SE454121B - OPTICAL MULTIPLEXOR OR DEMULTIPLEXOR - Google Patents

OPTICAL MULTIPLEXOR OR DEMULTIPLEXOR

Info

Publication number
SE454121B
SE454121B SE8402180A SE8402180A SE454121B SE 454121 B SE454121 B SE 454121B SE 8402180 A SE8402180 A SE 8402180A SE 8402180 A SE8402180 A SE 8402180A SE 454121 B SE454121 B SE 454121B
Authority
SE
Sweden
Prior art keywords
fibers
multiplexer
group
adjacent
lens
Prior art date
Application number
SE8402180A
Other languages
Swedish (sv)
Other versions
SE8402180L (en
SE8402180D0 (en
Inventor
R A Linke
Original Assignee
American Telephone & Telegraph
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Telephone & Telegraph filed Critical American Telephone & Telegraph
Publication of SE8402180D0 publication Critical patent/SE8402180D0/en
Publication of SE8402180L publication Critical patent/SE8402180L/en
Publication of SE454121B publication Critical patent/SE454121B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29307Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide components assembled in or forming a solid transparent unitary block, e.g. for facilitating component alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

15 20 25 SO 35 ÄO 454 121 2 nämnda kopplade energi samt en integrerad optisk, konvergerande våg ledargrupp, som är placerad mellan fibrerna och linsen, varvid mellanrummet mellan vågledarna i den del av gruppen, som befinner sig intill linsen, är mindre än manteldíametern hos varje fiber. Said coupled energy and an integrated optical, converging waveguide group located between the fibers and the lens, the gap between the waveguides in the part of the group adjacent to the lens being smaller than the mantle diameter of each fiber.

Några utföringsformer av uppfinningen kommer nu att beskrivas såsom exempe under hänvisning till den bifogade ritningen, på vilken: - _ Figi l visar en känd düfraktionsgitter-multiplexorldemul- tiplexor av reflektionstyp; _ , _ _ Fig. 2, som är inkluderad i förklarande.syfte,fvisar fre- kvenskurvan för multiplexorn/demultiplexorn i fig. l; 5 ' Fig. 3 visar en multiplexor/demultiplexor enligt förelig- gande uppfinningå och . ' Figurerna U och 5 visar delar av modifierade utförings- former av uppfinningen. i . i Såsom framgår av ritningen visar fig. l en känd diffraktions gitter-vâglängdsdelnings-multiplexor/demultíplexor 10 av'reflek- tionstyp; I åskådliggörande och förklarande syfte visas anord- níngen i arbete såsom en demultiplexor, vilken innefattar en ge- mensam optisk multimodingångsfiber 9 samt en linjär grupp av op-i tiska multimodutgångsfibrer ll - l, ll - 2......ll - 6. Signaler med olika vâglängderll l,«ï 2, ..... Ã,6, vilka frammatas av fi- bern 9, åtskiljes rumsmåssigt medelst ett diffraktions- N gitter 13 av reflektíonstyp. En lins 12, som är placerad mellan. fíbergruppen och gittret, tjänar till att fokusera de många op- tiska strâlknippena.Some embodiments of the invention will now be described, by way of example, with reference to the accompanying drawing, in which: Fig. 1 shows a known diffraction grating multiplexer demultiplexer of reflection type; Fig. 2, which is included for explanatory purposes, shows the frequency curve of the multiplexer / demultiplexer in Fig. 1; Fig. 3 shows a multiplexer / demultiplexer according to the present invention and. Figures U and 5 show parts of modified embodiments of the invention. i. As can be seen from the drawing, Fig. 1 shows a known diffraction grating wavelength division division multiplexer / demultiplexer 10 of reflection type; For illustrative and explanatory purposes, the device is shown in operation as a demultiplexer, which comprises a common optical multimode input fiber 9 and a linear group of optical multimode output fibers ll - 1, ll - 2 ...... ll - 6 Signals with different wavelengths l1, «ï 2, ..... Ã, 6, which are fed by the fibers 9, are spatially separated by means of a diffraction N grating 13 of the reflection type. A lens 12, which is placed between. the fiber group and the grating, serve to focus the many optical beams.

