SE452992B - PROCEDURE FOR HEAT TREATMENT OF AN IRON-NICKEL-CHROME ALLOY - Google Patents
PROCEDURE FOR HEAT TREATMENT OF AN IRON-NICKEL-CHROME ALLOYInfo
- Publication number
- SE452992B SE452992B SE8003879A SE8003879A SE452992B SE 452992 B SE452992 B SE 452992B SE 8003879 A SE8003879 A SE 8003879A SE 8003879 A SE8003879 A SE 8003879A SE 452992 B SE452992 B SE 452992B
- Authority
- SE
- Sweden
- Prior art keywords
- alloy
- gamma
- temperature
- nickel
- iron
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 26
- 239000000956 alloy Substances 0.000 title claims description 26
- 238000010438 heat treatment Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 title claims 8
- 238000001816 cooling Methods 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 238000005482 strain hardening Methods 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 claims 1
- 238000005097 cold rolling Methods 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 239000010955 niobium Substances 0.000 claims 1
- 238000011282 treatment Methods 0.000 description 29
- 210000004027 cell Anatomy 0.000 description 12
- 230000002902 bimodal effect Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 230000000930 thermomechanical effect Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- NJNFCDQQEIAOIF-UHFFFAOYSA-N 2-(3,4-dimethoxy-2-methylsulfanylphenyl)ethanamine Chemical compound COC1=CC=C(CCN)C(SC)=C1OC NJNFCDQQEIAOIF-UHFFFAOYSA-N 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 208000013201 Stress fracture Diseases 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- PXHVJJICTQNCMI-OUBTZVSYSA-N nickel-60 atom Chemical compound [60Ni] PXHVJJICTQNCMI-OUBTZVSYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Description
15 20 25 30 452 992 EXEMPEL I En legering som har den följande kompositionen utsattes för olika termomekaniska behandlingar, som beskrivas i det följande: TABELL I Nickel - 45% Krom - 12% Molybden - 3% Kisel - 0,5% Zirkonium - 0,05% Titan - 2,5% Aluminium - 2,5% Kol - 0,03% Bor - 0,005% Järn - rest Den föregående legeringen var gammaprim-förstärkt superlege- ring. Den följande tabell II anger de olika termomekaniska behand- lingarna, för vilka legeringen angiven i tabell I utsattes; medan tabell III upptager de resulterande mikrostrukturella och mekaniska egenskaperna hos legeringen efter värmebehandling: TABELL II Beteckning Termomekanisk behandling , AR 1o28°c/1 timme/Fc + 60% cw IN-1 *9a2°c/1 :im/Ac + 7sa°c}1 tim/Ac + 12o°c/24 tim/Ac IN-2 *s9o°c/1 tim/Ac + soo°c/11 tim/Ac + 7oo°c/2 tim/Ac Ec *927°c/1 tim/Ac + soo°c/11 tim/Ac + 7oo°c + 2 tim/Ac En *soo°c/11 tim/Ac + 7oo°c/2 tim/Ac *Efter 1o3e°c/1 tim/Fc + sus cw 10 15 20 25 30 2? 452 992 TABELL III sso°c Beteck- Brotthållfast- ning Kommentar het (ksi) 80 ksi SR (tim) AR Ingen gammaprim, hög dislokationstäthet - 67,9 IN-1 Bimodal gammaprim, omkristalliserad ovan gammaprim solvus 151,5 0,8 IN-2 Trimodal gammaprim (dislokation) 141,3 81,9 EC Trimodal gammaprim omkristalliserad ovan gammaprim solvus - 64,7 EE Bimodal gammaprim, ekviaxliga celler - 235 Såsom kan ses av tabell III ovan, producerade ECfbehandlingen högre pâkänningsbrottegenskaper än behandling IN-1. EC-behandlingen resulterade i en trimodal fördelning av gammaprim, emedan den om- kristalliserade anlöpningen var under gammaprim solvus och resulte- rade i fällningen av en liten volym av stora (cirka 600 nm) gamma- primfällningar. EXAMPLE I An alloy having the following composition was subjected to various thermomechanical treatments, as described below: TABLE I Nickel - 45% Chromium - 12% Molybdenum - 3% Silicon - 0.5% Zirconium - 0 .05% Titanium - 2.5% Aluminum - 2.5% Carbon - 0.03% Boron - 0.005% Iron - residue The previous alloy was gamma-prime-reinforced superalloy. The following Table II lists the various thermomechanical treatments to which the alloy listed in Table I was subjected; while Table III lists the resulting microstructural and mechanical properties of the alloy after heat treatment: TABLE II Designation Thermomechanical treatment, AR 1o28 ° c / 1 hour / Fc + 60% cw IN-1 * 9a2 ° c / 1: im / Ac + 7sa ° c} 1 tim / Ac + 12o ° c / 24 tim / Ac IN-2 * s9o ° c / 1 tim / Ac + soo ° c / 11 tim / Ac + 7oo ° c / 2 tim / Ac Ec * 927 ° c / 1 hour / Ac + soo ° c / 11 hours / Ac + 7oo ° c + 2 hours / Ac En * soo ° c / 11 hours / Ac + 7oo ° c / 2 hours / Ac * After 1o3e ° c / 1 hour / Fc + sus cw 10 15 20 25 30 2? 452 992 TABLE III sso ° c Meaning- Breaking strength Comment hot (ksi) 80 ksi SR (hr) AR No gamma prime, high dislocation density - 67.9 IN-1 Bimodal gamma prime, recrystallized above gamma prime solvus 151.5 0.8 IN -2 Trimodal gamma prim (dislocation) 141.3 81.9 EC Trimodal gamma prim recrystallized above gammaprim solvus - 64.7 EE Bimodal gamma prim, equiaxial cells - 235 As can be seen from Table III above, ECf treatment produced higher stress fracture properties than treatment IN-1. The EC treatment resulted in a trimodal distribution of gamma prim, because the recrystallized annealing was below gamma prim solvus and resulted in the precipitation of a small volume of large (approximately 600 nm) gamma prim precipitates.
