av vilka figur 1 visar uppbyggnaden för en fotolumi- niscenssensor, figur 2 för det fall att ingen lins används, figur 3 en närmare utföringsform av systemet enligt figur 1, figur U en annan utföringsform, där precisionsmonteringen har eliminerats, samt figur 5 en enkel anordning för åstadkommande av den positiva linsverkan. Figur 6 visar en utförandeform med vågledare och figur 7 en utförandeform med en kupol. 10 20 25 30 _ 35 454 221 The function of the invention and its various embodiments are shown in connection to the accompanying figures, of which Figure 1 shows the structure of a photoluminescent scene sensor, figure 2 in case no lens is used, figure 3 a closer embodiment of the system according to figure 1, figure U another embodiment, where the precision mounting has been eliminated, as well as figure 5 a simple device for achieving the positive lens effect. Figure 6 shows an embodiment with waveguide and figure 7 an embodiment with a dome.

Fig 1 visar uppbyggnaden för en fotoluminiscenssensor med en sensorfiber 1, vars numeriska apertur är sin 6. Excitationsljus ut från sensorfibern 1 av- bildas med hjälp av en positiv lins H på ett sensormaterial 3, varvid ett luminiscerande område 2 bildas. Genom att välja avstånden fiber/lins större än avståndet lins/sensormaterial avbildas fiberändytan i förminskad skala, samtidigt som vinkeln 0 blir större än vinkeln 9. Den del av luminiscens- ljuset från omrâdet 2, som faller inom en kon med halva toppvinkeln 8, kopp- las via linsen H in i sensorfibern 1.Fig. 1 shows the construction of a photoluminescence sensor with a sensor fiber 1, whose numerical aperture is its 6. Excitation light from the sensor fiber 1 is formed by means of a positive lens H on a sensor material 3, wherein a luminescent area 2 is formed. By choosing the fiber / lens distances greater than the distance lens / sensor material, the fiber end surface is imaged on a reduced scale, at the same time the angle 0 becomes larger than the angle 9. The part of the luminescence the light from the area 2, which falls within a cone with half the apex angle 8, read via the lens H into the sensor fiber 1.

I fig 2 visas fallet att ingen lins användes. Excitationsljuset ut från sensorfibern ger här ett luminiscerande område 2 av ungefär samma storlek som fiberändytan. Den in i fibern kopplade delen av lumíniscensljuset bestäms av en kon, vars halva toppvinkel är vinkeln 9.Fig. 2 shows the case that no lens was used. The excitation light from the sensor fiber here provides a luminescent area 2 of approximately the same size as the fiber end surface. The part of the luminescence light coupled into the fiber is determined of a cone, whose half apex angle is angle 9.

Jämför man förhållandena i fig 1 och 2 framgår, att en betydligt större del av luminiscensljuset kan utnyttjas genom arrangemanget i fig 1. Eftersom i båda fallen i stort sett hela den optiska effekten, som kommer ut ur sensor- fibern, utnyttjas för excitation, blir den totala luminiscensen från de exci- terade områdena ungefär lika stora i båda fallen. Därför blir den externa verkningsgraden bättre för sensorn med linskoppling.If one compares the conditions in Figs. 1 and 2, it appears that a much larger part of the luminescent light can be utilized by the arrangement of Fig. 1. Since in In both cases, virtually all of the optical power coming out of the sensor the fiber, used for excitation, the total luminescence from the excitations areas are about the same size in both cases. Therefore, it becomes external efficiency better for the sensor with lens coupling.

