SE453648B - Hard alloy with refractory binding phase - Google Patents

Hard alloy with refractory binding phase

Info

Publication number
SE453648B
SE453648B SE8406461A SE8406461A SE453648B SE 453648 B SE453648 B SE 453648B SE 8406461 A SE8406461 A SE 8406461A SE 8406461 A SE8406461 A SE 8406461A SE 453648 B SE453648 B SE 453648B
Authority
SE
Sweden
Prior art keywords
powder
alloy
extrusion
forging
hard alloy
Prior art date
Application number
SE8406461A
Other languages
Swedish (sv)
Other versions
SE8406461L (en
SE8406461D0 (en
Inventor
M Bergstrom
Original Assignee
Santrade Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santrade Ltd filed Critical Santrade Ltd
Priority to SE8406461A priority Critical patent/SE453648B/en
Publication of SE8406461D0 publication Critical patent/SE8406461D0/en
Publication of SE8406461L publication Critical patent/SE8406461L/en
Publication of SE453648B publication Critical patent/SE453648B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

The hard material is a cpd. of at least one of the metals Ti, Zr, HF, V, Nb, Ta, Cr, Mo or W with at least carbon or oxygen or nitrogen. The binder comprises at least one of the metals Ti, Zr, HF, V, Nb, Ta, Cr, Mo or W. The material is shapable by e.g. extrusion to produce a non-porous body. Pref. the binder is 25-70% esp. 30-65% of the alloy by volume. Pref. the hard material is (Ti,W)C, TiC, Ti(C,N) and/or TiN and the binder is W. (Provisional Basic previously advised in week 8632)

Description

15 20 25 30 35 453 648 1 Problemet är att tillverka detta material, då smälttempera- turen för de ingående komponenterna är mycket hög. De till- verkningsvägar, som hittills tillämpats, är gjutning, sint- a ring och varmisostatisk tryckning. 15 20 25 30 35 453 648 1 The problem is to manufacture this material, as the melting temperature of the constituent components is very high. The production methods that have been applied so far are casting, sintering and thermostatic printing.

Gjutning ger som resultat ett material med grov, upp till 25 /um, primärt utskild titanwolframkarbid. Strukturen beror av vilka fasomvandlingar, som ägt rum under stelnings- förloppet. Porinnehållet, mest gasporer, är högt. Det är svårt att erhålla jämn sammansättning pga segring. Mycket hög gjuttemperatur >2500 OC är nödvändig, vilket gör det svårt att finna sådana material till smältdeglar och kokil- ler, som är kemiskt inerta.Casting results in a material with coarse, up to 25 .mu.m, primarily separated titanium tungsten carbide. The structure depends on which phase transformations have taken place during the solidification process. The pore content, mostly gas pores, is high. It is difficult to obtain an even composition due to victory. Very high casting temperature> 2500 OC is necessary, which makes it difficult to find such materials for crucibles and molds that are chemically inert.

Sintring kräver i likhet med gjutning mycket höga tempera- turer >2000 °C. Det kan därför även vid sintring vara svårt att finna ett sintringsunderlag, som är kemiskt resistent. Ibland tillsätts sintringshjälpmedel, t ex MgO, som föràngas vid de höga temperaturerna.Like casting, sintering requires very high temperatures> 2000 ° C. Therefore, even during sintering, it can be difficult to find a sintering substrate that is chemically resistant. Sometimes sintering aids, such as MgO, are added, which evaporate at the high temperatures.

» Varmisostatisk tryckning (trycksintring) kräver också höga temperaturer, 1500 - 1900 OC, för att ett porfritt mate- rial skall erhållas. De presstryck, som används, ligger pà ca 30 - 40 N/mm2. Trots detta erhålls ofta material med restporositet.»Heat isostatic printing (pressure sintering) also requires high temperatures, 1500 - 1900 OC, in order to obtain a pore-free material. The press pressures used are about 30 - 40 N / mm2. Despite this, materials with residual porosity are often obtained.

Vid varmisostatisk tryckning av pulversnabbstàl används ett presstryck på ca 100 N/mmz. Temperaturen är ca 1100°C.For hot isostatic printing of powder instant steel, a press pressure of approx. 100 N / mmz is used. The temperature is about 1100 ° C.

Under dessa betingelser erhålls en porfri kropp.Under these conditions, a pore-free body is obtained.