Av behandlingarna angivna i tabellerna II och III, producerade tre behandlingar strukturer med dislokationer. Dessa var behand- lingarna AR, IN-2 och EE. Påkänningsbrottdata i tabell II avslöjade att värmebehandling EE producerade ett märkbart starkare material.Of the treatments listed in Tables II and III, three treatments produced structures with dislocations. These were treatments AR, IN-2 and EE. Stress stress data in Table II revealed that heat treatment EE produced a noticeably stronger material.
Denna struktur bestod av en vävd dislokerad cellstruktur, som var fäst av en bimodal gammaprim-fördelning. Detta tillstånd hade den högsta styrkan av alla provade och var mycket stabil på grund av den fästade strukturen av de dislokerade cellerna.This structure consisted of a woven dislocated cell structure, which was attached by a bimodal gamma-prime distribution. This condition had the highest strength of all tested and was very stable due to the attached structure of the dislocated cells.
Kurvan visad i den bifogade figuren belyser svällningsbeteendet hos legeringen angiven i tabell I i tre termomekaniska tillstånd, ST, EC och EE. Svällning som funktion av temperatur i kurvorna är för radiationsdoser av 30 dpae, som är ekvivalent med 203 Mwd/MT (dvs. större än mâlstrâlningen av 120 Mwd/MT). Datan avslöjar att ST- och EE-behandlingarna producerade;den lägsta svällningen i lege- ringen angiven i tabell II ovan. EC-behandlingen producerade en acceptabel nivå av svällning av målstrålningar, men behandlingen var långt från optimum för i-reaktor-tillämpningar. 10 15 20 25 30 4552 Sås 9592 om jämförelse utsattesenllegering med följande sammanfatt- ning för tenmmèmæüska behandlingar liknande de ovannämnda.The curve shown in the attached figure illustrates the swelling behavior of the alloy given in Table I in three thermomechanical states, ST, EC and EE. Swelling as a function of temperature in the curves is for radiation doses of 30 dpae, which is equivalent to 203 Mwd / MT (ie greater than the target radiation of 120 Mwd / MT). The data reveal that the ST and EE treatments produced the lowest swelling in the alloy listed in Table II above. The EC treatment produced an acceptable level of swelling of target radiation, but the treatment was far from the optimum for in-reactor applications. 10 15 20 25 30 4552 Sauce 9592 for comparison exposed alloy with the following summary for tenmmemic treatments similar to those mentioned above.
