SE410521B - METGIVARE WITH OPTICAL FIBER - Google Patents

METGIVARE WITH OPTICAL FIBER

Info

Publication number
SE410521B
SE410521B SE7801965A SE7801965A SE410521B SE 410521 B SE410521 B SE 410521B SE 7801965 A SE7801965 A SE 7801965A SE 7801965 A SE7801965 A SE 7801965A SE 410521 B SE410521 B SE 410521B
Authority
SE
Sweden
Prior art keywords
fiber
detector
transmitter
parts
point
Prior art date
Application number
SE7801965A
Other languages
Swedish (sv)
Other versions
SE7801965L (en
Inventor
L Dahlstrom
B Gardstam
A Linge
Original Assignee
Asea Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Ab filed Critical Asea Ab
Priority to SE7801965A priority Critical patent/SE410521B/en
Publication of SE7801965L publication Critical patent/SE7801965L/en
Publication of SE410521B publication Critical patent/SE410521B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Description

15 20 25 30 35 7801965 -0 kan givarens mätområde och noggrannhet anpassas för olika tillämpningsområden. 15 20 25 30 35 7801965 -0 the sensor's measuring range and accuracy can be adapted for different application areas.

Användningen av optiska fibrer medfiör även andra fördelar. Givaren blir okäns- ng för erekfineka oçh Navman fan. man får galvanisk ieoiation manen givare och mätenhet. Givaren kan användas i explosiv miljö utan några speciella säkerhetsarrangemang. Inga möjliçxeter för gnistbildning eller kortslutning fin- fnes. Mätgivarens fiber utgör ett slutet system. Smuts och andra föroreningar kan ej inverka på. mätresultatet.The use of optical fibers also has other advantages. The sensor becomes insensitive to erek fi neka oçh Navman fan. one gets galvanic ieoiation manen sensor and unit of measurement. The sensor can be used in an explosive environment without any special safety arrangements. There are no possibilities for sparking or short-circuiting. The fiber of the measuring sensor constitutes a closed system. Dirt and other contaminants can not affect. the measurement result.

Vad som i övrigt- kännetecknar uppfinningen framgår av patentkraven.What otherwise characterizes the invention is stated in the claims.

Uppfinningen kommer att förklaras med hjälp av bifogade ritningsfigxlrer.The invention will be explained with the aid of the accompanying drawing figures.

Fig 1 visar uppfinningens princip.Fig. 1 shows the principle of the invention.

Fig 2 visar krökningens amplitud och våglängd. i Fig' 3 visar sambandet mellan dämpning och amplitud för en viss fiber vid olika mekaniska våglängden' i *i -m- * I Fig 4; visar ett enkelt utförande av en deformationszon. K I Fig 5, 6 och 7 visar en givare med ett utökat antal deformationszoner.Fig. 2 shows the amplitude and wavelength of the curvature. in Fig. 3 shows the relationship between attenuation and amplitude for a certain fiber at different mechanical wavelengths' in * i -m- * In Fig. 4; shows a simple design of a deformation zone. K Figs. 5, 6 and 7 show a sensor with an increased number of deformation zones.

Fig 8' visar en riktningsoberoende deformaticnsgivare.Fig. 8 'shows a direction-independent deformation sensor.

Fig 9. visar. en givare med ett svängbart ok.Fig. 9. shows. a sensor with a swivel yoke.

Fig 10 visarenJ givare med temperaturkompensering.Fig. 10 shows the sensor with temperature compensation.

Fig 11 och 12 visar temperaturgivare.Figures 11 and 12 show temperature sensors.

Fig 13 visar ett alternativt arrangemang av sändare och mottagare.Fig. 13 shows an alternative arrangement of transmitter and receiver.