Vid operationer fokuseras av fibern 9 emitterad vågenergi med våglängderna Ä l, H, 2, . .. (nå. 6 på gittret 13, varifrån den selektivt reflekteras. Den resulterande intensitetsfördelningen visas såsom funktion av avståndet D utmed fibergruppen i fig. 2.In operations, wave energy emitted by the fiber 9 with the wavelengths Ä 1, H, 2, is focused. .. (No. 6 on the grating 13, from which it is selectively reflected. The resulting intensity distribution is shown as a function of the distance D along the fiber group in Fig. 2.

Mätt från en viss godtycklig referenspunkt 0 uppträder den första intensitetstoppen vid vâglängd¿ïl på ett avstånd Dl utmed D-axeln På samma sätt uppträder toppar vid våglängdernaÉl2,(Ä3 ......É26 på avstånden da, dj .... dö. Sålunda kan de många komponenterna* av den inpasserande signalen, var och en motsvarande en separat signalkanal,rumsmässigt separeras genom att en fiber placeras i brännpunkten för var och en av de diffrakterade signalerna, så- som visas i fig. l. Med fördel är gittret 13 så utformat, att avståndet D mellan intensitetstopparna är lika med fibrernas ytterdiameter. Härigenom erhålles den mest effektiva användning- en av den tillgängliga optiska bandbredden. Kanalbandbredden är en funktion av kärndiametern 3. För multimodfibrer, där förhål- 10 15 20 25 30 35 I|o 3 454 121 landet mellan kärndiametern och manteldiametern är approxima- tivt 0,5, användes sålunda den tillgängliga bandbredden ef- fektivt. I motsats härtill är förhållandet mellan kärna och mantel för enkelmodfibrer mycket lägre. Normala kärn- och man- teldiametrar är 8 pm resp. 125 pm, så att utnyttjningseffek- tiviteten reduceras från 50 Z till approximativt 6 %. Det som erfordras är ett medel för att öka kanalernas packningsden- sitet. Detta åstadkommes genom att en konvergerande vågledare- grupp placeras mellan fibrerna och det reflekterande gittret, såsom visas i fig. 3. Närmare bestämt innefattar multiplexorn/ /demultiplexorn en grupp 31 av ingångs/utgångs-fibersektioner 31-1, 31-2, .... 31-n; en integrerad optisk konvergerande våg- ledargrupp 30; en lins 32; samt ett diffraktionsgitter 3ü. Med fördel avslutas varje fibersektion med en lämplig an- slutningsanordning (icke visad) för åstadkommand av anslutning till systemfibrerna. Vid denna åskådliggörande utföringsform är linsen 32 en 1/U-pitch-grin-lins, Som kan kopplas till våg- ledargruppen på bättre sätt än en diskret lins. En kil 33 är inkluderad för effektivare koppling mellan linsen 32 och gitt- ret 3U. Såsom antytts ovan är tät packning av signalkanalerna I omöjlig med användning av konventionella singelmodfibrer bero- ende på det obetydliga kärn/mantel-förhållandet. Användningen av enkelmodfibrer av icke standardtyp tillsammans med tunna mantlar samt motsvarande större kärn/mantel-förhållande skulle ge formidabla behandlíngssvårigheter. Användningen av en inte- grerad vågledargrupp undviker båda dessa problem. Såsom visas avslutas var och en av fibrerna 31-1, 31-2 .... 31-n i den ena änden av en av vâgledarna 30-1, 30-2......31-n. Vågledar- . gruppen konvergerar, så att mellanrummet, vid linsänden, mellan , vågledare är mycket mindre än manteldiametern hos enkelmodfibern É av standardtyp. Överhörning kommer till slut att begränsa våg- ¿ ledarpackníngsdensiteten. Emellertid är överhörningen liten för mellanrum av storleksordningen tvâ gånger modstorleken och den kan om så är nödvändigt reduceras ytterligare genom anordnande av spår i vågledarsubstratet mellan närliggande vågledare, så- som åskådliggöres i fig. N. I denna figur visas den ände av gruppen, som befinner sig intill linsen. I âskâdliggörande syfte är fem vågledare Ul, M2, H3, UU och