SE203512C1 - - Google Patents

Info

Publication number
SE203512C1
SE203512C1 SE203512DA SE203512C1 SE 203512 C1 SE203512 C1 SE 203512C1 SE 203512D A SE203512D A SE 203512DA SE 203512 C1 SE203512 C1 SE 203512C1
Authority
SE
Sweden
Prior art keywords
ions
powder
magnetization
magnetic field
maximum
Prior art date
Application number
Other languages
Swedish (sv)
Publication date
Publication of SE203512C1 publication Critical patent/SE203512C1/sv

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

Uppfinnare: A L Stufits och H P J Wijn Priordet begard frdn den 2 juni 1956 (Nederldnderna) Fran den amerikanska patentskriften 2354331 är UM: att forfarande for framstallning av magnetkarnor, som aro uppbyggda av plattformade och genom ett isolermaterial frau varandra skilda metallpartiklar. Partiklarna arc anordnade i skikt och dfirefter sintrade till varandra, varigenom en hogre permeabilitet erhalles vid samma material an som kan erhallas utan namnda anordning av partiklarna. For att eventuellt ytterligare forbattra verkningssattet kunna partiklarna pa mekansik vag forsattas i svangning eller utsattas for inverkan av ett magnetf alt. Att inverkan av ett magnetf alt harvid kan bidraga till verkningsgradsforbattring uppnas endast darigenom, att ifragavarande partiklar gOras plattformade. Inventors: A L Stufits and H P J Wijn Priordet requested from June 2, 1956 (Nederldnderna) U.S. Pat. No. 2,353,331 to UM: that the process for producing magnetic cores, which are constructed of flattened metal particles by an insulating material. The particles arc arranged in layers and then sintered to each other, whereby a higher permeability is obtained with the same material that can be obtained without said arrangement of the particles. In order to possibly further improve the mode of action, the particles can mechanically continue to oscillate or be exposed to the action of a magnetic field. The fact that the effect of a magnetic field can thereby contribute to an improvement in efficiency is achieved only by the fact that the particles in question are made platformed.

Vidare fir ett forfarande kant, med vars hjalp kristallpartiklar av en ferromagnetisk oxid kunna orienteras parallellt med varandra medelst ett magnetfalt (Philips' Technische Rundschau, 16, sidorna 223-224, 1954). I detta fall är orienteringen i stort sett beroende pa narvaron av en preferens-riktning for magnetiseringen i kristallpartiklarna. Om magnetiseringen är starkt bunden till denna preferensriktning, kan materialet komma till anvandning far framstallning av permanentmagneter. Den genom orienteringen uppnadda tekniska effekten är den, att pa grund av anvandningen av detta forbattrade forfarande permanentmagneter med hogre varde pa (BH),flax uppsta. Furthermore, there is a further edge, by means of which crystal particles of a ferromagnetic oxide can be oriented parallel to each other by means of a magnetic field (Philips' Technische Rundschau, 16, pages 223-224, 1954). In this case, the orientation is largely dependent on the presence of a direction of preference for the magnetization in the crystal particles. If the magnetization is strongly bound to this direction of preference, the material can be used for the production of permanent magnets. The technical effect obtained by the orientation is that due to the use of this improved method permanent magnets with a higher value of (BH), flax arise.

Uppfinningen avser kroppar med anisotropa, mjukmagnetiska egenskaper av ferromagnetiska wdder, och ferfarande vid framstallning av dessa. 1VIed hansyn till de isotropa men i Ovrigt lika kropparna hojes begynnelsepermeabiliteten /co (se R. Becker och W. Diking, »Ferromagnetismus», 1939, sid 7) vid rumstemperatur i bestamda riktningar. Forfarandet enligt uppfinningen kommer till anvandning vid partiklar av ferromagnetiska foreningar med en icke-kubisk kristallstruktur, vars enkristaller uppvisa ett preferensplan for magnetiseringen. Begreppet »prefensplan» skall forklaras i det foljande. The invention relates to bodies with anisotropic, soft-magnetic properties of ferromagnetic wires, and to a process for their preparation. In view of the isotropic but otherwise similar bodies, the initial permeability / co (see R. Becker and W. Diking, "Ferromagnetism", 1939, p. 7) is increased at room temperature in certain directions. The process according to the invention is used for particles of ferromagnetic compounds with a non-cubic crystal structure, the single crystals of which have a preferential plan for the magnetization. The term "prefenplan" shall be explained in the following.

Vid ferromagnetiska material med hexagonal kristallsLrukttur hr med ea forsta approximation kristallanisotropin given genom uttrycket Fic =sin1?9(1) (se R. Becker och W. Doring, »Ferromagnetismus», 1939, sid. 114). Om for en kristall K,' är positiv (s. k. »positiv» kristallanisotropi) utgor i denna kristall den hexagonala axeln preferensriktning for magnetiseringen. Om daremot K,' ãr negativ (»negativ» kristallanisotropi) sa innehar detta, att den spontana magnetiseringen dr riktad vinkelratt mot den hexagonala axeln och salunda parallellt med basytan hos kristallen. Vidare finnes mojlighet, att den magnetiska energin hos kristallen är beroende av riktningen hos den spontana magnetiseringen i denna basyta. Om dessa energiandringar dro smã med hansyn till vad som uttryckts i formeln (1) betecknas basytan som »preferensplan» for magnetiseringen. Riktningen av den spontana magnetiseringen Egger i detta fall i varje kristall i basytan och i denna yta dr magnetiseringen mycket lattare vridbar an i en icke i denna yta liggande riktning. 22O352 For att faststalla om det i ett bestamt fall ror sig om kristaller med ett preferensplan hos magnetiseringen kan t. ex. foljande forsok goras: En ringa mangd, t. ex. 25 mg av det kristallmaterial som skall undersokas blandas i form av ett finmalet pulver med 'Agra droppar av en laming av ett organsikt bindemedel eller klister i aceton och blandningen pastrykes en glasplatta. In the case of ferromagnetic materials with hexagonal crystal, the crystallanisotropy given by the expression Fic = sin1? 9 (1) (see R. Becker and W. Doring, «Ferromagnetismus», 1939, p. 114). If for a crystal K 1 'is positive (so-called "positive" crystalline anisotropy) in this crystal the hexagonal axis is the direction of preference for the magnetization. If, on the other hand, K, 'is negative ("negative" crystallanisotropy), this means that the spontaneous magnetization is directed perpendicular to the hexagonal axis and thus parallel to the base surface of the crystal. Furthermore, it is possible that the magnetic energy of the crystal depends on the direction of the spontaneous magnetization in this base surface. If these energy changes were small with respect to what is expressed in formula (1), the base surface is referred to as the "preference plane" for the magnetization. The direction of the spontaneous magnetization Egger in this case in each crystal in the base surface and in this surface the magnetization is much more easily rotatable than in a direction not in this surface. 22O352 In order to determine whether in a particular case these are crystals with a preference plane of the magnetization, e.g. the following attempt is made: A small amount, e.g. 25 mg of the crystal material to be examined is mixed in the form of a finely ground powder with 'Agra drops of a laminating of an organic binder or adhesive in acetone and the mixture is pasteurized on a glass plate.