Vid extrusion och pulversmide av stållegeringar är det presstryck, som används, betydligt högre ca 1000 - 1500 N/mmz och temperaturen är ca 900 - 1200 OC.For extrusion and powder forging of steel alloys, the press pressure used is significantly higher approx. 1000 - 1500 N / mmz and the temperature is approx. 900 - 1200 OC.

Det har nu överraskande visat sig, att man genom att ut- nyttja det höga hydrostatiska trycket från en konventionell ~ extrusions- eller smidespress kan kompaktera en presskropp av en legering enligt ovan till porfrihet redan vid så mätt- n-\ *._.k...._ n- xxa-...N-u. u. - ^ 10 15 20 25 30 35 453 648 liga temperaturer som ca 1200 OC. Kompaktering vid så låg temperatur erbjuder en möjlighet att framställa legeringar med liten kornstorlek ungefär motsvarande pulvrets partikel- storlek efter malning vanligen <2 /um företrädesvis <1 /um. Eftersom kompakteringen sker i fast fas, sker ingen materialvandring och en helt homogen kropp erhålles. På grund av den låga temperaturen bildas inga eutektiska struk- turbestàndsdelar.It has now surprisingly been found that by utilizing the high hydrostatic pressure from a conventional extrusion or forging press it is possible to compact a compaction body of an alloy as above for pore freedom even at such saturation. ...._ n- xxa -... Nu. u. - ^ 10 15 20 25 30 35 453 648 league temperatures as about 1200 OC. Compaction at such a low temperature offers an opportunity to produce alloys with a small grain size approximately corresponding to the particle size of the powder after grinding, usually <2 / um, preferably <1 / um. Since the compaction takes place in solid phase, no material migration takes place and a completely homogeneous body is obtained. Due to the low temperature, no eutectic structural components are formed.

Vid tillverkning med smältmetallurgisk teknik är valet av legering låst till i stort sett en enda sammansättning av tillverkningsskäl. Om materialet tillverkas från pulver, som kompakteras vid låg temperatur, kan valet av legerings- sammansätting ske fritt. Den pulversammansättning, som öns- kas för att erhålla ett material med vissa egenskaper, blan- das ihop och kompakteras.In manufacturing with molten metallurgical technology, the choice of alloy is locked to largely a single composition for manufacturing reasons. If the material is made from powder, which is compacted at low temperature, the choice of alloy composition can be made freely. The powder composition desired to obtain a material with certain properties is mixed and compacted.

Tillverkning av ämnen till skärplattor kan genom kompakte- ring i en extrusions/smidespress ske på olika sätt beroende på vilken form och dimension på ämnet, som önskas.Manufacture of blanks for cutting plates can be done by compaction in an extrusion / forging press in different ways, depending on the shape and dimension of the blank, which is desired.

A. Pulversmide. Genom pulversmide erhålles en porfri kropp, vars dimensioner bestäms av háldiametern på pressverktygets dyna.A. Powder forging. Powder forging results in a pore-free body, the dimensions of which are determined by the heel diameter of the die of the press tool.

Tillverkningsgång: _ 1. Torrblandning av pulverràvaror. 2. Kallisostatpressning av smidesämne. 3. Uppvärmning till smidestemperatur (ämnet ligger i stål- kapsel). Temperatur ca 12oo °c. i 4. Pulversmidning. 5. Manufakturering.Production process: _ 1. Dry mix of powder raw materials. 2. Callisostat pressing of forging material. Heating to forging temperature (the substance is in a steel capsule). Temperature about 12oo ° c. i 4. Powder forging. 5. Manufacturing.

B. Extrusion. Genom extrusion erhålls en porfri kropp av legeringen i stàngform, vars tvärsnitt bestäms av utform- ningen av extrusionsdynan.B. Extrusion. By extrusion, a pore-free body of the alloy is obtained in the form of a rod, the cross section of which is determined by the design of the extrusion pad.

Tillverkningsgång: 1. Torrblandning av pulverråvaror. 2. Kallisostatpressning av extrusionsämne. 10 15 20 453 648 4 3. Uppvärmning till smidestemperatur (ämnet ligger i stål- kapsel). Temperatur ca 1200 OC. 4. Extrusion. 5. Manufakturering.Manufacturing process: 1. Dry mix of powder raw materials. 2. Callisostat extrusion blank. 10 15 20 453 648 4 3. Heating to forging temperature (the substance is in a steel capsule). Temperature about 1200 OC. 4. Extrusion. 5. Manufacturing.

C. Smidning i extrusions/smidespress av försintrade ämnen.C. Forging in extrusion / forging press of sintered substances.