Fig 3 visar en utföringsform av systemet i fig 1, men där inga krav ställes på precisionsmontering av optiska komponenter. Precisionskraven är i stället på dimensionerna hos de ingående optiska komponenterna. Excitationsljus ut från sensorfibern 1 transformeras till ett nära parallellt strålknippe av en "graded-index"-lins 5 och projiceras av en andra “graded-index"-lins 6 på sensormaterialet 3, där ett område 2 exciteras. Luminiscensljuset från om- rådet 2 samlas in i linsen 6 och projiceras av linsen S inne i sensorfibern 1. Genom att välja linsen 5 med en numerisk apertur anpassad till fibern och linsen 6 med en större numerisk apertur, fås på sensormaterialet 3 en för- minskad avbildning av fiberändytan och samtidigt en förstorad infångnings- vinkel för luminiscensljuset. 10 20 25 30 35 454 221 Fig H visar en annan utföringsform där precisionsmonteringen har eliminerats.Fig. 3 shows an embodiment of the system in Fig. 1, but where no requirements are set on precision mounting of optical components. The precision requirements are instead on the dimensions of the constituent optical components. Excitation light out from the sensor fiber 1 is transformed into a near parallel beam of a "graded-index" lens 5 and is projected by a second "graded-index" lens 6 on the sensor material 3, where an area 2 is excited. The luminescence light from the the council 2 is collected in the lens 6 and projected by the lens S inside the sensor fiber By selecting the lens 5 with a numerical aperture adapted to the fiber and lens 6 with a larger numerical aperture, a sensor is obtained on the sensor material 3 reduced imaging of the fiber end surface and at the same time an enlarged capture angle of the luminescence light. 10 20 25 30 35 454 221 Fig. H shows another embodiment where the precision mounting has been eliminated.

I detta fall åstadkommas den positiva linsverkan genom att en “graded-index“- lins 8 placerats mellan två optiskt transparenta distanser 7 och 9. Genom att välja en lämplig längd på linsen 8 och välja tjockleken på distansen 7 större än tjockleken på distansen 9 fås en förminskad avbildning av fiberänd- ytan på sensormaterialet 3 och samtidigt en förstoring av insamlingsvinkeln för luminiscensljuset.In this case, the positive lens effect is achieved by a "graded index" - lens 8 is placed between two optically transparent spacers 7 and 9. Through to select a suitable length of the lens 8 and to select the thickness of the spacer 7 greater than the thickness of the spacer 9, a reduced image of the fiber end is obtained. the surface of the sensor material 3 and at the same time an enlargement of the collection angle for the luminescence light.

I fíg 5 visas ett enkelt sätt att åstadkomma den positiva linsverkan. Änden på sensorfibern 1 har värmts och formats till en kupol 9. Denna gör att sensormaterialet exciteras i ett litet område 2 och att infångningsvinkeln för luminiscensljuset blir stor.Fig. 5 shows a simple way to achieve the positive lens effect. The end on the sensor fiber 1 has been heated and formed into a dome 9. This allows the sensor material is excited in a small area 2 and that the capture angle for the luminescence light becomes large.

Linsverkan kan även åstadkommas genom att fiberänden drages ut till en av- smalnande trattform (ej visat).Lens action can also be achieved by pulling out the fiber end to a narrowing funnel shape (not shown).

Fig 6 visar en utföringsform där sensormaterialet utformats som en vågledare, där kärnan utgöres av sensormaterialet 2. Omgivande detta är applicerat skikt av mantelmaterial 12, 13, med brytningsindex lägre än kärnans, så att total- reflexion uppstår för infallsvinklar större än ett visst tröskelvärde, enligt kända samband inom geometrisk optik. Vågledarens numeriska apertur, NA = sin e = JTZTZ-nïï, där m1, m2 är kär-nens respektive mantelns brytninge- index, bör i utföringsformen vara lika stor eller större än linsens 11 nume- riska apertur, given genom sin [arctan D/2f] där D är linsens diameter och f dess brännvidd. Utföringsformen enligt fig 6 är fördelaktig framför allt vid användning av sensormaterial med låg absorptionskoefficient för excita- tionsljuset. Exempel på sådana material är atomärt lokaliserade luminiscens- centra, t ex neodymjoner i ett amorft eller monokristallint bärarmaterial, t ex glas eller yttrium - aluminium - granat (YAG).Fig. 6 shows an embodiment where the sensor material is designed as a waveguide, where the core consists of the sensor material 2. Surrounding this is applied layer of jacket material 12, 13, with a refractive index lower than that of the core, so that the total reflection occurs for angles of incidence greater than a certain threshold value, according to known connections in geometric optics. The numerical aperture of the waveguide, NA = sin e = JTZTZ-nïï, where m1, m2 is the refraction of the core and mantle index, in the embodiment should be equal to or greater than the number 11 of the lens risk aperture, given by its [arctan D / 2f] where D is the diameter of the lens and f its focal length. The embodiment according to Fig. 6 is advantageous above all when using sensor material with a low absorption coefficient for excitation the light. Examples of such materials are atomically located luminescent luminaires. centers, eg neodymium ions in an amorphous or monocrystalline support material, eg glass or yttrium - aluminum - garnet (YAG).