Vane partikel hos pulvret skall i mojligaste man endast uppvisa en enda kristallorientering. Plat-tan anordnas mellan polerna till en elektromagnet pa sadant satt, att de magnetiska kraftlinjerna ga vinkelratt mot ytan hos plattan. Genom okning av den elektriska likstrommen genom elektromagneten hojes den magnetiska faltstyrkan Fangsamt, sa att pulverpartiklarna, om de uppvisa ett preferensplan for magnetiseringen, vrida sig pa sadant sat I faltet, att detta preferensplan hos magnetiseringen forlOper ungerfar parallellt med riktningen hos de magnetiska kraftlinjerna. Vid tillracklig forsiktighet kan sammanklumpning av pulverpartiklarna undvikas. Efter for-aligning av acetonet hafta pulverpartiklarna i magnetisk orienterat tillstand vid glasytan. Med hjalp av rontgenundersOkning kan cla faststallas, om den avsedda orienteringen av pulverpartiklarna under inverkan av magnetfaltet i verkligheten ernis. Detta kan bland annat ske medelst en rontgendiffraktometer (tem medelst en apparat som beskrivits i )Philips' Technische Rundschau», 16, sid. 228-280, 1954-55). Det visar sig harvid, att forhallandet mellan intensiteterna hos reflektionerna pa de ytor som tillhOra en enda zon och intensiteterna av reflektionerna pa de ytor som icke tillhora denna zon, vid ett orienterat preparat Or stone On motsvarande forhallande vid ett icke-orienterat preparat. The usual particle of the powder should, as far as possible, show only a single crystal orientation. The plate is arranged between the poles of an electromagnet in such a way that the magnetic lines of force go perpendicular to the surface of the plate. By increasing the electric direct current through the electromagnet, the magnetic field strength is increased captivatingly, so that the powder particles, if they have a preference plane for the magnetization, rotate in such a field that this preference plane of the magnetization runs approximately parallel to the direction of the magnetic lines. With sufficient care, agglomeration of the powder particles can be avoided. After alignment of the acetone, the powder particles adhere to the glass surface in a magnetically oriented state. With the help of X-ray examination, cla can be determined, if the intended orientation of the powder particles under the influence of the magnetic field in reality ernis. This can be done, among other things, by means of an X-ray diffractometer (for example by means of an apparatus described in) Philips' Technische Rundschau », 16, p. 228-280, 1954-55). It turns out that the ratio between the intensities of the reflections on the surfaces belonging to a single zone and the intensities of the reflections on the surfaces which do not belong to this zone, in the case of an oriented preparation Or stone On, corresponds to the ratio in the case of a non-oriented preparation.

Sa.som redan anmarkts avser uppfinningen kroppar av ferromagnetiska material, vars enkristaller uppvisa en icke-kubisk struktur och ett preferensplan for magnetiseringen. Partiklama av ett paver av ett sadant ferromagnetiskt material, vilka i viss grad Oro fritt rorliga, orienteras i ett magnetf alt och fixeras till en sammanhangande enhet. Den avsedda effekten upptrader tydligare ju storre fraktionen av detta pulver Or sem bestar av partiklar med endast en enda kristallorientering. Genom den beskrivna atgarden kommer i jamfOrelse med kroppar, vid vilka under framstallningen inget magnetfalt anvandes, begynnelsepermeabiliteten att hojas i magnetfaltets riktning, ofta t. o. m. i avsevard grad. Detta magnetfalt behover icke vara stationart titan det kan under den beskrivna behandlingen andra riktning och/eller intensitet. Foretradesvis fixeras partiklarna darigenom att de sammanpressas foretradesvis vid narvaro av magnetfaltet. Speciellt goda resultat uppths medelst ett magnetfalt, som kan representeras av en sig i en plan yta vridande vektor. I detta fall erhalles i varje riktning i detta plan en stOrre begynnelsepermeabilitet. As already mentioned, the invention relates to bodies of ferromagnetic materials, the single crystals of which have a non-cubic structure and a preference plane for the magnetization. The particles of a paver of such a ferromagnetic material, which to some extent are freely movable, are oriented in a magnetic field and fixed to a continuous unit. The intended effect appears more clearly the larger the fraction of this powder Or which consists of particles with only a single crystal orientation. Through the described procedure, in comparison with bodies in which no magnetic field was used during the production, the initial permeability will be increased in the direction of the magnetic field, often even to a considerable extent. This magnetic field does not have to be stationary titanium, it can during the described treatment other direction and / or intensity. Preferably, the particles are fixed in that they are preferably compressed in the presence of the magnetic field. Particularly good results are obtained by means of a magnetic field, which can be represented by a vector rotating in a flat surface. In this case, a greater initial permeability is obtained in each direction in this plane.

Fixering av partiklarna behover icke nodvandigtvis foljas av sintring. Det har visat sig att Oven utan sintring en hojning av begynnelsepermeabiliLeten kan uppnas. Fixation of the particles does not necessarily have to be followed by sintering. It has been found that without sintering, an increase in the initial permeability can be achieved.