Fig 1» visar principen för en kraftgivare enligt uppfinningen. Em strålninge- källa 1, exempelvis en lasersändare utsänder ljus genomen optisk fiber 2 av multimodetyp eller singlemodetyp och företrädesvis bestående av en kärna omgiven av' en mantel. En detektor 5 är anordnad att mottaga och detektera den ljusstrål- ning, som passerat genom fiberns kärna. En anordning för att deformera fibern består generellt av två. delar 4 och 5 mellan vilka fibern passerar. De båda delarna är utformade med var sin vågformad yta 6, 7, som är vända mot varandra och företrädesvis så, att den ena delens våg-toppar ligger mitt för den andra delens vågdelar. När de båda delarna 4 och 5 tryckas mot varandra med en kraft F kommer fibern att krökas. Krökningen har en våglängd/L, som är lika med av- ståndet mellan två våg-toppar och lcrölmingens amplitud x beror på. de båda de- larnas inbördes läge. våglängd och amplitud visas i fig 2. Fig 5 visar det i en viss fiber rådande sambandet mellan dämpningen eC och amplituden x vid olika mekaniska. våglängder. Kurvonza för våglängd anger från vänster till höger ökande våglängder . __r?- 10 15 20 25 50 35 7801965-0 Fig 4 visar en deformationsanordning, i vilken fibern 2 passerar endast en gång genom anordningen. Fig 5 visar att fibern passerar deformationsanordningen ett flertal gånger. Den kan därvid grara lindad nmt den ena. delen ett antal varv. Fig 6 visar att fibem är lindad fram och tillbaka i slingor. Vid ut- föringsformen enligt fig 7 är delen 4 utförd som en ram, som omsluter den andra delen 5. Fibern 2 kan här med fördel lindas omkring delen 5 ett antal varv.Fig. 1 »shows the principle of a power sensor according to the invention. If a radiation source 1, for example a laser transmitter, emits light through optical fiber 2 of multimode type or single mode type and preferably consisting of a core surrounded by a sheath. A detector 5 is arranged to receive and detect the light radiation which has passed through the core of the fiber. A device for deforming the fiber generally consists of two. parts 4 and 5 between which the fiber passes. The two parts are formed with their respective corrugated surface 6, 7, which face each other and preferably so that the wave peaks of one part lie opposite the wave parts of the other part. When the two parts 4 and 5 are pressed against each other with a force F, the fiber will bend. The curvature has a wavelength / L, which is equal to the distance between two wave peaks and the amplitude x of the curvature depends on. the mutual position of the two parts. wavelength and amplitude are shown in Fig. 2. Fig. 5 shows the relationship prevailing in a certain fiber between the attenuation eC and the amplitude x at different mechanical ones. wavelengths. Curvonza for wavelength indicates from left to right increasing wavelengths. Fig. 4 shows a deformation device, in which the fiber 2 passes only once through the device. Fig. 5 shows that the fiber passes the deformation device several times. It can then be wound wound around one of them. part a number of turns. Fig. 6 shows that the fiber is wound back and forth in loops. In the embodiment according to Fig. 7, the part 4 is designed as a frame, which encloses the second part 5. The fiber 2 can here advantageously be wound around the part 5 a number of turns.

Därigenom erhålles en längre deformerad zon av fiber-n, vilket ger givaren större känslighet. Fig 8 visar utförandet av en givare, som är oberoende av den på.- verkande kraftens riktning. Den yttre delen 4 är utformad som en cylindrisk ring med våg-formad inneryta, medan delen 5 är utformad som en cylinder med våg- formad ytteryta. och placerad inuti delen 4. Fibern 2 är lindad ett antal varv runt innerdelen S. Om ytterdelen göres elastisk kan givaren användas för mät- ning av allsidigt tryck.Thereby a longer deformed zone of the fiber is obtained, which gives the sensor greater sensitivity. Fig. 8 shows the design of a sensor which is independent of the direction of the actuating force. The outer part 4 is designed as a cylindrical ring with a wavy inner surface, while the part 5 is designed as a cylinder with a wavy outer surface. and placed inside the part 4. The fiber 2 is wound a number of turns around the inner part S. If the outer part is made elastic, the sensor can be used for measuring versatile pressure.