TABELL Iv _ Nickel 60 Krom 15 Molybden 5,0 Niob 1,5 Kisel 0,5 Zirkonium 0,03 Titan 1,5 Aluminium 1,5 Kol 0,03 Bor 0,01 Järn rest Termomekaniska behandlingarna givna till den nämnda legeringen i tabell IV och mikrostrukturen och mekaniska egenskaperna hos den resulterande legeringen är givna i de följande tabellerna V och VI: TABELL V Beteck- ning Termomekanisk behandling* BP 1c3e°c/1 tim/Ac + eoo°c/11 :im/Ac + 7oo°c/2 tim/Ac BR 927°c/1 tim/Ac + 9oo°c/11 :im/Ac + 7oo°c/2 tim/Ac' BT 1o3a°c/0,25 tim/Ac + a99°c/1 tim/Ac + 749°c/8 tim/Ac cm 30% ww vid 1o3s°c + soo°c/11 tim/Ac + 7oo°c/2 tim/Ac cu a9o°c/1 tim/Ac + aoo°c/11 :im/Ac + 7oo°c/2 tim/Ac + 30 BU aoo°c/11 tim/Ac + 7oo°c/2 tim/Ac *Efter 1o3a°c/1 tim/Fc + 60% cw AC betyder air-cool, luftkylning; FC betyder furnace-cool, ugns- kylning; CW betyder cold-working, kallbearbetning. 10 15 20 25 30 äs 452 992 5 TABELL VI sso°c Beteck- Brotthållfast- 80 ksi SR ning Kommentar het (ksi) (tim) BP Liten gammaprim, inga dislokationer 136,7 - , BR Bimodala gammaprim, gammaceller 152,5 73 BT Bimodal gammaprim, inga dislokationer 135,3 - CT Bimodal gammaprim, icke-likformig struktur (lângbandade celler, några underkorn) 154,6 - CU Bimodal gammaprim, långsträckta celler 147,0 - BU Bimodal gammaprim, ekviaxliga celler 156,4 74 Gammaprim solvus och entimmesomkristallisationstemperatur för iegeringen angiven 1 tabell Iv var 91s°c ¿ 1o°c och 1ooo°c ¿ 2o°c respektive. Därför till skillnad från legeringen given i tabell I fanns inget temperaturomrâde, i vilket omkristallisation kunde utföras medan åldring pågick. I överensstämmelse härmed producera- de behandlingarna BP och BT som innebar anlöpning vid 1038°C och följande dubbelâldring båda en dislokationsfri austenitgrundmassa och en bimodal gammaprim-fördelning. Strukturer producerade genom behandlingar CU och BU, som icke inducerade omkristallisation, innehöll alla en synnerligen dislokerad cellstruktur innehållande olika fördelningar av gammaprim.TABLE Iv _ Nickel 60 Chromium 15 Molybdenum 5.0 Niob 1.5 Silicon 0.5 Zirconium 0.03 Titanium 1.5 Aluminum 1.5 Carbon 0.03 Boron 0.01 Iron residue The thermomechanical treatments given to the mentioned alloy in table IV and the microstructure and mechanical properties of the resulting alloy are given in the following Tables V and VI: TABLE V Designation Thermomechanical treatment * BP 1c3e ° c / 1 hr / Ac + eoo ° c / 11: im / Ac + 700 ° c / 2 tim / Ac BR 927 ° c / 1 tim / Ac + 9oo ° c / 11: im / Ac + 7oo ° c / 2 tim / Ac 'BT 1o3a ° c / 0.25 tim / Ac + a99 ° c / 1 tim / Ac + 749 ° c / 8 tim / Ac cm 30% ww vid 1o3s ° c + soo ° c / 11 tim / Ac + 7oo ° c / 2 tim / Ac cu a9o ° c / 1 tim / Ac + aoo ° c / 11: im / Ac + 7oo ° c / 2 hrs / Ac + 30 BU aoo ° c / 11 hrs / Ac + 7oo ° c / 2 hrs / Ac * After 1o3a ° c / 1 hr / Fc + 60 % cw AC means air-cool, air cooling; FC means furnace-cool, oven-cooling; CW means cold-working, cold-working. 10 15 20 25 30 äs 452 992 5 TABLE VI sso ° c Beteck- Brotthållfast- 80 ksi SR ning Kommentar het (ksi) (tim) BP Small gamma prime, no dislocations 136.7 -, BR Bimodal gamma prime, gamma cells 152.5 73 BT Bimodal gamma primer, no dislocations 135.3 - CT Bimodal gamma primer, non-uniform structure (long-banded cells, some lower grains) 154.6 - CU Bimodal gamma primer, elongated cells 147.0 - BU Bimodal gamma primer, equiaxial cells 156.4 74 Gamma primer solvus and one-hour recrystallization temperature for the alloy indicated in Table Iv were 91s ° c ¿1o ° c and 1ooo ° c ¿2o ° c respectively. Therefore, unlike the alloy given in Table I, there was no temperature range in which recrystallization could be performed while aging. Accordingly, the treatments BP and BT, which involved annealing at 1038 ° C and subsequent double aging, both produced a dislocation-free austenite matrix and a bimodal gamma-prime distribution. Structures produced by treatments CU and BU, which did not induce recrystallization, all contained a highly dislocated cell structure containing various distributions of gamma primer.