Exempel ph (av foreningar eller blandkristaller av foreningar bestaende) material av vilka med hjalp av forfarandet enligt uppfinningen kroppar med hOjd begynnelsepermeabilitet och icke eller endast foga hojd forlustfaktor Or bland annat: a) Material med formeln: BaM,riFel G MO 27 (i vilken Ba-jonen helt eller delvis ersatts med Sr-jon, Pb-jonen och/eller tilt hogst 40 atom% med Ca-jon och i vilken Fe"-jonerna kunna ersattas maximalt till 1/5 med Al och/eller Crjoner), varvid MII betecknar minst en av jonerna Lit +Fon 2 eller en kombination av dessa joner, i den man dessa material ha ett preferensplan for magnetiseringen. Dessa material ha en kristallstruktur, vars elementarceller i det hexagonola kristallsystemet kunna beskrivas med en c-axel ph ca 32,8 A och en a-axel pa ea 5,9 A. b)Material med formeln: Ba3m,riFe241110„ (varvid Ba kan ersattas maximalt till en tredjedel av Sr, maximalt till en femtedel av Pb och maxi-malt till en tiondel av Ca), varvid MI' betecknar minst en av jonerna Fen, LiI FeIII Nil', Znit, MgII, eller en kombina- 2 tion av dessa joner, i den man dessa material uppvisa ett preferensplan for magnetiseringen. Dessa material ha en kristallstruktur, vars elementarceller i det hexagonala kristallsystemet kan beskrivas med en c-axel pa ca 52,3 A. och en en a-axel ph ca 5,9 A. c)Material med formeln: B aMIIFe, II IO„, varvid Ba kan ersattas maximalt till halften med Sr, maximalt till en fjardedel med Ca eller Pb eller ocksa av en kombination av dessa, varvid Fe" kan ersattas maximalt till en tiondel med Al och/eller Cr och varvidbetecknar minst en av jonerna Mnir, Fen, Con, Ng', CuII, Aro eller en kombination av dessa joner. Dessa material ha en romboidisk kristallstruktur, vars elementarceller i det hexagonala kristallsystemet kunna beskrivas genom en c-axel pa ca 43,A och en a-axel ph ca 5,0 A. d) Material med formeln: BaCoaIITiaiv Fe (122a)"019, varvid 1,0 < a < 1,6 och varvid Ba-jonen helt eller delvis kan ersattas av Sr-jonen, Pb-jonen och/eller till hogst 40 atom% av Ca-jonen i den man dessa material ha ett preferensplan f Or magnetiseringen. Dessa material ha en hexagonal kristallstruktur. Example ph (of compounds or mixed crystals of compounds consisting of) materials of which by means of the process according to the invention bodies with high initial permeability and not or only add high loss factor Or among others: a) Materials of the formula: BaM, riFel G MO 27 (in which The Ba ion is completely or partially replaced with Sr ion, the Pb ion and / or tilt at most 40 atom% with Ca ion and in which the Fe "ions can be replaced to a maximum of 1/5 with Al and / or Crions), wherein MII denotes at least one of the ions Lit + Fon 2 or a combination of these ions, in that these materials have a preference plan for the magnetization.These materials have a crystal structure, whose elementary cells in the hexagonal crystal system can be described with a c-axis ph about 32 , 8 A and an a-axis pa ea 5,9 A. b) Materials of the formula: Ba3m, riFe241110 „(whereby Ba can be replaced to a maximum of one third of Sr, maximum to one-fifth of Pb and maximum to one-tenth of Ca), where MI 'denotes at least one of ions rna Fen, LiI FeIII Nil ', Znit, MgII, or a combination of these ions, in which these materials exhibit a preferential plan for the magnetization. These materials have a crystal structure, the elemental cells of the hexagonal crystal system can be described with a c-axis of about 52.3 A. and an a-axis of about 5.9 A. c) Materials of the formula: B aMIIFe, II IO ", Wherein Ba" can be replaced up to a maximum of half with Sr, up to a quarter with Ca or Pb or also a combination of these, wherein Fe "can be replaced up to a tenth with Al and / or Cr and wherein at least one of the ions Mnir , Fen, Con, Ng ', CuII, Aro or a combination of these ions These materials have a rhomboid crystal structure, the elemental cells of the hexagonal crystal system can be described by a c-axis of about 43, A and an a-axis of about 5.0 A. d) Materials of the formula: BaCoaIITiaiv Fe (122a) "019, wherein 1.0 <a <1.6 and wherein the Ba ion can be completely or partially replaced by the Sr ion, the Pb ion and / or up to 40 atomic% of the Ca ion in the material these materials have a preference plan for the magnetization. These materials have a hexagonal crystal structure.

Exempel I. En blandning av koboltkarbonat, Fell, MnII, Cott, Nih, znn, mg", Ivintr, Con, Cull, 3 bariumkarbonat och ferri-codd i ett forhallande enligt formeln Ba2Co2Fe2401 maldes under 15 timmar med alkohol i en valskvarn, torkades darefter och brandes under 2 timmar i en syrgasstrom yid 1050° C. Harefter maldes ater reaktionsprodukten under 15 timmar i en valskvarn och pulvret upphettades ater i 2 timmar i en syrgasstrom Yid 1200° C. 130 g av detta material maldes slutligen med alkohol i en kvarn till pulver. Kristallerna hos det sa erhallna pulvret hade en struktur, vars elementarceller i det hexagonala kristallsystemet ban beskrivas genom en c-axel ca 52,3 A och en a-axel pa ca 5,9 A. Example I. A mixture of cobalt carbonate, Fell, MnII, Cott, Nih, znn, mg ", Ivintr, Con, Cull, 3 barium carbonate and ferric codd in a ratio of the formula Ba 2 Co 2 Fe 2 O 2 was ground for 15 hours with alcohol in a roller mill, dried then fired for 2 hours in an oxygen stream at 1050 ° C. Then the reaction product was ground again for 15 hours in a roller mill and the powder was heated again for 2 hours in an oxygen stream at 1200 ° C. 130 g of this material was finally ground with alcohol in a The crystals of the powder thus obtained had a structure whose elemental cells in the hexagonal crystal system are described by a c-axis of about 52.3 Å and an a-axis of about 5.9 Å.

En liten mangd av detta pulver blandades med en losning av nitrocellulosa i aceton. Den sa erhallna suspensionen utstroks ph tya objektglas och ett av dessa glas anordnades mellan polskorna till en elektromagnet. Riktningen hos magnetfaltet var vinkelratt mot planet hos objektglaset. Man tat suspensionen torka, varefter en rontgenundersakning gjordes pd var och en. Intensiteten hos stralningen (coKa) var yid undersokning ay det orienterade pulvret svagare an hos det icke-orienterade pulvret. Det visade sig att reflektionerna yid de ytor som hade den hexagonala axeln som zonaxel jamfort med de ytor, som icke horde till denna zon var starkare vid orienterat pulver an yid icke-orienterat pulver. Enkristallerna hos pulvret hade salunda ett preferensplan for magnetiseringen vinkelratt mot riktningen hos den (hexagonala) kristallografiska huvudaxeln. A small amount of this powder was mixed with a solution of nitrocellulose in acetone. The suspension thus obtained was spread on slides and one of these slides was arranged between the pole shoes of an electromagnet. The direction of the magnetic field was perpendicular to the plane of the slide. The suspension was allowed to dry, after which an X-ray examination was performed on each one. The intensity of the radiation (coKa) was weaker on examination of the oriented powder than that of the non-oriented powder. It was found that the reflections on the surfaces which had the hexagonal axis as the zone axis compared with the surfaces which did not belong to this zone were stronger with oriented powder than with non-oriented powder. The single crystals of the powder thus had a preference plane for the magnetization perpendicular to the direction of the (hexagonal) crystallographic major axis.