US inbäddade i ett lämpligt substrat H6. För att effektivare isolera de många kanalerna är spår 50, 51, 52 och 53 bildade i substratet H6 i området mellan närliggande vågledare. Större separeríng kan åstadkommas genom 10 454 121 u att fortplantningskonstanterna för närliggande vågledare göres olika.Measured from a certain arbitrary reference point 0, the first intensity peak occurs at wavelength ï1 at a distance D1 along the D-axis. In the same way, peaks occur at wavelengths λ2, (Ä3 ...... É26 at the distances da, dj .... dö Thus, the many components * of the input signal, each corresponding to a separate signal channel, can be spatially separated by placing a fiber in the focal point of each of the diffracted signals, as shown in Fig. 1. Advantageously, the grating 13 is designed so that the distance D between the intensity peaks is equal to the outer diameter of the fibers, thereby obtaining the most efficient use of the available optical bandwidth.The channel bandwidth is a function of the core diameter 3. For multimode fibers, where the ratio 10 15 20 25 30 35 In the country between the core diameter and the jacket diameter is approximately 0.5, the available bandwidth is thus used efficiently. In contrast, the ratio of core to jacket is too simple. mod fibers much lower. Normal core and mantle diameters are 8 pm resp. 125 μm, so that the utilization efficiency is reduced from 50 Z to approximately 6%. What is required is a means of increasing the packing density of the ducts. This is accomplished by placing a converging waveguide array between the fibers and the reflective grating, as shown in Fig. 3. More specifically, the multiplexer / / demultiplexer comprises a group 31 of input / output fiber sections 31-1, 31-2, .. .. 31-n; an integrated optical converging waveguide array 30; and lens 32; and a diffraction grating 3ü. Advantageously, each fiber section is terminated with a suitable connection device (not shown) for effecting connection to the system fibers. In this illustrative embodiment, the lens 32 is a 1 / U pitch grin lens, which can be coupled to the waveguide array in a better manner than a discrete lens. A wedge 33 is included for more efficient coupling between the lens 32 and the grating 3U. As indicated above, tight packing of the signal channels I is impossible using conventional single mode fibers due to the insignificant core / sheath ratio. The use of single mode fibers of non-standard type together with thin sheaths and the corresponding larger core / sheath ratio would give formidable treatment difficulties. The use of an integrated waveguide group avoids both of these problems. As shown, each of the fibers 31-1, 31-2 .... 31-n terminates at one end of one of the waveguides 30-1, 30-2 ...... 31-n. Waveguide-. the group converges, so that the gap, at the lens end, between, waveguides is much smaller than the jacket diameter of the single mode fiber É of standard type. Crosstalk will eventually limit the wave ¿conductor packing density. However, the crosstalk is small for spaces of the order of twice the mode size and it can be further reduced if necessary by arranging grooves in the waveguide substrate between adjacent waveguides, as illustrated in Fig. N. This figure shows the end of the group which is next to the lens. For purposes of illustration, five waveguides U1, M2, H3, UU and US are embedded in a suitable substrate H6. To more effectively insulate the many channels, grooves 50, 51, 52 and 53 are formed in the substrate H6 in the area between adjacent waveguides. Greater separation can be achieved by making the propagation constants of adjacent waveguides different.