Plattämnen pressas och försintras. Slutlig kompaktering till porfri kropp sker i extrusions/smidespress. I detta fall kan nästan färdig form på ämnet erhållas.Slabs are pressed and sintered. Final compaction to pore-free body takes place in extrusion / forging press. In this case, almost finished form of the substance can be obtained.

Tillverkníngsgångz 1. Vàtmalning med pressmedel av pulverràvaror. 2. Torkning av det malda pulvret. 3. Pressning av detaljer i pressverktyg. 4. Försintring vid av pressade detaljer. 5. Chargering av försintrade detaljer i stålkapsel. Detal- jerna inpackas i aluminiumoxid, kalciumoxid eller bornitrid som fungerar som tryckmedium. 6. Uppvärmning till smidestemperatur ca 1200 OC. 7.'Smidning. 8. Slutlig manufakturering. 10 15 25 30 35 5 453 648 Exempel En pulverblandning med sammansättningen 76 vikt% W, 22 vikta; (Ti,w)c, 1 'vikta zrc och 1 vikta Mo blandades till- sammans med etanol och polyetylenglykol och maldes under 240 timmar. Efter malningen avlägsnades malvätskan. Av det torkade pulvret pressades ämnen till skärplattor med måtten 22x22xS mm. Dessa försintrades vid 1520°C varvid press- medlet avgick och de malda kornen sintrade samman till en kropp med öppen porositet. De försintrade ämnena packades tillsammans med kalciumoxid i en stålkapsel, som evakuera- des och tillslöts. Stålkapseln med innehåll värmdes till 1250 OC under 2 timmar, varvid den utsattes för ett hydro- statiskt tryck pà 1200 N/mmz. Kalciumoxiden verkade under tryckningen som trycköverförande medium, så att de försint- rade ämnena pressades samman likformigt till en porfri kropp. Efter svalning i luft frigjordes de pressade ämnena från kalciumoxiden genom att kalciumoxiden löstes upp i Vatten.Manufacturing process 1. Wet grinding with powdered raw materials. 2. Drying of the ground powder. Pressing of details in press tools. 4. Pre-sintering of pressed parts. 5. Charging of sintered parts in steel capsule. The parts are wrapped in alumina, calcium oxide or boron nitride which acts as a pressure medium. 6. Heating to forging temperature approx. 1200 OC. 7. 'Forging. 8. Final manufacturing. 10 15 25 30 35 5 453 648 Example A powder mixture with the composition 76 wt% W, 22 wt; (Ti, w) c, 1 'weight zrc and 1 weight Mo were mixed together with ethanol and polyethylene glycol and ground for 240 hours. After grinding, the grinding fluid was removed. From the dried powder, blanks were pressed into cutting plates with the dimensions 22x22xS mm. These were pre-sintered at 1520 ° C whereupon the pressing agent evaporated and the ground grains sintered together into a body with open porosity. The sintered substances were packed together with calcium oxide in a steel capsule, which was evacuated and sealed. The steel capsule with contents was heated to 1250 ° C for 2 hours, whereupon it was subjected to a hydrostatic pressure of 1200 N / mm 2. During printing, the calcium oxide acted as a pressure-transmitting medium, so that the pre-sintered substances were compressed uniformly into a pore-free body. After cooling in air, the compressed substances were released from the calcium oxide by dissolving the calcium oxide in Water.

Efter slipning av skäreggar har det smidda materialet an- vänts som skärverktyg med följande skärdata: Skärhastighet: 26 m/min Skärdjup: upp till 22 mm Matning: 1.5 mm/varv Arbetsmaterial: Gjuten stålvals Som jämförelsematerial användes hárdmetall för ISO P10 om- rådet. Vid det jämförande provet erhölls för det smidda materialet en livslängd hos skäreggen, som överraskande nog blev fem gånger högre än den för hárdmetall för ISO P10 dvs den genomsnittliga längden, som kunde svarvas, var fem gånger längre vid användning av det smidda materialet.After grinding cutting edges, the forged material has been used as a cutting tool with the following cutting data: Cutting speed: 26 m / min Cutting depth: up to 22 mm Feed: 1.5 mm / revolution Working material: Cast steel roll Carbide was used as a comparison material for the ISO P10 area. In the comparative test, the forged material was obtained for a life of the cutting edge, which surprisingly became five times higher than that of cemented carbide for ISO P10, ie the average length that could be turned was five times longer when using the forged material.