I fig. 1 har intensiteten I hos reflektionerna angiyits i en godtycklig enhet som funktion av avlankningsvinkeln 2 0 hos det icke-orienterade pulvrei, varyid aven ytindex (hkl) aro angivna. Fig. 2 avser det odenterade pulvret. In Fig. 1, the intensity I of the reflections has been indicated in an arbitrary unit as a function of the deflection angle of the non-oriented powder free, varying also the surface index (hkl) are indicated. Fig. 2 refers to the odentered powder.

Ur detta pulver framstalldes olika kroppar. la) En del av pulvret pressades utan anvandning av ett magnetfalt till en ring. Denna ring brandes under 2 timmar i en syrgasstrom vid 1300° C. Ph den sa erhallna ringen uppmattes vid rumstemperatur och Yid en frekvens ph 2 kHz en begynnelsepermeabilitet pc ay 10,4. lb) En del av pulvret pressades till en kub i ett magnetfalt med en faltstyrka pa ca 3000 orsted, som kan representeras av en i planet vinkelrat mot pressningsriktningen roterande vektor, som liar en hastighet ay ca 1 vary i sekunden. Med hansyn till den anyanda anordningen forlopte i detta exempel och i de foljande exemplen, cla ett roterande magnetfalt anvandes, planet i vilket magnetfaltet roterar vinkelratt mot kubens pressriktning. Kroppen brandes darefter under 2 timmar yid 1300° C i en syrgasstrom. Ur den sa erhallna sintringsprodukten utskars en ring, vars axel forlopte parallellt med pressriktningen hos kroppen. Pa denna ring uppmattes yid rumstemperatur vid en frekvens av 2 kHz en begynnelsepermeabilitet p., av 29,7. Pa liknande satt fram stalldes en annan kub endast med den skillnaden, att ju inget magnetfalt med konstant intensitet anvandes, utan ett roterande falt som periodiskt efter en yridningsvinkel av 90° uppvisade ett maximivarde pa ca 2000 orsted och som pendlade mellan detta maximiyarde och noll. Ay den sa erhallna sintringsprodukten utskars en ring, vars axel ayen gick parallellt med pressriktningen hos kroppen. Pa denna ring uppmattes vid rumstemperatur vid en frekvens ay 2 kHz en begynnelsepermeabilitet yo av 21,9. From this powder various bodies were produced. la) A part of the powder was pressed without the use of a magnetic field into a ring. This ring is fired for 2 hours in an oxygen stream at 1300 ° C. Ph the ring thus obtained was measured at room temperature and Yid a frequency ph 2 kHz an initial permeability pc ay 10.4. lb) A part of the powder was pressed into a cube in a magnetic field with a field strength of about 3000 orsted, which can be represented by a vector rotating in the plane perpendicular to the direction of pressing, which has a speed of about 1 vary per second. In view of the other device, in this example and in the following examples, a rotating magnetic field was used, the plane in which the magnetic field rotates perpendicular to the pressure direction of the cube. The body is then burned for 2 hours at 1300 ° C in an oxygen stream. From the thus obtained sintering product a ring is excised, the axis of which ran parallel to the pressure direction of the body. At this ring, at room frequency at a frequency of 2 kHz, an initial permeability p., Of 29.7 was measured. In a similar way, another cube was constructed only with the difference that no magnetic field with constant intensity was used, but a rotating field which periodically after a rotation angle of 90 ° showed a maximum value of about 2000 orsted and which oscillated between this maximum yard and zero. In the sintered product thus obtained, a ring is cut, the axis of which runs parallel to the pressure direction of the body. On this ring, at room temperature at a frequency of 2 kHz, an initial permeability yo of 21.9 was measured.

En del av pulvret pressades utan anyandning ay ett magnetfalt till en kaka. Efter 2 timmars sintring vid 1290° C i en syrgasstrom uppmattes vid rumstemperatur pa en ur den sintrade kakan utskuren stay ballistiskt begynnelsepermeabiliteten pc. Den eller korrektion for aymagnetisering erhallna vardet ph po var ca 15. A portion of the powder was pressed without any breathing ay magnetic field into a cake. After 2 hours of sintering at 1290 ° C in an oxygen stream, the initial ball permeability of the PC was measured at room temperature on a stick cut out of the sintered cake. The or correction for aymagnetization erhallna vardet ph po was about 15.

En del ay pulvret pressades till en kub i ett magnetfalt med en faltstyrka pa ca 3000 orsted, som Iran representeras av en i planet vinkelrat -mot pressriktningen med en hastighet av ett vary per sekund roterande vektor. Kuben sintrades clarph under 2 timmar i en syrgasstrom yid 1290° C. Ur den sintrade kuben utskars en stay, vars axel forlopte vinkelratt mot kubens pressriktning. Vid rumstemperatur uppmattes ph derma stay ballistiskt begynnelsepermeabiliteten yo, som efter korrektion fOr avmagnetiseringen uppgick till ca 30. Some of the powder was pressed into a cube in a magnetic field with a field strength of about 3000 orsted, which Iran is represented by a vector perpendicular to the direction of the press at a speed of a vary per second rotating vector. The cube was sintered clarph for 2 hours in an oxygen stream yid 1290 ° C. A stay was cut from the sintered cube, the axis of which ran perpendicular to the pressure direction of the cube. At room temperature, the ph derma stay was ballistically measured the initial permeability yo, which after correction for the demagnetization amounted to about 30.