Den ovan beskrivna multiplexorn kan integreras på ett gemensamt substrat. Endimensionella fokuserings- och diffrak- tionsförfaranden för optiska tunnfilmvågledare har demonstre- rats, varvid glassubstrat användes. Användningen av ett elek- trooptiskt aktivt substrat, t.ex. LiNb03 skulle också tillåta integrering av andra kretsfunktioner på samma substrat. Exem- pelvis visar fig. 5 en ytterligare modifikation av vâgledar- gruppen, varvid modulatorer 61-1, 61-2, 61-3 och 61-4 har pla- cerats utmed de resp. vågledarna 60-1, 60-2, 60-3 øch 60-U. Vid denna utföringsform är cw signaler med vågländerna Ä ,f¶2,:¶3 ochri ¿ kopplade till vågledargruppen 60. Utsignalen utmed våg- ledaren 65 innefattar våglängdmultiplexerade modulerade sig- naler.The multiplexer described above can be integrated on a common substrate. One-dimensional focusing and diffraction methods for optical thin film waveguides have been demonstrated, using glass substrates. The use of an electro-optically active substrate, e.g. LiNb03 would also allow integration of other circuit functions on the same substrate. For example, Fig. 5 shows a further modification of the waveguide group, in which modulators 61-1, 61-2, 61-3 and 61-4 have been placed along the respective waveguides 60-1, 60-2, 60-3 and 60-U. In this embodiment, cw signals with the waveforms Ä, f¶2,: ¶3 andri ¿are connected to the waveguide group 60. The output signal along the waveguide 65 comprises wavelength multiplexed modulated signals.

Claims (6)

'B 454 121 Patentkrav'B 454 121 Patent claims 1. Optisk multiplexor eller demultiplexor, innefattande: en linjär grupp (31) av optiska ingangs/utgàngs-fibrer, ett diffraktionsgitter (34) för att selektivt koppla optisk vag- energi mellan en av fibrerna och de andra fibrerna samt en lins (32) för att fokusera den kopplade energin, k ä n n e - t e c k n a d därav, att fibrerna (31) är enkelmodfibrer samt att en integrerad optisk, konvergerande vàgledargrupp (33) är placerad mellan fibrerna och linsen, varvid mellanrummet mellan vagledarna i den del av gruppen (33), som befinner sig intill linsen (32), är mindre än manteldiametern hos varje fiber.An optical multiplexer or demultiplexer, comprising: a linear array (31) of optical input / output fibers, a diffraction grating (34) for selectively coupling optical wave energy between one of the fibers and the other fibers, and a lens (32) to focus the coupled energy, characterized in that the fibers (31) are single mode fibers and that an integrated optical, converging waveguide group (33) is placed between the fibers and the lens, the gap between the waveguides in that part of the group (33 ), which is adjacent to the lens (32), is smaller than the sheath diameter of each fiber. 2. Multiplexor eller demultiplexor enligt kravet 1, k ä n n e t e c k n a d därav, att vagledargruppen (30) innefattar ett flertal vägledande band (41-45), som är in- bäddade i ett substrat (46) med lägre brytningsindex: samt att avståndet mellan närliggande vàgledarband minskar fràn ett maximum vid en företa ände av vagledargruppen, intill fibrerna (31), till ett minimum vid en andra ände av vagledargruppen, intill linsen (32).A multiplexer or demultiplexer according to claim 1, characterized in that the waveguide group (30) comprises a plurality of guiding bands (41-45) embedded in a substrate (46) with a lower refractive index: and that the distance between adjacent guide band decreases from a maximum at one front end of the guide group, adjacent to the fibers (31), to a minimum at a second end of the guide group, adjacent the lens (32). 3. Multiplexor eller demultiplexor enligt kravet 2, k ä n n e t e c k n a d därav, att den är försedd med spår (50-53), som löper i substratet (46) i områdena för den andra änden mellan närliggande vagledande band (41-45).A multiplexer or demultiplexer according to claim 2, characterized in that it is provided with grooves (50-53), which run in the substrate (46) in the areas of the other end between adjacent waveguide bands (41-45). 4. Multiplexor eller demultiplexor enligt kravet 2 eller 3, k ä n n e t e c k n a d därav, att substratet (46) är av ett elektrooptiskt material. É.A multiplexer or demultiplexer according to claim 2 or 3, characterized in that the substrate (46) is of an electro-optical material. É. 5. Multiplexor eller demultiplexor enligt kravet 4, k ä n n e t e c k n a d därav, att den innefattar organ (62) för att modulera en optisk signal vilka är inkluderade utmed vágledargruppens vägledande band.5. A multiplexer or demultiplexer according to claim 4, characterized in that it comprises means (62) for modulating an optical signal which are included along the guiding band of the waveguide group. 6. Multiplexor eller demultiplexor enligt nagot av de föregående kraven, k ä n n e t e c k n a d därav, att ut- bredningskonstanterna för närliggande vàgledare i vágledar- gruppen är olika.A multiplexer or demultiplexer according to any one of the preceding claims, characterized in that the propagation constants for adjacent waveguides in the waveguide group are different.
SE8402180A 1983-04-25 1984-04-18 OPTICAL MULTIPLEXOR OR DEMULTIPLEXOR SE454121B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US48853783A 1983-04-25 1983-04-25