Fig' 9 visar en givare med två. av varandra oberoende anordningar för deformering av fibrer. Sändaren 1 utsänder strålning genom två olika fibrer 2a och 2b och vardera fibern passerar sin egen deformationsanordning med delarna 49., Sa resp 4b, 5b. vardera fibern har sin egen detektor ša resp šb. Utsigzalerna från de- tektorerna går till ett summeringsdon 6, som bestämmer skfillnadert mellan sigxa- lerna. Ett U-format ok 7 har livet 8 lagrat i en axel 9 vid livets mitt och flänsanza 10a resp 10b anliggande mot var sin deformationsgivare. Om kraften F verkar nedåt på. flänsen 10a kommer en lika stor lcraft att verka uppåt på. flän- sen 10b. Den vänstra fibern 2a kommer således att bli utsatt .för en avsevärt större deformation än den högra fibern 2b, vilket medför att signalen från de- tektom ja. blir mindre signalen från šb.Fig. 9 shows a sensor with two. independent devices for deforming fibers. The transmitter 1 emits radiation through two different fibers 2a and 2b and each fiber passes its own deformation device with the parts 49., Sa respectively 4b, 5b. each fiber has its own detector ša resp šb. The output cells from the detectors go to a summing device 6, which determines the difference between the signals. A U-shaped yoke 7 has the web 8 mounted in a shaft 9 at the center of the web and flange edges 10a and 10b, respectively, abutting each of the deformation sensors. If the force F acts downwards on. the flange 10a will have an equal force acting upwards on. flange 10b. The left fiber 2a will thus be subjected to a considerably larger deformation than the right fiber 2b, which means that the signal from the detector yes. becomes smaller the signal from šb.

Fig 10 visar en givare med temperaturkompensering. Ett block 11, som är utsatt för den kraft, som skall mätas, innehåller en deformationsanordning 12a för fibern 2a och en andra deformationsanordning 12b för fibern 2b. Anordningen 12a är så orienterad, att den kan påverkas av kraften F, medan den andra deforma- tionsanordnmgen 12b är vriden 90° och är därmed i huvudsak opåverkad av kraf- ten F. När kraften F = 0 skall utsigzalerna från de båda detektoreama Ba och Bb vara lika. I suxmneringsdonet 6 bestämmes skillnaden mellan de båda signalerna..Fig. 10 shows a sensor with temperature compensation. A block 11, which is subjected to the force to be measured, contains a deformation device 12a for the fiber 2a and a second deformation device 12b for the fiber 2b. The device 12a is oriented so that it can be actuated by the force F, while the second deformation device 12b is rotated 90 ° and is thus substantially unaffected by the force F. When the force F = 0, the output cells from the two detector arms Ba and Bb be equal. In the transmitter 6, the difference between the two signals is determined.

Summeringsdonets utsigrzal blir därmed temperaturoberoende.The output of the summing device thus becomes temperature-independent.

I Fig 11 visar en temperaturkännande givare. De båda delarna 4 och 5 är vid sina ändar förbundna med varandra medelst förbindningselement 15 av ett material med hög temperaturutvidguaingskoefficient. Om elementen 13 har positiv temperatur- koefficient ges fibern en viss förspäzming, som minskar vid stigande temperatur när elementen 15 ökar i längd. Fig 12 visar en annan temperaturgivare, i vilkenFig. 11 shows a temperature sensing sensor. The two parts 4 and 5 are connected to each other at their ends by means of connecting elements 15 of a material with a high coefficient of temperature expansion. If the elements 13 have a positive temperature coefficient, the fiber is given a certain bias, which decreases with increasing temperature as the elements 15 increase in length. Fig. 12 shows another temperature sensor, in which

Claims (3)