En del ay pulvret pressades Lill en kaka under inverkan av ett magnetfalt med en faltstyrka pa ca 5000 orsted, som under pressningen var kqntinuerligt riktat i pressriktningen. Kakan sintrades sedan under 2 timmar i en syrgasstrom vid 1290° C. Ur den sintrade kakan utskars en stay vars axel var parallell med kakans pressriktning. Vid rumstemperatur mattes ballistiskt pa staven begynnelsepermeabiliteten yo, som efter korrektion fOr avmagnetisering uppgick till ca 24. Some of the powder was pressed into a cake under the influence of a magnetic field with a field strength of about 5000 orsted, which during the pressing was continuously directed in the pressing direction. The cake was then sintered for 2 hours in an oxygen stream at 1290 ° C. A stay was cut from the sintered cake whose axis was parallel to the press direction of the cake. At room temperature, the initial permeability yo was measured ballistically on the rod, which after correction for demagnetization amounted to about 24.

En del ay pulvret pressades utan anvandning av ett magnetf Mt till en ring. Pa den sd erhallna ringen uppmattes vid rumstemperatur och vid en frekvens ay 260 MHz en begynnelsepermeabilitet pc av 2,5. Vid denna hoga frekvens voro de elektromagnetiska forlusterna uttryckta i en fOrlustfaktor tg6 = — (se J. Smit och H. P. /le J. Wijn, »Advances in Electronics», VI, 1954, sid. 69, formel nr. 27) mindre an 0,05. A portion of the powder was pressed without the use of a magnetic Mt into a ring. On the ring thus obtained, an initial permeability pc of 2.5 was measured at room temperature and at a frequency of 260 MHz. At this high frequency, the electromagnetic losses were expressed in a loss factor tg6 = - (see J. Smit and HP / le J. Wijn, Advances in Electronics, VI, 1954, p. 69, formula no. 27) less than 0 , 05.

En del av pulvret pressades till en ring under inverkan av ett magnetfalt med en faitstyrka pa ca 3000 arsted, som ban representeras av en i planet vinkelrat mot ringens axel med en hastighet av ca 1 vary per sekund roterande vektor. Pa denna ring mattes vid rumstemperatur och vid en frekvens ay 260 MHz en begynnelsepermeabilitet ay 2,8, medan forlustfaktorn tgo var mindre an 0,05. 4 Exempel II. En blandning ay zinkoxid, bariumkarbonat och ferrioxid i ett inbordes forhallande enligt formeln BaZnFe6011 maldes under 15 timmar med alkohol i en valskvarn. Efter torkning brandes blandningen under 2 timmar vid 1100° C i en syrgasstrom. Reaktionsprodukten finfordelades efter avkylning i en slagmortel, varefter de minsta partiklarna utsiktades och maldes under 32 timmar med alkohol i en kvarn. A part of the powder was pressed into a ring under the influence of a magnetic field with a fact strength of about 3000 arsted, which path is represented by a vector rotating in the plane perpendicular to the axis of the ring at a speed of about 1 vary per second. On this ring, at room temperature and at a frequency of 260 MHz, an initial permeability of 2.8 was measured, while the loss factor tgo was less than 0.05. Example II. A mixture of zinc oxide, barium carbonate and ferric oxide in an inboard ratio of the formula BaZnFe6011 was ground for 15 hours with alcohol in a roller mill. After drying, the mixture is fired for 2 hours at 1100 ° C in an oxygen stream. The reaction product was triturated after cooling in an impact mortar, after which the smallest particles were exposed and ground for 32 hours with alcohol in a mill.

Ur forsoket, som beskrivits i exempel I visade det sig, att vid kristallerna hos fOreningen BaZnFe6III011 reflektionerna pa de ytor, vilka bade hexagonala axeln som zonaxel jamfort med reflektionerna vid de ytor som icke horde till denna zon hos pulvret, vars partiklar orienterats under inverkan av ett magnetfalt, voro starkare an vid icke orienterat pulver. Kristallerna hade salunda ett preferensplan for magnetiseringen vinkelratt mot riktningen hos den (hexagonala) kristallografiska huvudaxeln. Fig. 3 visar rontgendiagrammet som avser icke-orienterat pulver, medan fig. 4 visar diagrammet for orienterat pulver. From the experiment described in Example I it was found that in the crystals of the compound BaZnFe6III011 the reflections on the surfaces which bathed the hexagonal axis as the zone axis compared with the reflections on the surfaces which did not belong to this zone of the powder whose particles were oriented under the influence of a magnetic field, were stronger in the case of non-oriented powder. The crystals thus had a preference plane for the magnetization perpendicular to the direction of the (hexagonal) crystallographic major axis. Fig. 3 shows the X-ray diagram relating to non-oriented powder, while Fig. 4 shows the diagram for oriented powder.

En del av pulvret pressades utan anvandning av ett magnetfalt till en ring. Denna ring brandes i en syrgasstrom, varvid hogsta temperaturen var 1275° C vilken upprattholls under c:a 10 minuter. Pa den sa erhallna ringen uppmattes vid rumstemparatur och vid en frekvens pa 1 MHz en begynnelsepermeabilitet 4a av 15,8. A portion of the powder was pressed without the use of a magnetic field into a ring. This ring is burned in an oxygen stream, the highest temperature being 1275 ° C which is maintained for about 10 minutes. On the ring thus obtained, an initial permeability 4a of 15.8 was measured at room temperature and at a frequency of 1 MHz.

En del av pulvret pressades till en kaka under inverkan av ett magnetfalt med en faltstyrka pa c:a 3000 orsted, som kan representeras av en vektor som roterar med c:a 1 vary i sekunden i planet vinkelratt mot pressriktningen. Kakan upphettades sedan i en syrgasstrom, varvid den hogsta temperaturen var 1275° C och upprattholls under 10 minuter. .A.v den sa ernadda sintringsprodukten utskars en ring, vars axel forlopte parallellt med kakans pressriktning. Pa denna ring uppmattes vid rumstemperatur och vid en frekvens av 1 MHz en begynnelsepermeabilitet p, av 34,6. A part of the powder was pressed into a cake under the influence of a magnetic field with a field strength of about 3000 orsted, which can be represented by a vector which rotates at about 1 vary per second in the plane perpendicular to the pressing direction. The cake was then heated in an oxygen stream, the highest temperature being 1275 ° C and maintained for 10 minutes. A ring was cut out of the said sintering product, the axis of which ran parallel to the pressure direction of the cake. On this ring, at room temperature and at a frequency of 1 MHz, an initial permeability p, of 34.6, was measured.