Tabell VI är en summering av de observerade strukturerna och motsvarande fysiska egenskaper. Märk att de mekaniska egenskapsvärde- na är grupperade i två klasser. Dessa är icke-dislokationstäthet, gammaprim innehållande strukturer, som ha 650°C, brotthâllfasthets- styrkor mellan 135 och 137 ksi och de dislokerade gammaprimstruk- turer, som är mycket starkare, med brotthållfastheter mellan 147 och 157 ksi. På grund av deras överlägsna styrka och på grund av fördelen av en ökad inkubationstid för svällning, föredrages disloke- rade strukturer. I 1 Behandling CU angiven i tabellerna V och VI ovan startade med en dislokerad cellstruktur med en trimodal gammaprím-fördelning, som sedan kallbearbetades 30%. Slutkallbearbetningen minskade näm- 10 15 20 25 30 35 452 992 ligen såsom indikeras av 650°C brotthållfasthetdatan angiven i tabell VI, synbarligen genom att förstöra integriteten hos dislokations- cellväggarna.Table VI is a summary of the observed structures and corresponding physical properties. Note that the mechanical property values are grouped into two classes. These are non-dislocation densities, gamma-prime-containing structures having 650 ° C, breaking strengths between 135 and 137 ksi and the dislocated gamma-prime structures, which are much stronger, with breaking strengths between 147 and 157 ksi. Due to their superior strength and due to the advantage of an increased incubation time for swelling, dislocated structures are preferred. In 1 Treatment CU given in Tables V and VI above started with a dislocated cell structure with a trimodal gamma-prime distribution, which was then cold processed 30%. Namely, the final cold processing decreased as indicated by the 650 ° C breaking strength data given in Table VI, apparently by destroying the integrity of the dislocation cell walls.
Behandlingarna BR och BU i legeringen angiven i tabell IV producerade båda en synnerligen dislokerad, delvis omkristalliserad eller återvunnen cellstruktur med bimodal gammaprimstorleksfördel- ning. BU-behandlingen föredrogs emedan den gav något lägre påkän- ningsbrottegenskaper än BR-behandlingen. Dislokations- och gamma- primstrukturerna för BU-behandlingen producerade en cellstruktur, som var mycket mer dispergerad och vävd än den som producerades av EE-behandlingen av legeringen angiven i tabell I. Minimicell- tjockleken av BU-behandlingen var ungefär densamma som gammaprim- partikelmellanrummet.The treatments BR and BU in the alloy listed in Table IV both produced a highly dislocated, partially recrystallized or recycled cell structure with bimodal gamma prime size distribution. The BU treatment was preferred because it gave slightly lower stress-breaking properties than the BR treatment. The dislocation and gamma primer structures for the BU treatment produced a cell structure that was much more dispersed and woven than that produced by the EE treatment of the alloy listed in Table I. The minimum cell thickness of the BU treatment was approximately the same as the gamma prime particle spacing .
För att vidare demonstrera förbättringen, som erhölls genom den termomekaniska behandlingen enligt uppfinningen, hänvisas till de följande tabellerna VII och VIII, som visar att denna behand- ling är mycket verksam i att gynna hög efterbestrålningstänjbarhet.To further demonstrate the improvement obtained by the thermomechanical treatment according to the invention, reference is made to the following Tables VII and VIII, which show that this treatment is very effective in promoting high post-irradiation extensibility.