,. -' '7801965-0 10 de båda delarna 4 och 5 har hög temperaturkoefficient och är omgivna av en ram 14 av ett material med låg temperaturkoefficient. vid demxa givare ökar deformationen vid stigande temperatizr. Fig -13 visar ett alternativt arrangemang av sändare och detektor, där sända- ren 1 och detektorn 5 är anordnade intill varandra. Den ljusutledande fibern * 21 från sändaren och den ljusinledande fibern 22 till detektorn är i en punkt 23 hopkopplade med varandra och med en tredje fiber' 24, som 'mellan punkten 25 och en i närheten av den lcraftkäzuzande deformationsanordningen 4, 5 belägen förgreningspunlct' 25 utgör ledare för såväl den utgående som den återgâende strålningen. Den utsända ljussignalen passerar via fibrerna 21 och 24 till för- greningsmuflcten 25. Signalen delas upp här och passerar genom deformationsanord- ningen 4, 5 i båda riktningarna. Signalerna summeras åter i punkten 25 och passerar via fibern 24 till förgreningen 25 och genom fibern 22 till detektorn 5. Den del av signalen som går in till sändaren 1 nonchaleras ._. PATENTICRAV ; .,. The two parts 4 and 5 have a high temperature coefficient and are surrounded by a frame 14 of a material with a low temperature coefficient. with demxa sensors the deformation increases with rising temperature. Fig. -13 shows an alternative arrangement of transmitter and detector, where the transmitter 1 and the detector 5 are arranged next to each other. The light-emitting fiber * 21 from the transmitter and the light-initiating fiber 22 to the detector are connected at a point 23 to each other and to a third fiber 24, which is located between the point 25 and a branch point 25 located in the vicinity of the force-emitting deformation device 4. constitutes the conductor of both the outgoing and the returning radiation. The emitted light signal passes via the fibers 21 and 24 to the branch port 25. The signal is divided here and passes through the deformation device 4, 5 in both directions. The signals are summed again at point 25 and pass via the fiber 24 to the branch 25 and through the fiber 22 to the detector 5. The part of the signal which enters the transmitter 1 is ignored. PATENTICRAV; . 1. Mätgivare, avsedd att användas för mätning av mekaniska krafter eller så.- dana fysikaliska storheter, som kan omvandlas till mekaniska krafter, vilken givare nmefamn: minst en optisk fiber (2), en strålningskäiia (1) för immat- ning av optisk strålning i fiberns ena ände, en detektor (5) i fiberns andra ände för bestämning av den dämpning, som den inmatade strålningen utsatts för vid passage genom fibern, minst en anordning för deformation av minst ett av- snitt av fibern och omfattande minst två i förhållande till varandra rörliga delar (4, 5) mellan vilka fibern befinner sig, k ä. n n e t e c k n a d därav, att åtminstone en av nänmda. delar (4, 5) är påverkad av den kraft, som skall mätas. i iMeasuring transducer, intended for use in measuring mechanical forces or such physical quantities, which can be converted into mechanical forces, which transducer includes: at least one optical fiber (2), a radiation cone (1) for inputting optical power radiation at one end of the fiber, a detector (5) at the other end of the fiber for determining the attenuation to which the input radiation has been subjected during passage through the fiber, at least one device for deforming at least one section of the fiber and comprising at least two in relative to mutually movable parts (4, 5) between which the fiber is located, characterized in that at least one of said. parts (4, 5) are affected by the force to be measured. i i 2. Mätgivare enligt patentkravet 1, k ä n n e t e c k n a d därav, att de nämnda. delarna är på. sina mot varandra vända sidor utformade med en vågfomad yta. (6, 7) och så anordnade relativt varandra, att den ena ytans vågtoppar älr belägna min; för den andra was vågflalar. aMeasuring transducer according to claim 1, characterized in that the said. the parts are on. their facing sides formed with a corrugated surface. (6, 7) and so arranged relative to each other that the wave crests of one surface are located min; for the other was wave fl alar. a 3. lfitgivare enligt patentkrav 1 och 2, fibern (2) passerar mellan nämnda vågformade ytor ett flertal gånger under det kännetecknad därav,att att den befinner sig i den deformerande anordningen. ANFÖRDA PUBLIKATI ONER:Transducer according to claims 1 and 2, the fiber (2) passes between said corrugated surfaces several times below, characterized in that it is in the deforming device. MENTIONED PUBLICATIONS:
SE7801965A 1978-02-21 1978-02-21 METGIVARE WITH OPTICAL FIBER SE410521B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE7801965A SE410521B (en) 1978-02-21 1978-02-21 METGIVARE WITH OPTICAL FIBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7801965A SE410521B (en) 1978-02-21 1978-02-21 METGIVARE WITH OPTICAL FIBER