Exempel III. N samma satt som i exempel II, men med den skillnaden att sintringen skedde vid 1200° C och icke vid 1100° C frams Landes ett pulver av foreningen BaZnFe6III011. Detta pulver pressades till tva ringar och brandes, varvid partiklarna has den ena ringen icke voro orienterade, men partiklarna has den andra ringen yore orienterade darigenom, att under pressningsforloppet ett magnetfalt patrycktes, som kan representeras av en roterande vektor i ett plan vinkelratt mot ringens axel. Pa den forsta ringen uppmattes vid rumstemperatur och vid en frekvens av 1 MHz en begynnelsepermeabilitet av 15,0, pa den andra ringen under samma forhallanden en begynnelsepermeabilitet p, av 30,0. Example III. The same was true as in Example II, but with the difference that the sintering took place at 1200 ° C and not at 1100 ° C, Landes produced a powder of the compound BaZnFe6III011. This powder was pressed into two rings and fired, the particles having one ring not oriented, but the particles having the other ring oriented by pressing a magnetic field during the pressing process, which can be represented by a rotating vector in a plane perpendicular to the axis of the ring. . On the first ring, at room temperature and at a frequency of 1 MHz, an initial permeability of 15.0 was measured, on the second ring under the same conditions an initial permeability p, of 30.0.

Exempel IV. Pa ungefar samma satt som i exempel II och III och endast med den skillnaden att sintringstemperaturen nu var 1260° C, framstades ett pulver av foreningen BaZnFe,HIO„. Pa det i exempel II angivna sattet framstalldes genom pressning och sintring av detta pulver tva ringar, varvid vid pressningen av den forsta ringen icke nagot magnetfalt anvandes, medan vid pressning av den andra ringen pulverpartiklarna utsattes fOr inverkan av ett magnetfalt med en faltstyrka pa c:a 3000 orsted, som kan representeras av en vektor, som roterar med en hastighet av 1 vary per sekund i planet vinkelratt mot ringaxeln. Pa den forsta ringen uppmattes vid rumstemperatur vid en frekvens pa 1 MHz en begynnelsepermeabilitet du, av 12,3. Den andra ringen uppvisade under samma forhallanden en begynnelsepermeabilitet kto av 21,3. Example IV. In about the same manner as in Examples II and III and only with the difference that the sintering temperature was now 1260 ° C, a powder was prepared by the compound BaZnFe, HIO In the manner indicated in Example II, two rings were produced by pressing and sintering this powder, no magnetic field being used in the pressing of the first ring, while in pressing the second ring the powder particles were subjected to the action of a magnetic field with a field strength of c: a 3000 orsted, which can be represented by a vector, which rotates at a speed of 1 vary per second in the plane perpendicular to the ring axis. On the first ring, at room temperature at a frequency of 1 MHz, an initial permeability du, of 12.3, was measured. The second ring had an initial permeability kto of 21.3 under the same conditions.

Exempel V. En blandning av bariumkarbonat, koboltkarbonat, zinkoxid och ferrioxid i ett in-hordes forhallande enligt formeln Ba.3CoZnFe2404/ maldes under 16 timmar med alkohol i en valskvarn, torkade darpa och brandes under 2 timmar i en syrgasstrom vid 1250° C. Darefter krossades reaktionsprodukten i en slagmortel till korn med en diameter av hogst 0,5 mm. Dessa korn maldes under 8 timmar med alkohol i en kvarn till pulver. Kristallerna i detta pulver med en struktur, vars elementarceller i det hexagonala kristallsystemet kan beskrivas med en c-axel pa c:a 52,3 A och en a-axel pa c:a 5,9 A, uppvisade ett preferensplan for magnetiseringen som kunde pavisas med de ovan beskrivna forsoken. Example V. A mixture of barium carbonate, cobalt carbonate, zinc oxide and ferric oxide in an in-house ratio of formula Ba.3CoZnFe2404 / was ground for 16 hours with alcohol in a roller mill, dried in a barrel and fired for 2 hours in an oxygen stream at 1250 ° C. The reaction product was then crushed in an impact mortar into grains with a diameter of at most 0.5 mm. These grains were ground for 8 hours with alcohol in a grinder to powder. The crystals of this powder having a structure whose elemental cells in the hexagonal crystal system can be described with a c-axis of about 52.3 A and an a-axis of about 5.9 A, showed a preference plan for the magnetization which could pavisas with the experiments described above.

En del av pulvret pressades utan anvandning av ett magnetfalt till en ring. Denna ring sintrades under 2 timmar i en syrgasstri5m vid 1240° C. Pa den O. erhallna ringen uppmattes vid rumstemperatur vid en frekvens av 155MHz en begynnelsepermeabilitet p av 17 medan liksom i exempel I, 3a forlustfaktorn tgb bestamdes, vilken uppgick till 0,11. A portion of the powder was pressed without the use of a magnetic field into a ring. This ring was sintered for 2 hours in an oxygen stream at 1240 ° C. At the O .

En del av detta pulver pressades till en ring under inverkan av ett magnetfalt med en faltstyrka av 3000 orsted, vilket kan representeras med en 1 vary i sekunden roterande vektor i ett plan vinkelratt mot ringaxeln. Den ernadda ringen sintrades under 2 timmar vid 1240° C i en syrgasstrom. Vid rumstemperatur och en frekvens pa 155 MHz mattes pa den sintrade ringen en begynnelsepermeabilitetav 42 och en forlustfaktor tgo av 0,12. A portion of this powder was pressed into a ring under the action of a magnetic field with a field strength of 3000 orsted, which can be represented by a 1 vary per second rotating vector in a plane perpendicular to the ring axis. The resulting ring was sintered for 2 hours at 1240 ° C in an oxygen stream. At room temperature and a frequency of 155 MHz, the sintered ring had an initial permeability of 42 and a loss factor of 0.12.

Exempel VI. Ur en blandning av bariumkarbonat, koboltkarbonat, zinkoxid och ferrioxid i ett inbordes forhallande enligt formeln Ba3Co0an1,2 Fe24041 framstalldes pa liknande satt som i exempel V ett blandkristallmaterial, som maldes till pulver. Kristallerna i detta pulver som uppvisade en struktur, vars elementarceller i det hexagonala kristallsystemet kan beskrivas med en c-axel pa c:a 52,3 A. och en a-axel pa 5,9 A, uppvisade ett preferensplan for magnetiseringen vilket kunde pavisas medelst ovan angivna forsok. Example VI. From a mixture of barium carbonate, cobalt carbonate, zinc oxide and ferric oxide in an inboard ratio according to the formula Ba3CoOan1.2 Fe24041, a mixed crystal material was ground in a manner similar to Example V, which was ground to a powder. The crystals in this powder, which had a structure whose elemental cells in the hexagonal crystal system can be described with a c-axis of about 52.3 A. and an a-axis of about 5.9 A, showed a preference plan for the magnetization which could be demonstrated. by means of the above experiments.