Härvidlag skulle det påpekas, att det finns en minskning, vari tänjbarheten hos dessa material minskas avsevärt vid provning vid en temper-tur, som är 110°C över den temperatur, vid vilken mate- rialet har bestrålats. Sålunda skulle den sämsta tänjbarheten finnas där materialet har bestrålats vid 595°C. 110°C skulle svara för alla transienta konditioner för drift av Sålunda gäller att valet av materialet och värmebehandlingen eller den termomekaniska värmebehandlingen vid en temperatur av 80500, t.ex. en snabb bridreaktor. av materialet som vid bestrålning vid 695°C skulle provas vid 805°C, där den lägsta efterbestrålningstänjbarheten har skett. Hänvisning till de följande tabellerna VII och VIII gör det helt klart att det lösningsbehandlade tillståndet för legering D66 vid bestrâlning vid 69590 och provad vid 80S°C uppvisar noll tänjbarhet. I motsats därtill visar material som har utsatts för behandling angiven i de bifogade kraven av samma legering bestrålad vid 695°C och provad vid 805°C att en 1,1% likformig förlängning är tillgänglig. Det är kritiskt viktigt att bibehålla mer än 0,3% tänjbarhet under dessa förhållanden, emedan det är nödvändigt att behålla bränsle- stavintegritet under reaktortransientförhållanden och tabellerna visar att dessa mål uppnåtts. Tabellerna VII oéh VIII beslyer även att den högre tänjbarheten av denna behandling även åtföljes av 452 992 högre styrka som är synnerligen oväntad vad beträffar dessa be- strâlade material. Dessa högre styrkor bevisar även att sväll- ningsmotståndet är utmärkt, såsom visas av legeringarna, som är utsatta för denna behandling. umwu mo__o mqo Nwßvv; ßïmßm oPXv orw 452 992 _.- 5000020 0.0 0.0 0.02 0.53 0.000 0.002 0:00 t000 . ïâš 000 000 00.00 0000038000 0 0 0.00 0.03 _ 0.0.0 0.00.. _7020. 000 000 00.00 0.00 0.000 ..-Så 000 000 :lä _. .020 00.0 0.000. 0.20 , : _ 0.02 0.30 0-022. 0G 000 . 00.00 00.0 00.0 0.00 0.000 0.00 0.000 0.00 0.000 ..-Så 000 00.. 00.00 00.0 00.0 0.000 0.000 0.02 0:00 0-020. 000 000 00.00 0; 0; 0.000 0.2.0 0.000 0.000 0.02 0.00.. 0-03. 000 000 07mm 0.0 0.0 0.000 0.002 0.000 0.000 0.03 0.000 0-022. 000 000 00.00 0:. 0.0 0.000 0.00: 0.3; 0.000 0.00- 0.000 ..-Så 000 000 00.00 0.0 0.0 0.000 0:00, 0.00, 0.000 0.02 0.000 0-020 000 00.. 00|0m 0.0 0.0 0.02 ...00000500000 0.000 0.0: 0.000 Tšš .N00 000 00.00 26.0 0.0 A E Nneufawwšä u .Ãwfim Swaäuz 00,000 . 0 0 .nä 0% 09. 0% 000 . E: .Täfl Se. 60. . .cwnflumu . .H08 uwfiäw. .åfim šëfimfim .äE .93 .man så H30 _ H38 ...noëä .Aäfiåä .. E ._0000 .âwuam Så 50308 èëš Eflamfiwnnmflèä mfiäwwflmšš 0000330302. 0.00 ufimüâmwßwfiâwfiäâš 452 992 u '_ mfipofl w_æmw M ~ N. M W m.~m w.ßmw W m.°w N P.mmm m|oPx« W OF» W oow fßßfam M ß.m ßww m.mmP ~.>m°~ M o_o«- m.mmm W ~_-~ W >.~vw ~|oPx« W op» M cow «>|am M _.@ -.Q w_>o~ w_~w«. W m_w>P m.Po~P W ~.owf _ o.«°PP «|oPx« ~m~ M Qom Pßfsm «~m «.m W o_-N w.P@«~ _ m.ø@F ~.ß«~P _P.mwP ß\mwPf v|o-xw ~m~ _ cow .ßofam w.m «.m _ >_o- «.~m«F m.owP w.~«~« W ~_~w~ o.mmPP «|o_x« www omm mmnem .ccwgwm wwmflwofiwwxwæmmwmmmmwwomw m.f~P . ~.mwP~ m_m«~ w~mooF «|o~x« u °.w W oem , _m|am u _ _ H Jcfimuvm .E02 u mmèä »mßwflßuwmm _ ~.~ *___ _ ~.m> M o.«om o.m@ N -mm« . ~.m« W «_mmm «|oPx« wow www wæ««am °.~ >~_ W w.mF~" ß.«m~ F-oF M o.«o> m.>> U m.@mm «|oFx« of» oow Ww-fam w.~ m.~ W w~=m, m.wm°P >.mm_ W m.mmm F.m~« w.m>> «|°Px« omm 0mm.moo|am ß., «.P _ °.ßß~W m.°-P w.~w~ M @_-~F >.m~P m~www M vlofxw orm com Wmmxem ~.FW m.._ M -.wm_M o-@~« m.m>P. m_@mPP m.omf . @_@mw _ «1Qfx« owm om«_M_~|am m.m m.~ .w.moF m. «.mm «_w,w ~_w> Û >_wmm W w|ofx« mwß mmß Wmqnam m~w .w- m.,mF «.m°m m_«FF «.mw> @_>m W >_~>@ W «|ofx« mmm mmm M@~|am www «.m ~.°w_ w.~P- ~._wF m.P- m_~mP M m_wFm W «|oPx« Qom acw W_«|am P.« -« w.wm- «.mwmP >_m@_ m_mwF~ «.