Fig 7 visar en utföringsform där linsen utgörs av en kupol på sensormate- rialets yta. Denna konstruktion är speciellt effektiv när sensormateríal med högt brytningsindex, t ex halvledarkristaller används och då kupolen formas direkt i halvledarkristallen.Sensormaterialet 3 består av ett skikt, omgivet av två skikt IH och 15 av annat material, där skiktet lä har utfor- mats som en kupol. Ljuset ut från sensorfibern 1 bryts samman av kupolen i skikt 1Å och ger excitation i ett område 2 av sensormaterialet 3. Lumini- scensen från området 2 bryts samman av kupolen och kopplas in i sensorfibern 1, varigenom strålning inom en mycket större rymdvinkel kan utnyttjas jäm-Fig. 7 shows an embodiment where the lens consists of a dome on the sensor material. rialets yta. This design is especially effective when sensor material with high refractive index, eg semiconductor crystals are used and then the dome formed directly in the semiconductor crystal. The sensor material 3 consists of a layer, surrounded by two layers 1H and 15 of other material, where the layer 1a is formed mats like a dome. The light emitted from the sensor fiber 1 is broken down by the dome in layer 1Å and gives excitation in an area 2 of the sensor material 3. Lumini- the scene from area 2 is broken by the dome and connected to the sensor fiber 1, whereby radiation within a much larger space angle can be used equally

Claims (2)

454 221 fört med om sensorytan är plan. Materialet i skiktet IÅ måste ha hög trans- mission för både exoitations- och luminiscensljuset samt högt brytningsindex. Anordningarna enligt ovan kan varieras på mângahanda sätt inom ramen för nedanstående patentkrav. PATENTKRAV454 221 if the sensor surface is flat. The material in the IÅ layer must have a high transmission for both the excitation and luminescence light as well as a high refractive index. The devices as above can be varied in many ways within the scope of the following claims. PATENT REQUIREMENTS 1. Fiberoptisk givare för utnyttjande av fotoluminiseens, k ä n n e - t e o k n a d därav, att i givaren ingår minst en positiv lins (4) och en sensor, varvid excitationsljus ut från en sensorfiber (1) medelst linsen (H) är anordnat att avbildas på sensormaterialet (3) På ett sådant sätt, att avbildningen (2) blir mindre än fiberns (1) ändyta, samtidigt som luminiscensljus från sensormaterialet fångas av linsen inom en rymdvinkel (0), som är större än den rymdvinkel (oi, som svarar mot fiberns (1)-nume- riska apertur, samt att linsen (U) består av en kombination av två "graded- index"-linser, en med_en numerisk apertur anpassad till sensorfiberns och placerad mot fibern och en med större numerisk apertur, placerad mot sensor- materialet.Fiber optic sensor for utilizing the photoluminescence, characterized in that the sensor comprises at least one positive lens (4) and a sensor, wherein excitation light out of a sensor fiber (1) by means of the lens (H) is arranged to be imaged on the sensor material (3) In such a way that the image (2) becomes smaller than the end surface of the fiber (1), at the same time as the luminescent light from the sensor material is captured by the lens within a space angle (0) which is larger than the space angle (oi the numerical aperture of the fiber (1), and that the lens (U) consists of a combination of two "graded-index" lenses, one with a numerical aperture adapted to the sensor fiber and placed against the fiber and one with a larger numerical aperture, placed against the sensor material. 2. Fiberoptisk givare enligt patentkrav 1, k ä n n e t e c k n a d därav, att sensormaterialet består av ett epitaktiskt skikt av halvledarmaterial, t es GaAs eller InGaAsP och att linsen åstadkommits genom formning av ett skikt av annat halvledarmaterial, t ex GaAlAs eller In? med större bandgap.Fiber optic sensor according to claim 1, characterized in that the sensor material consists of an epitaxial layer of semiconductor material, i.e. GaAs or InGaAsP, and that the lens is obtained by forming a layer of other semiconductor material, eg GaAlAs or In? with larger bandgap.
SE8203597A 1982-06-10 1982-06-10 Fibre optic transmission system SE454221B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE8203597A SE454221B (en) 1982-06-10 1982-06-10 Fibre optic transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8203597A SE454221B (en) 1982-06-10 1982-06-10 Fibre optic transmission system