Ur detta pulver framstalldes pa samma satt som i exempel V tva ringar och speciellt en titan anvandning av ett magnetfalt och den andra vid anvandning av ett magnetfalt. Pa den forsta ringen uppmattes vid rumstemperatur och vid en frekvens av 80 MHz en begynnelsepermeabilitet av 24 och en forlustfaktor tg6 av 0,08 och vid en frekvens av 155 MHz en pa 26 och ett tgS pa 0,26. PA den andra ringen vars axel forlopte vinkelratt mot planet i vilket magnetfaltet roterade uppmattes under samma fOrhallanden en begynnelsepermeabilitetpa 57 och en for- lustfaktor VS pa 0,10 resp. ett ,u„ pa 61 och ett tgo pa. 0,26. From this powder, in the same manner as in Example V, two rings and especially one titanium were used using a magnetic field and the other using a magnetic field. At the first ring, at room temperature and at a frequency of 80 MHz, an initial permeability of 24 and a loss factor tg6 of 0.08 were measured, and at a frequency of 155 MHz one at 26 and a tgS of 0.26. On the second ring, the axis of which ran perpendicular to the plane in which the magnetic field rotated, an initial permeability of 57 and a loss factor VS of 0.10, respectively, were measured under the same conditions. one, u „pa 61 and one tgo pa. 0.26.

Exempel VII. En blandning av koboltkarbonat, bariumkarbonat och ferrimdd i ett forhallande enligt formeln Ba.,CO2Fe240,1 maldes under 18 timmar med alkohol i en valskvam, torkades darefter och brandes under 2 timmar i en syrgasstrom vid 1200° C. Reaktionsprodukten maldes forst under 18 timmar i en valskvarn och darefter 8 timmar i en syangkvarn med alkohol. Kristallerna av detta pulver uppvisade ett preferensplan for magnetiseringen. Example VII. A mixture of cobalt carbonate, barium carbonate and ferric oxide in a ratio according to the formula Ba., CO2Fe240.1 was ground for 18 hours with alcohol in a rolling mill, then dried and fired for 2 hours in an oxygen stream at 1200 ° C. The reaction product was first ground for 18 hours in a rolling mill and then 8 hours in a syang mill with alcohol. The crystals of this powder showed a preferential plan for the magnetization.

En del av pulvret pressades utan anvandning av ett magnetfalt till en kaka. A portion of the powder was pressed without the use of a magnetic field into a cake.

En del ay pulvret pressades till en kaka under inverkan av ett magnetMlt med en faltstyrka av c:a 2000 orsted, yilket falt kan representeras av en vektor som roterar med en hastighet av 50 vary per sekunden i ett plan vinkelratt mot pressningsriktningen. A portion of the powder is pressed into a cake under the action of a magnetic field having a field strength of about 2000 orsted, each field being represented by a vector rotating at a speed of 50 varying per second in a plane perpendicular to the direction of pressing.

Kakorna sintrades under tva timmar i en syrgasstrom vid 1200° C. Ay de sa erhallna sintringsprodukterna utskars ringar, vilkas axlar forlopte parallellt med kakornas pressriktning. PA dessa ringar uppmattes vid rumstemperatur och Yid en frekvens av 3 MHz en begynnelsepermeabilitet o av 11,4 resp. 32, 6. The cakes were sintered for two hours in an oxygen stream at 1200 ° C. In the thus obtained sintering products, rings were cut out, the axes of which ran parallel to the pressure direction of the cakes. PA these rings were measured at room temperature and Yid a frequency of 3 MHz an initial permeability o of 11.4 resp. 32, 6.

I nedanstaende tabell ges en oversikt ay de i exemplen I-IV beskrivna forfarandena och erna.dda resultaten. The following table gives an overview of the procedures and results described in Examples I-IV.

Roterande Roterande magnetfalt magnetfalt med Iron- med varia- stant in-bel inten- tensitetsitet Material Inget magnet-fait Ba3C0 2Fe2 40 gi BaZnFeG0i, BaZnFe6011 BaZnFea0„ Ba,Col,oZni,o Fe241 Fe2400. Rotating Rotating magnetic field magnetic field with Iron- with variant in-bel intensity intensity Material No magnet-fait Ba3C0 2Fe2 40 gi BaZnFeG0i, BaZnFe6011 BaZnFea0 „Ba, Col, oZni, o Fe241 Fe2400.

Ba3Co2Fe24041. Ba3Co2Fe24041.

StaTathet tog/ em' nart magnetfalt 4,8 5,0 4,8 4,8 4,7 4,8 Matning Frekvens 2 kHz io 10,4 29,7 21,9 15 30 24 Exempel tgo in 1b 1 c 2a 2b 2c c:a 3 260 MHz 2,0,0I 3a c:a 3 2,8 0,0I 3b 5,0 1 MHz 15,8 5,0 34, 5,1 1 MHz 15,0 5,3 30,0 1 5,0 5,2 1 MHz 12,3 21,3 IV 4,8 4,7 155 MHz a 17 42 0,11V 0,12 4,8 80 MHz 155 » 24 26 0,08 0,21 VI 4,7 80 » 155 a 57 61 0, 0,26 4,7 3 MHz 11,4 VII 5,0 32,6 Statency train / em 'nart magnetic field 4.8 5.0 4.8 4.8 4.7 4.8 Feed Frequency 2 kHz io 10.4 29.7 21.9 15 30 24 Example tgo in 1b 1 c 2a 2b 2c c: a 3 260 MHz 2,0,0I 3a c: a 3 2,8 0,0I 3b 5,0 1 MHz 15,8 5,0 34, 5,1 1 MHz 15,0 5,3 30, 0 1 5.0 5.2 1 MHz 12.3 21.3 IV 4.8 4.7 155 MHz a 17 42 0.11V 0.12 4.8 80 MHz 155 »24 26 0.08 0.21 VI 4.7 80 »155 a 57 61 0, 0.26 4.7 3 MHz 11.4 VII 5.0 32.6

Claims (4)

