SE193122C1 - - Google Patents
Info
- Publication number
- SE193122C1 SE193122C1 SE193122DA SE193122C1 SE 193122 C1 SE193122 C1 SE 193122C1 SE 193122D A SE193122D A SE 193122DA SE 193122 C1 SE193122 C1 SE 193122C1
- Authority
- SE
- Sweden
- Prior art keywords
- styrene
- polymer
- triethylaluminum
- isotactic
- benzene
- Prior art date
Links
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
KLASS I NTERNATIONELLSVENSK C 08 f39 c:25/01 PATENT- OCH REGISTRERINGSVERKET A ns. 1526/1957 inkom den 1812 1957 utlagd den 6/4 1964 MONTECATINI SOC. GEN. PER L'INDUSTRIA MINERARIA E CHIMICA, MILANO, ITALIEN OCH K ZIEGLER, MCLHEIM-RUHR, FORBUNDSREPUBLIKEN TYSKLAND FOrfarande fiir framstallning av en isotaktisk polymerisationsprodukt av styren TJppfinnare: Cl Natta, F Danusso och 1) Sianesi Prioritet begard frau den 24 februari 1956 (Italien) Det liar tidigare fOreslagits forfaranden for polymerisering av styren till isotaktiska polymerer med anyandning av katalysatorer innehallande overgangsmetaller och metall-alkylbindningar, exempelvis katalysatorer erhallna av titantetraldorid och aluminiumalkylfOreningar. De genom dessa fOrfaranden erhallna isotaktiska polymererna framstallas vanligen i blandning med vasentliga och ofta mycket stora mangder amorf a polymerer med lag molekylvikt, vilka maste avskiljas frau polymerisationsprodukten genom extrahering med aceton. CLASS IN NTERNATIONAL SWEDISH C 08 f39 c: 25/01 PATENT AND REGISTRATION AGENCY A ns. 1526/1957 was received on 1812 1957 issued on 6/4 1964 MONTECATINI SOC. GENE. PER L'INDUSTRIA MINERARIA E CHIMICA, MILANO, ITALY AND K ZIEGLER, MCLHEIM-RUHR, FEDERAL REPUBLIC OF GERMANY Procedure for the production of an isotactic polymerization product of styrene Type inventor: Cl Natta, S Fariusi and 1 February 1951 (1) ) There have been previously proposed processes for polymerizing styrene to isotactic polymers using either catalysts containing transition metals and metal-alkyl bonds, for example catalysts obtained from titanium tetraloride and aluminum alkyl compounds. The isotactic polymers obtained by these processes are usually prepared in admixture with substantial and often very large amounts of low molecular weight amorphous polymers, which must be separated from the polymerization product by extraction with acetone.
Det har visats att det är mojligt att erhalla en polymerisationsprodukt bestaende av en praktiskt taget ren isotaktisk polymer genom anvandning av en katalysator framstalld genom tillsats av en titantetrakloridlosning till en trietylaluminiumlosning, avfiltrering av den darigenom bildade fallningen och suspendering av denna i trietylaluminiumlosning. Denna procedur är emellertid komplicerad och erfordrar anvandning av avsevarda mangder trietylaluminium. Vidare ger den endast lAga omvandlingar (7-10 viktprocent) av den monomera styrenen. Forutom nar denna procedur anvandes framstallas de ovannamnda katalysatorerna alltid genom tillsats av en loslig forening av dvergangsmetallen till losningen av den organiska metallforeningen i narvaro av monomer styren. It has been shown that it is possible to obtain a polymerization product consisting of a practically pure isotactic polymer by using a catalyst prepared by adding a titanium tetrachloride solution to a triethylaluminum solution, filtering off the precipitate thus formed and suspending it in triethylaluminum solution. However, this procedure is complicated and requires the use of significant amounts of triethylaluminum. Furthermore, it gives only low conversions (7-10% by weight) of the monomeric styrene. Except when this procedure is used, the above catalysts are always prepared by adding a soluble compound of the dwarf metal to the solution of the organic metal compound in the presence of monomeric styrene.