Claims (1)

10 15 20 25 30 35 453 s4s_ Patentkrav10 15 20 25 30 35 453 s4s_ Patent claim 1. Sätt att framställa en väsentligen porfri kropp av en legering bestående av hàrdämne och bindefas. där härd- ämnet utgörs av (Ti,W)C, TiC, Ti(C,N) och/eller TiN och bindefasen utgörs av W, samt legeringens volymandel av bindefas är 25-70 %, företrädesvis 30-65 %, t e c k n a t en presskropp, varvid kompakteringen sker i fast fas i form k ä n n e - av att man utgående frán pulver kompakterar av pulversmide, extrusion eller motsvarande operation, ledande till en kornstorlek < 2/um hos legeringen i den slutliga kroppen.A method of producing a substantially pore-free body from an alloy consisting of hard material and binder phase. where the hardener consists of (Ti, W) C, TiC, Ti (C, N) and / or TiN and the binder phase consists of W, and the volume fraction of binder phase of the alloy is 25-70%, preferably 30-65%, drawn a compact, whereby the compaction takes place in solid phase in the form of - by starting from powder compaction by powder forging, extrusion or similar operation, leading to a grain size <2 / um of the alloy in the final body.
SE8406461A 1984-12-19 1984-12-19 Hard alloy with refractory binding phase SE453648B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE8406461A SE453648B (en) 1984-12-19 1984-12-19 Hard alloy with refractory binding phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8406461A SE453648B (en) 1984-12-19 1984-12-19 Hard alloy with refractory binding phase

Publications (3)

Publication Number Publication Date
SE8406461D0 SE8406461D0 (en) 1984-12-19
SE8406461L SE8406461L (en) 1986-06-20
SE453648B true SE453648B (en) 1988-02-22

Family

ID=20358228

Family Applications (1)

Application Number Title Priority Date Filing Date
SE8406461A SE453648B (en) 1984-12-19 1984-12-19 Hard alloy with refractory binding phase

Country Status (1)

Country Link
SE (1) SE453648B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE525898C2 (en) * 2003-09-24 2005-05-24 Sandvik Ab Cutting based on WC with a binder phase of tungsten, ways of making the cutter and using it

Also Published As

Publication number Publication date
SE8406461L (en) 1986-06-20
SE8406461D0 (en) 1984-12-19

Similar Documents

Publication Publication Date Title
JP7204689B2 (en) Method for producing non-oxide ceramic powder
US4689077A (en) Method for manufacturing a reaction-sintered metal/ceramic composite body and metal/ceramic composite body
US4560668A (en) Substantially pore-free shaped articles of polycrystalline silicon carbide, and a process for their manufacture by isostatic hot-pressing
US5149677A (en) Exothermic process for the production of molybdenum silicide composites
JPH05339054A (en) Preparation of ceramic article, and ceramic article
JP2000319705A (en) Manufacture of cutting tool insert of polycrystalline cubic boron nitride, and body of this polycrystalline cubic boron nitride
SE445839B (en) POLYCRYSTALLINE DIAMOND BODY AND PROCEDURE FOR ITS PREPARATION
JPH0231031B2 (en)
JPH06509790A (en) Aqueous process for injection molding of ceramic powders with high solids loading
JPH0797264A (en) Preparation of boron carbide system polycrystal high density molded article by non-pressure sintering
EP0927709B1 (en) Method of manufacturing whisker-reinforced ceramics
US4388085A (en) Abrasion resistant articles based on silicon nitride
US5346517A (en) Method of manufacturing inserts preferably for machining of heat resistant materials
EP0035777B1 (en) Abrasion resistant silicon nitride based articles
JPS61111970A (en) Silicon nitride sintered body and manufacture
JPH06506187A (en) Method of manufacturing ceramic bodies
JPS6350311B2 (en)
US4432795A (en) Sintered powdered titanium alloy and method of producing same
US3717694A (en) Hot pressing a refractory article of complex shape in a mold of simple shape
US4433979A (en) Abrasion resistant silicon nitride based articles
SE453648B (en) Hard alloy with refractory binding phase
JP2022553960A (en) Molybdenum oxychloride with improved bulk density
JPH04130065A (en) Method of forming high-density metal boride complex
GB2148270A (en) Cermet materials
JPH03208865A (en) Manufacture of refractory composite article

Legal Events

Date Code Title Description
NAL Patent in force

Ref document number: 8406461-7

Format of ref document f/p: F

NUG Patent has lapsed

Ref document number: 8406461-7

Format of ref document f/p: F