«m~ W m~w~m M vuø-xw omm omm __m|am xmflm Fflm o.o°~ «.m>mP m_o>P «~m>ff >_~m« _ m_~moF“ «|o«x« Qom som W>«|am www w.~ >.mo~ «.@_«P «_PwP m_Qm- m.«w~ w_«m_~@ «|Q~x« omv om« Nwaam >.m >.m ø.Fø~ w.mmmf w.~@f _.«f~F ~.QmF w_mmofm <|°Fx« Nmw mmß omnam æ~« w.« o.m°~ Q.f««f ~.N>. m.ßwff w.øwP >.wøfFM v|o_xv ~m~ mmm .mwnam m.« m.« ».mv~ m.P~>f w.mF~ °.«>«- m_>w~ m_mm~_W «|o-xv ~m~ ømw omuam _ .>wz «.° A m. ~|su|c-@Px« .cflwuum .aoz mm wwn _ _ _ ß. mmnwwn m:fiHwmuflmmnflfix0m>ud vmawnvmmncouvflmfl mon nwumzuwflwfiawnmønn HHH> QANMQBIn this connection, it would be pointed out that there is a reduction in which the extensibility of these materials is considerably reduced when tested at a temperature which is 110 ° C above the temperature at which the material has been irradiated. Thus, the worst extensibility would be where the material has been irradiated at 595 ° C. 110 ° C would account for all transient conditions for operation of Thus, the choice of the material and the heat treatment or the thermomechanical heat treatment at a temperature of 80500, e.g. a fast bridging reactor. of the material which when irradiated at 695 ° C would be tested at 805 ° C, where the lowest post-irradiation extensibility has occurred. Reference to the following Tables VII and VIII makes it quite clear that the solution-treated state of alloy D66 upon irradiation at 69590 and tested at 80S ° C exhibits zero extensibility. In contrast, materials that have been subjected to treatment specified in the appended claims of the same alloy irradiated at 695 ° C and tested at 805 ° C show that a 1.1% uniform elongation is available. It is critically important to maintain more than 0.3% extensibility under these conditions, as it is necessary to maintain fuel rod integrity under reactor transient conditions and the tables show that these targets have been achieved. Tables VII and VIII also show that the higher extensibility of this treatment is also accompanied by 452,992 higher strength, which is extremely unexpected with respect to these irradiated materials. These higher strengths also prove that the swelling resistance is excellent, as shown by the alloys subjected to this treatment. umwu mo__o mqo Nwßvv; ßïmßm oPXv orw 452 992 _.- 5000020 0.0 0.0 0.02 0.53 0.000 0.002 0:00 t000. ïâš 000 000 00.00 0000038000 0 0 0.00 0.03 _ 0.0.0 0.00 .. _7020. 000 000 00.00 0.00 0.000 ..- So 000 000: lä _. .020 00.0 0.000. 0.20,: _ 0.02 0.30 0-022. 0G 000. 00.00 00.0 00.0 0.00 0.000 0.00 0.000 0.00 0.000 ..- So 000 00 .. 00.00 00.0 00.0 0.000 0.000 0.02 0:00 0-020. 000 000 00.00 0; 0; 0.000 0.2.0 0.000 0.000 0.02 0.00 .. 0-03. 000 000 07mm 0.0 0.0 0.000 0.002 0.000 0.000 0.03 0.000 0-022. 000 000 00.00 0 :. 0.0 0.000 0.00: 0.3; 0.000 0.00- 0.000 ..- So 000 000 00.00 0.0 0.0 0.000 0:00, 0.00, 0.000 0.02 0.000 0-020 000 00 .. 00 | 0m 0.0 0.0 0.02 ... 00000500000 0.000 0.0: 0.000 Tšš .N00 000 00.00 26.0 0.0 AE Nneufawwšä u .Ãw fi m Swaäuz 00,000. 0 0 .nä 0% 09. 0% 000. E: .Tä fl Se. 60.. .cwn fl umu. .H08 uw fi äw. .å fi m šë fi m fi m .äE .93 .man så H30 _ H38 ... noëä .Aä fi åä .. E ._0000 .âwuam Så 50308 èëš E fl am fi wnnm fl èä m fi äww fl mšš 0000330302. 0.00 u fi müâm w mwâm mwâm mwâmw mwâmw mwâmw mwâmw mwâmw mwâmw. m w.ßmw W m. ° w N P.mmm m | oPx «W OF» W oow fßßfam M ß.m ßww m.mmP ~.> m ° ~ M o_o «- m.mmm W ~ _- ~ W >. ~ vw ~ | oPx «W op» M cow «> | am M _. @ -.Q w_> o ~ w_ ~ w«. W m_w> P m.Po ~ PW ~ .owf _ o. «° PP« | oPx «~ m ~ M Qom Pßfsm« ~ m «.m W o_-N wP @« ~ _ m.ø@F ~. ß «~ P _P.mwP ß \ mwPf v | o-xw ~ m ~ _ cow .