Denna uppfinning baserar sig pa upptackten att den ordning, i vilken komponenterna i reaktionssystemet (dvs. amnen vilka bilda katalysatorn och styrenen) sammanforas, liar ett avsevart inflytande pa polymerisationens hastighet och forlopp och att om man anvander de procedurer, som beskrivas i det fOljande, dr det mojligt att uppna. en mycket selektiv polymerisation, vilken kan genomforas sa, att man erhaller en uteslutande isotaktisk polymer i Mgt utbyte och med en relativt hog polymerisationsgrad eller -hastighet. This invention is based on the discovery that the order in which the components of the reaction system (i.e. the substances which form the catalyst and the styrene) are combined has a considerable influence on the rate and course of the polymerization and that if the procedures described below are used, dr it possible to achieve. a very selective polymerization, which can be carried out so as to obtain an exclusively isotactic polymer in high yield and with a relatively high degree of polymerization or rate.
Denna uppfinning avser ett forfarande for framstallning av en isotaktisk polymer av styren genom polymerisering av styren i narvaro av en katalysator, som framstallts av titantetraklorid och trietylaluminium, vilket kannetecknas darav, att katalysatorn framstalles genom tillsats av trietylaluminium till titantetrarlorid och att styrenen sattes till katalysatorn under framstallningen av denna eller blandas med katalysatorn efter dennas framstallning. I de fiesta fall är det onskvart att anyanda trietylaluminium och titantetraklorid i ett molforhallande frail 2: 1 till 3,5: 1. This invention relates to a process for the preparation of an isotactic polymer of styrene by polymerizing the styrene in the presence of a catalyst prepared from titanium tetrachloride and triethylaluminum, which is characterized in that the catalyst is prepared by adding triethylaluminum to titanium tetrachloride and the preparation thereof or mixed with the catalyst after its preparation. In most cases, it is undesirable for any other triethylaluminum and titanium tetrachloride in a molar ratio of 2: 1 to 3.5: 1.
Foljande tabell lamnas fOr att belysa effekten av den ordningsfoljd, i vilken titantetrakloriden, trietylaluminiumforeningen och styrenen sammanfOras. De i tabellen lamnade resultaten erhalos genom polymerisering ay 18 g styren i 7 timmar vid 70° C i narvaro av 50 ml bensen med anvandning av en katalysator framstalld ur losningar av 0,01 mol trietylaluminium och 0,00345 mol titantetraklorid, varvid polymerisationsbetingelserna aro identiska i samtliga fall. The following table is left to illustrate the effect of the order in which the titanium tetrachloride, triethylaluminum compound and styrene are combined. The results given in the table are obtained by polymerizing 18 g of styrene for 7 hours at 70 ° C in the presence of 50 ml of benzene using a catalyst prepared from solutions of 0.01 mol of triethylaluminum and 0.00345 mol of titanium tetrachloride, the polymerization conditions being identical in all cases.
— — Tabell I. - - Table I.
Viktprocent omvandling Till olje- Till isotakartad po- tisk po- lymerlymer Ordningsfoljd far infOrande av reaktionskomponenter Till amorf Totalt polymer Viktprocent isotaktiska polymer P. hela mangden polymer Ph den fasta poly- meren (Styren med trietylaluminium), TiC14 40,6 18,7 8,2 13,7 33,7 42,3 Trietylaluminium, TiC14, styren 27,0 11,3 13,7 2,0 7,4 15,0 TiC14, trietylaluminium, styren 43,1 0,3 3,6 39,2 91 99,2 TiC14, (styren med trietylaluminium) 73,2 4,9 21,6 46,7 63,8 90, De fordelaktiga resultaten bade med avseende pa procent omvandling av monomeren och med avseende pa procenthalten isotaktisk polymer, som uppnas vid tillsats av A1(C211,)3 med eller utan styren till TiC14-1Osningen enligt denna uppfinning am tydliga. Weight percent conversion To oil- To isotak-like potential polymeric polymers Order of introduction of reactants To amorphous Total polymer Weight percent isotactic polymer P. whole amount of polymer Ph the solid polymer (Styrene with triethylaluminum), TiCl4 40.6 18.7 8 .2 13.7 33.7 42.3 Triethylaluminum, TiCl4, styrene 27.0 11.3 13.7 2.0 7.4 15.0 TiCl4, triethylaluminum, styrene 43.1 0.3 3.6 39, 2 91 99.2 TiCl 4, (styrene with triethylaluminum) 73.2 4.9 21.6 46.7 63.8 90. The advantageous results both with respect to the percentage conversion of the monomer and with respect to the percentage of isotactic polymer obtained when adding Al (C211,) 3 with or without styrene to the TiCl4-1 solution of this invention is clear.