Publications (2)

Publication Number Publication Date
SE8203597L SE8203597L (en) 1983-12-11
SE454221B true SE454221B (en) 1988-04-11

Family

ID=20347035

Family Applications (1)

Application Number Title Priority Date Filing Date
SE8203597A SE454221B (en) 1982-06-10 1982-06-10 Fibre optic transmission system

Country Status (1)

Country Link
SE (1) SE454221B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421420A2 (en) * 1989-10-04 1991-04-10 The Spectranetics Corporation Optical fiber coupler with linear input

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421420A2 (en) * 1989-10-04 1991-04-10 The Spectranetics Corporation Optical fiber coupler with linear input
EP0421420A3 (en) * 1989-10-04 1991-08-21 The Spectranetics Corporation Optical fiber coupler with linear input

Also Published As

Publication number Publication date
SE8203597L (en) 1983-12-11

Similar Documents

Publication Publication Date Title
US3756688A (en) Metallized coupler for optical waveguide light source
US4625333A (en) Duplex optical communication device
US9201193B1 (en) Textured fiber optic coupled image intensified camera
US4406732A (en) Process for the controlled modification of the geometrical-characteristics of the end of a monomode optical fiber and application thereof to optical coupling
US4569570A (en) Optical sensor having atomically localized luminescence centers
US3449036A (en) Attachment for introducing light into an image transmitting fiber-optical system for illuminating an object
US3626194A (en) Photoelectric converter including convergent lens with refractive index distribution
US11454745B2 (en) Multichannel close-up imaging device
JPH0262847B2 (en)
US4533210A (en) Optical fiber light filter using elongated radiation absorbing elements
SE454221B (en) Fibre optic transmission system
US3500054A (en) Controlled uniform illumination and sensing of objects having differential light reflectivity
US2952781A (en) Photodetector system
US20240282891A1 (en) Optimized light emitting device
JP2001330763A (en) Condenser parts as well as light source module, laser device and signal amplifier device using the same
US3622796A (en) Selective collector for the wide-angle portion of a radiation beam
US4788161A (en) Method of producing an end surface light emission type semiconductor device
RU2055420C1 (en) Light-emitting diode
US4974089A (en) Television camera apparatus using gradient index rod lens
KR850001900B1 (en) The apparatus for collecting sun ray
JP2002062460A (en) Beam-condensing unit
US4730141A (en) Imaging tube having a reflective photocathode and internal optical means
JPS6029085B2 (en) Light source coupler and its manufacturing method
JPS57172309A (en) Coupling method of optical fiber and optical waveguide
JPS62266502A (en) Light converging and transmitting equipment

Legal Events

Date Code Title Description
NUG Patent has lapsed

Ref document number: 8203597-3

Effective date: 19940110

Format of ref document f/p: F