Publications (2)

Publication Number Publication Date
SE7801965L SE7801965L (en) 1979-08-22
SE410521B true SE410521B (en) 1979-10-15

Family

ID=20334053

Family Applications (1)

Application Number Title Priority Date Filing Date
SE7801965A SE410521B (en) 1978-02-21 1978-02-21 METGIVARE WITH OPTICAL FIBER

Country Status (1)

Country Link
SE (1) SE410521B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096262A1 (en) * 1982-05-27 1983-12-21 Takaoka Electric Co., Ltd. Fibre-optic sensor for measuring dynamic quantities
DE3628715A1 (en) * 1985-11-14 1987-05-21 Battelle Development Corp FIBER OPTICAL PRESSURE DETECTOR
WO1990012283A1 (en) * 1989-04-10 1990-10-18 Quality Measurement Device Ab A device for measuring the length of a contact surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096262A1 (en) * 1982-05-27 1983-12-21 Takaoka Electric Co., Ltd. Fibre-optic sensor for measuring dynamic quantities
DE3628715A1 (en) * 1985-11-14 1987-05-21 Battelle Development Corp FIBER OPTICAL PRESSURE DETECTOR
WO1990012283A1 (en) * 1989-04-10 1990-10-18 Quality Measurement Device Ab A device for measuring the length of a contact surface

Also Published As

Publication number Publication date
SE7801965L (en) 1979-08-22

Similar Documents

Publication Publication Date Title
US4408495A (en) Fiber optic system for measuring mechanical motion or vibration of a body
CA2335469C (en) Non-intrusive fiber optic pressure sensor for measuring unsteady pressures within a pipe
US6450037B1 (en) Non-intrusive fiber optic pressure sensor for measuring unsteady pressures within a pipe
US5321257A (en) Fiber optic bending and positioning sensor including a light emission surface formed on a portion of a light guide
EP1181501B1 (en) Methods and apparatus for mechanically enhancing the sensitivity of longitudinally loaded fiber optic sensors
CA1116884A (en) Optical sensing apparatus and method
CN202305097U (en) Fiber bragg grating pressure sensor with temperature compensation function
US4203326A (en) Method and means for improved optical temperature sensor
CN108931262A (en) It is a kind of for monitoring the optical fiber sensing system of structural safety
US10551255B2 (en) Optical sensor device, sensor apparatus and cable
CN110186547A (en) Pipe safety condition detection apparatus and method
US5812251A (en) Electro-optic strain gages and transducer
Miers et al. Design and characterization of fiber-optic accelerometers
JP2002524728A (en) Optical fiber temperature sensor
JPS62217205A (en) Fiber optic sensor
JPH0311644B2 (en)
US6611633B1 (en) Coated fiber pressure sensors utilizing pressure release coating material
SE410521B (en) METGIVARE WITH OPTICAL FIBER
WO2014012173A1 (en) System and method for measuring torque
RU2643686C2 (en) Fibre-optic tensometric sensor
US20230102450A1 (en) Optical fiber-based sensor module and strain sensor device comprising the same
GB2169398A (en) Optical sensors
WO1993004350A1 (en) Optical fiber strain transducer having a radius of curvature equal to or less than a critical radius of curvature
RU2527135C1 (en) Pressure difference transducer
US6718078B2 (en) High sensitivity fiber optic rotation sensor