ßofam wm« .m _> _o- «. ~ m« F m.owP w. ~ «~« W ~ _ ~ w ~ o.mmPP «| o_x« www omm mmnem .ccwgwm wwm fl wo fi wwxwæmmwmmmmwwomw mf ~ P. ~ .mwP ~ m_m «~ w ~ mooF« | o ~ x «u ° .w W oem, _m | am u _ _ H Jc fi muvm .E02 u mmèä» mßw fl ßuwmm _ ~. ~ * ___ _ ~ .m> M o . «Om om @ N -mm«. ~ .m «W« _mmm «| oPx« wow www wæ «« am °. ~> ~ _ W w.mF ~ "ß.« m ~ F-oF M o. «o> m. >> U m. @mm «| oFx« or »oow Ww-fam w. ~ m. ~ W w ~ = m, m.wm ° P> .mm_ W m.mmm Fm ~« wm >> «| ° Px« omm 0mm. moo | am ß., «.P _ ° .ßß ~ W m. ° -P w. ~ w ~ M @ _- ~ F> .m ~ P m ~ www M vlofxw orm com Wmmxem ~ .FW m .. _ M -.wm_M o- @ ~ «mm> P. M_ @ mPP m.omf. @ _ @ Mw _« 1Qfx «owm om« _M_ ~ | am mm m. ~ .W.moF m. «.Mm« _w, w ~ _w> Û> _wmm W w | ofx «mwß mmß Wmqnam m ~ w .w- m., mF« .m ° m m_ «FF« .mw> @_> m W> _ ~> @ W «| Ofx« mmm mmm M @ ~ | am www «.m ~. ° w_ w. ~ P- ~ ._wF mP- m_ ~ mP M m_wFm W« | oPx «Qom acw W_« | am P. «-« w.wm- «.mwmP> _m @ _ m_mwF ~«. «m ~ W m ~ w ~ m M vuø-xw omm omm __m | am xm fl m F fl m oo ° ~« .m> mP m_o> P «~ m> ff> _ ~ m «_ m_ ~ moF“ «| o« x «Qom som W>« | am www w. ~> .mo ~ «. @ _« P «_PwP m_Qm- m.« w ~ w_ «m_ ~ @ «| Q ~ x« conv om «Nwaam> .m> .m ø.Fø ~ w.mmmf w.~@f _.« F ~ F ~ .QmF w_mmofm <| ° Fx «Nmw mmß omnam æ ~ «W.« Om ° ~ Qf «« f ~ .N>. M.ßwff w.øwP> .wøfFM v | o_xv ~ m ~ mmm .mwnam m. «M.« ».Mv ~ mP ~> f w. mF ~ °. «>« - m_> w ~ m_mm ~ _W «| o-xv ~ m ~ ømw omuam _.> wz«. ° A m. ~ | su | c- @ Px «.c fl wuum .aoz mm wwn _ _ _ ß. mmnwwn m: fi Hwmu fl mmn flfi x0m> ud vmawnvmmncouv fl m fl mon nwumzuw fl w fi awnmønn HHH> QANMQB
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6122979A | 1979-07-27 | 1979-07-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
SE8003879L SE8003879L (en) | 1981-01-28 |
SE452992B true SE452992B (en) | 1988-01-04 |
Family
ID=22034466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE8003879A SE452992B (en) | 1979-07-27 | 1980-05-23 | PROCEDURE FOR HEAT TREATMENT OF AN IRON-NICKEL-CHROME ALLOY |
Country Status (10)
Country | Link |
---|---|
JP (1) | JPS5620123A (en) |
BE (1) | BE883413A (en) |
CA (1) | CA1133363A (en) |
DE (1) | DE3019931A1 (en) |
ES (1) | ES491749A0 (en) |
FR (1) | FR2462478A1 (en) |
GB (1) | GB2058834B (en) |
IT (1) | IT1136403B (en) |
NL (1) | NL8002490A (en) |
SE (1) | SE452992B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4359350A (en) * | 1981-03-27 | 1982-11-16 | The United States Of America As Represented By The Department Of Energy | High post-irradiation ductility thermomechanical treatment for precipitation strengthened austenitic alloys |
US5137684A (en) * | 1991-03-06 | 1992-08-11 | Rockwell International Corporation | Hydrogen embrittlement resistant structural alloy |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1250642B (en) * | 1958-11-13 | 1967-09-21 | ||
FR1439636A (en) * | 1964-07-08 | 1966-05-20 | Atomic Energy Authority Uk | Improvements in heat treatment of metals |
US3592632A (en) * | 1966-07-14 | 1971-07-13 | Int Nickel Co | High temperature nickel-chromium-iron alloys particularly suitable for steam power applications |
GB1132724A (en) * | 1966-10-03 | 1968-11-06 | Wiggin & Co Ltd Henry | Nickel-chromium-iron alloys |
DE2415881A1 (en) * | 1974-04-02 | 1975-10-23 | Kernforschung Gmbh Ges Fuer | PROCESS FOR PRODUCING METALLIC SHELLING MATERIALS FOR FAST REACTORS |
US4236943A (en) * | 1978-06-22 | 1980-12-02 | The United States Of America As Represented By The United States Department Of Energy | Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence |
-
1980
- 1980-04-28 GB GB8013969A patent/GB2058834B/en not_active Expired
- 1980-04-29 NL NL8002490A patent/NL8002490A/en not_active Application Discontinuation
- 1980-05-21 BE BE0/200704A patent/BE883413A/en not_active IP Right Cessation