Patentansprak:Patent claim: 1. Polykristallinisk anisotrop, ferromagnetisk kropp bestaende ay ea till en enhet, under inverkan av ett, eventuellt foranderligt eller roterande magnetfalt sintrat, eller sammanpressat pulvermaterial, kannetecknad darav, att enkristallerna i materialet uppvisa ett preferensplan for magnetisering.A polycrystalline anisotropic, ferromagnetic body consisting ay ea of a unit, under the influence of a, possibly changing or rotating magnetically folded sintered, or compressed powder material, characterized in that the single crystals in the material have a preference plan for magnetization. 2. Ferromagnetisk kropp enligt patentanspraket 1, kannetecknad darav, att som ferromagnetiska material foreningar med formeln BaM,II Feionic, 27 anvandas (i vilka Ba-jonen helt eller delvis kan ersattas med Sr-jon, Pb-jon och/eller till hogst 40 atom% med Ca-jon och i vilken Fem-jonerna kan ersattas maximalt till 1/5 ay Al- och/eller Cr-joner), varvid MIT betecknar minst en av jonerna Fen, milli, con, Nin, 6 2 av dessa joner i den man dessa material uppvisa ett preferensplan for magnetiseringen. 2. Ferromagnetisk kropp enligt patentanspraket 1, kannetecknad darav, att som ferromagnetiska material fOreningar med formeln Ba am2i Fe24III041 anvandas (i vilken Ba till maximalt en tredjedel kan ersattas med Sr och till maximalt en femtedel med Pb och maximalt till en tiondel med Ca), varvid MIT betecknar minst en av jonerna Fe 2 i den man dessa material ha ett preferensplan for magnetiseringen.Ferromagnetic body according to claim 1, characterized in that as ferromagnetic materials compounds of the formula BaM, II Feionic, 27 are used (in which the Ba ion can be completely or partially replaced by Sr-ion, Pb-ion and / or up to atom% with Ca ion and in which the Fem ions can be replaced up to a maximum of 1/5 ay Al and / or Cr ions), MIT denoting at least one of the ions Fen, milli, con, Nin, 6 2 of these ions in which these materials exhibit a preference plan for the magnetization. Ferromagnetic body according to claim 1, characterized in that as ferromagnetic materials compounds of the formula Ba am2i Fe24III041 are used (in which Ba up to a maximum of one third can be replaced by Sr and up to a maximum of one fifth with Pb and maximum up to one tenth with Ca), wherein MIT denotes at least one of the ions Fe 2 in which these materials have a preference plane for the magnetization. 3. Ferromagnetisk kropp enligt patentanspraket 1, kannetecknad darav, att som ferromagnetiska material foreningar med formeln BaMrr peamoli anvandas, varvid Ba kan ersattas maximalt till halften med Sr, maximalt till en fjardedel med Ca eller Pb, 'eller ocksa med en kombination av desamma, varvid Ferri kan ersattas maximalt till en tiondel med Al och/ eller Cr och varvid Mu betecknar minst en av jonerna av Mill, Feu, Corr, Ng', cup, znii, 1■411 eller en kombination av dessa joner.3. A ferromagnetic body according to claim 1, characterized in that as ferromagnetic materials compounds of the formula BaMrr peamoli are used, wherein Ba can be replaced up to half with Sr, up to a quarter with Ca or Pb, or also with a combination of the same, wherein Ferri can be replaced to a maximum of one tenth with Al and / or Cr and wherein Mu represents at least one of the ions of Mill, Feu, Corr, Ng ', cup, znii, 1 ■ 411 or a combination of these ions. 4. Ferromagnetisk kropp enligt patentansprakeL 1, kannetecknad darav, att som ferromagnetiska material foreningar med formeln BaCOaimatv Ferii(i 2_014 anvandas, varvid 1,04. A ferromagnetic body according to claim 1, characterized in that as ferromagnetic materials compounds of the formula BaCOaimatv Ferii (in 2_014 are used, wherein 1.0
SE203512D SE203512C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE203512T

Publications (1)

Publication Number Publication Date
SE203512C1 true SE203512C1 (en) 1965-01-01

Family

ID=41987254

Family Applications (1)

Application Number Title Priority Date Filing Date
SE203512D SE203512C1 (en)

Country Status (1)

Country Link
SE (1) SE203512C1 (en)

Similar Documents

Publication Publication Date Title
NO124638B (en)
TW201241246A (en) Effective substitutions for rare earth metals in compositions and materials for electronic applications
TW201336207A (en) A method for fabricating a ferrite sintered magnet
WO1999034376A1 (en) Ferrite magnet and process for producing the same
Hayashi et al. Preparation of acicular NiZn-ferrite powders
Eikeland et al. Enhancement of magnetic properties by spark plasma sintering of hydrothermally synthesised SrFe 12 O 19
CN108699675B (en) Sputtering target material, method for producing same, and sputtering target
JPS5827212B2 (en) Dry manufacturing method of hexagonal ferrite
JPH09124322A (en) Production of soft magnetic hexagonal ferrite powder, and sintered product and radio wave absorber using the same
CN102936130B (en) Permanent magnetic ferrite material
SE203512C1 (en)
JPS5820890B2 (en) Manufacturing method of ferrite particles
JP4734598B2 (en) Production method of soft ferrite
US3438900A (en) Ferrimagnetic material suitable for use at frequencies of at least 50 mc./sec. with improved properties
GB747737A (en) Improvements in or relating to methods of manufacturing non-metallic permanent magnets
Kostishyn et al. Effect of Temperature Mode of Radiation-thermal Sintering the Structure and Magnetic Properties of Mn-Zn-ferrites
JP4753054B2 (en) Manufacturing method of sintered ferrite magnet
GB862821A (en) Improvements in or relating to methods of manufacturing bodies of ferromagnetic materials
US3013976A (en) Method of producing anisotropic ferromagnetic bodies from ferromagnetic material having a non-cubic crystal structure
US3625898A (en) Method of manufacturing a ceramic, polycrystalline, magnetically anisotropic spinel ferrite body
JPH0296302A (en) Manufacture of soft magnetic hexagonal system ferrite sintered body
US3461072A (en) Ferrimagnetic material for use at frequencies higher than 50 mc./sec. having reduced loss factor and higher quality factor
KR102664653B1 (en) Method for preparing ferrite sintered magnet
SE184487C1 (en)
KR20170059803A (en) Potassium niobate flat particle and method for manufacturing the same