Publications (3)

Publication Number Publication Date
SE8402180D0 SE8402180D0 (en) 1984-04-18
SE8402180L SE8402180L (en) 1984-10-26
SE454121B true SE454121B (en) 1988-03-28

Family

ID=23940052

Family Applications (1)

Application Number Title Priority Date Filing Date
SE8402180A SE454121B (en) 1983-04-25 1984-04-18 OPTICAL MULTIPLEXOR OR DEMULTIPLEXOR

Country Status (8)

Country Link
JP (2) JPS59210413A (en)
CA (1) CA1257415A (en)
DE (1) DE3414724A1 (en)
FR (1) FR2544883B1 (en)
GB (1) GB2139374B (en)
IT (1) IT1176113B (en)
NL (1) NL192171C (en)
SE (1) SE454121B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173930A3 (en) * 1984-09-01 1988-01-27 Alcatel N.V. Optical multiplexer/demultiplexer
GB8431087D0 (en) * 1984-12-10 1985-01-16 Secr Defence Multiplexing & demultiplexing systems
US4736360A (en) * 1986-07-21 1988-04-05 Polaroid Corporation Bulk optic echelon multi/demultiplexer
GB8718560D0 (en) * 1987-08-05 1987-09-09 Gec Avionics Nuclear pulse simulation
GB2219869B (en) * 1988-06-15 1992-10-14 British Telecomm Optical coupling device
GB2251957B (en) * 1990-11-29 1993-12-15 Toshiba Kk Optical coupler
DE4134293C1 (en) * 1991-10-17 1993-02-11 Messer Griesheim Gmbh, 6000 Frankfurt, De
FR2765972B1 (en) * 1997-07-11 1999-09-24 Instruments Sa WAVELENGTH-DISPERSION OPTICAL SYSTEM
WO2003098856A2 (en) * 2002-05-20 2003-11-27 Metconnex Canada Inc. Reconfigurable optical add-drop module, system and method
CN100422777C (en) * 2002-11-01 2008-10-01 欧姆龙株式会社 Optical multiplexer/demultiplexer and production method for optical multiplexer/demultiplexer
US10110306B2 (en) 2015-12-13 2018-10-23 GenXComm, Inc. Interference cancellation methods and apparatus
US10257746B2 (en) 2016-07-16 2019-04-09 GenXComm, Inc. Interference cancellation methods and apparatus
US11150409B2 (en) 2018-12-27 2021-10-19 GenXComm, Inc. Saw assisted facet etch dicing
US10727945B1 (en) 2019-07-15 2020-07-28 GenXComm, Inc. Efficiently combining multiple taps of an optical filter
US11215755B2 (en) 2019-09-19 2022-01-04 GenXComm, Inc. Low loss, polarization-independent, large bandwidth mode converter for edge coupling
US11539394B2 (en) 2019-10-29 2022-12-27 GenXComm, Inc. Self-interference mitigation in in-band full-duplex communication systems
US11796737B2 (en) 2020-08-10 2023-10-24 GenXComm, Inc. Co-manufacturing of silicon-on-insulator waveguides and silicon nitride waveguides for hybrid photonic integrated circuits
US12001065B1 (en) 2020-11-12 2024-06-04 ORCA Computing Limited Photonics package with tunable liquid crystal lens
US11838056B2 (en) 2021-10-25 2023-12-05 GenXComm, Inc. Hybrid photonic integrated circuits for ultra-low phase noise signal generators