- 1980-05-22 ES ES491749A patent/ES491749A0/en active Granted
- 1980-05-23 SE SE8003879A patent/SE452992B/en not_active IP Right Cessation
- 1980-05-24 DE DE19803019931 patent/DE3019931A1/en active Granted
- 1980-05-26 CA CA352,685A patent/CA1133363A/en not_active Expired
- 1980-05-27 IT IT41570/80A patent/IT1136403B/en active
- 1980-05-27 JP JP6970280A patent/JPS5620123A/en active Granted
- 1980-05-29 FR FR8011958A patent/FR2462478A1/en active Granted
Also Published As
Publication number | Publication date |
---|---|
ES8105787A1 (en) | 1981-05-16 |
BE883413A (en) | 1980-11-21 |
SE8003879L (en) | 1981-01-28 |
ES491749A0 (en) | 1981-05-16 |
JPH0130891B2 (en) | 1989-06-22 |
FR2462478B1 (en) | 1984-11-23 |
IT8041570A0 (en) | 1980-05-27 |
DE3019931A1 (en) | 1981-12-03 |
DE3019931C2 (en) | 1989-04-13 |
NL8002490A (en) | 1981-01-29 |
CA1133363A (en) | 1982-10-12 |
FR2462478A1 (en) | 1981-02-13 |
GB2058834B (en) | 1984-07-25 |
IT1136403B (en) | 1986-08-27 |
GB2058834A (en) | 1981-04-15 |
JPS5620123A (en) | 1981-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6132526A (en) | Titanium-based intermetallic alloys | |
JPS60159143A (en) | Single crystal metal using nickel-base mother material | |
US4618382A (en) | Superplastic aluminium alloy sheets | |
EP0161066B1 (en) | Nickel/titanium-base alloys | |
CN113174551B (en) | Dual-phase high-strength high-plasticity titanium alloy with heterogeneous laminated structure and preparation method thereof | |
US3677830A (en) | Processing of the precipitation hardening nickel-base superalloys | |
Delgrosso et al. | Development of niobium-zirconium-carbon alloys | |
Raganya et al. | Microstructure and mechanical properties of Ti-Mo-Nb alloys designed using the cluster-plus-glue-atom model for orthopedic applications | |
US5302217A (en) | Cyclic heat treatment for controlling grain size of superalloy castings | |
US4572738A (en) | Maraging superalloys and heat treatment processes | |
SE452992B (en) | PROCEDURE FOR HEAT TREATMENT OF AN IRON-NICKEL-CHROME ALLOY | |
JPH07116575B2 (en) | Heat treatment of alloy 718 for improving stress corrosion cracking resistance | |
US4359349A (en) | Method for heat treating iron-nickel-chromium alloy | |
US9828661B2 (en) | Nickel-based super heat resistant alloy and method of manufacturing the same | |
US4225363A (en) | Method for heat treating iron-nickel-chromium alloy | |
US5281285A (en) | Tri-titanium aluminide alloys having improved combination of strength and ductility and processing method therefor | |
US3420716A (en) | Method of fabricating and heat-treating precipitation-hardenable nickel-base alloy | |
US4435231A (en) | Cold worked ferritic alloys and components | |
Popov et al. | Effect of heat treatment and plastic deformation on the structure and elastic modulus of a biocompatible alloy based on zirconium and titanium | |
US20170029926A1 (en) | Age-Hardening Process Featuring Anomalous Aging Time | |
EP3006589B1 (en) | Production method for alloy 690 ordered alloy of improved thermal conductivity, and alloy 690 ordered alloy produced thereby | |
US4221610A (en) | Method for homogenizing alloys susceptible to the formation of carbide stringers and alloys prepared thereby | |
Liu et al. | The interaction evolution between thermally activated α precipitates and deformation-induced α’martensite in a metastable β-Zr alloy | |
EP0495844B1 (en) | Auxiliary heat treatment for aluminium-lithium alloys | |
KR950001112B1 (en) | Ferrite-shape memory alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |
Ref document number: 8003879-7 Effective date: 19910123 Format of ref document f/p: F |