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3986020A (en) * 1975-09-25 1976-10-12 Bell Telephone Laboratories, Incorporated Common medium optical multichannel exchange and switching system
US4111524A (en) * 1977-04-14 1978-09-05 Bell Telephone Laboratories, Incorporated Wavelength division multiplexer
JPS56126806A (en) * 1980-03-11 1981-10-05 Nec Corp Diffraction grating type light branching filter
DE3239336A1 (en) * 1982-10-23 1984-04-26 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Optical wavelength-division multiplexer

Also Published As

Publication number Publication date
JPH0676907U (en) 1994-10-28
NL8401315A (en) 1984-11-16
FR2544883B1 (en) 1992-04-17
IT8420660A1 (en) 1985-10-20
GB8410197D0 (en) 1984-05-31
IT8420660A0 (en) 1984-04-20
NL192171B (en) 1996-10-01
SE8402180L (en) 1984-10-26
IT1176113B (en) 1987-08-12
DE3414724C2 (en) 1993-07-22
JPS59210413A (en) 1984-11-29
GB2139374A (en) 1984-11-07
DE3414724A1 (en) 1984-10-25
FR2544883A1 (en) 1984-10-26
CA1257415A (en) 1989-07-11
NL192171C (en) 1997-02-04
SE8402180D0 (en) 1984-04-18
GB2139374B (en) 1986-07-16

Similar Documents

Publication Publication Date Title
SE454121B (en) OPTICAL MULTIPLEXOR OR DEMULTIPLEXOR
US5212758A (en) Planar lens and low order array multiplexer
US8780319B2 (en) Wavelength selective optical switch
US5940555A (en) Optical multiplexer/demultiplexer
JPS59174803A (en) Wavelength multiplexer or demultiplexer
KR100207602B1 (en) Optical filter for preventing loss of optical power and optical demultiplexer using same
KR880003207A (en) Fiber optic dispersion compensator
US6526203B1 (en) Arrayed waveguide grating with reduced crosstalk
US6125228A (en) Apparatus for beam splitting, combining wavelength division multiplexing and demultiplexing
JPS6161107A (en) Optical multiplex separation transmitter
JPS61113009A (en) Optical multiplexer/demultiplexer
JP3346751B2 (en) Array waveguide grating
US5054873A (en) High density integrated optical multiplexer/demultiplexer
US5937129A (en) Waveguide grating structure having linear and nonlinear waveguiding film
US6332055B1 (en) Optical attenuator, plane waveguide type optical circuit having the same and optical attenuation system having the same
KR100594040B1 (en) Dual-band wavelength division multiplexer
JP2004525395A (en) Optical power monitor
US6546167B1 (en) Tunable grating optical device
KR100518382B1 (en) High isolation WDM device using by mirror
JP2600507B2 (en) Optical multiplexer / demultiplexer
JP2004310046A (en) Wavelength division multiplexer and demultiplexer using parabolic horn type waveguide
US20230228945A1 (en) Architecture for wavelength multiplexers
KR100225450B1 (en) Wavelength demultiplexing apparatus
JP2833255B2 (en) Optical demultiplexer
Jou et al. Wavelength division multiplexing

Legal Events

Date Code Title Description
NAL Patent in force

Ref document number: 8402180-7

Format of ref document f/p: F

NUG Patent has lapsed

Ref document number: 8402180-7

Format of ref document f/p: F