Nar styrenen tillsattes efter trietylaluminium uppnas maximal selektivitet i polymerisationsreaktionen, monomer styren omvandlas till en fast produkt bestaende praktiskt taget av 100 % isotaktisk polymer. Nar a andra sidan styrenen tillsattes tillsammans med trietylaluminium, uppnas en hogre omvandling av styren till en fast produkt innehallande mer an 90 % isotaktisk polymer. Aktiviteten hos en katalysator framstalld genom infOrande av Al(C,H,),-losningen i TiC1,-lOsningen kvarblir praktiskt taget oforandrad under nagra minister, uppvisar en ringa minskning efter omkring 15-20 minuter och uppnar darefter ett lagsta konstant varde tamligen hastigt. When the styrene was added after triethylaluminum, maximum selectivity is achieved in the polymerization reaction, monomeric styrene is converted to a solid product consisting of practically 100% isotactic polymer. On the other hand, when styrene was added together with triethylaluminum, a higher conversion of styrene to a solid product containing more than 90% isotactic polymer is obtained. The activity of a catalyst produced by the introduction of Al (C, H 2) solution in TiCl 4 solution remains virtually unchanged under some ministries, shows a slight decrease after about 15-20 minutes and then reaches a minimum constant at a fairly rapid rate. .
Denna relativa stabilitet hos katalysatorn ger det mojligt att framstalla den i eft forberedande steg och darefter blanda den med styrenen, exempelvis genom infOrande av den i en reaktor innehallande den monomera styrenen. This relative stability of the catalyst makes it possible to prepare it in the preparatory step and then mix it with the styrene, for example by introducing it into a reactor containing the monomeric styrene.
Det har visat sig att nar framstallningen av katalysatorn genomfores i ett forberedande steg, paverkas den framstallda katalysatorns aktivitet i hog grad av den temperatur, vid vilken reaktionen mellan titantetraklorid och trietylaluminium genomfores. Maximal aktivitet uppnas, nar framstallningen av katalysatorn genomfores vid omkring 100° C, medan 0 andra sidan omvandlingen av styren till isotaktisk polymer Or hOgre, nar katalysatorn framstalles vid lagre temperatur. Enligt ett foredraget tillvagagangssatt framstalles katalysatorn genom tillsats av en losning av trietylaluminium till en losning av titantetraklorid vid en temperatur fran 701000 C. It has been found that when the preparation of the catalyst is carried out in a preparatory step, the activity of the prepared catalyst is greatly affected by the temperature at which the reaction between titanium tetrachloride and triethylaluminum is carried out. Maximum activity is achieved when the preparation of the catalyst is carried out at about 100 ° C, while on the other hand the conversion of styrene to isotactic polymer is higher when the catalyst is prepared at a lower temperature. According to a preferred approach, the catalyst is prepared by adding a solution of triethylaluminum to a solution of titanium tetrachloride at a temperature of 701000 ° C.
Det har vidare visat sig att forhallandet mellan de mangder av trietylaluminium och titantetraklorid, som anvandas vid framstallning av katalysatorn, har vasentlig betydelse for forloppet av polymerisationen av styren. I sjalva verket varierar kvantiteten och kvaliteten av den totala polymerisationsprodukten vasentligt med namnda forhallande. It has further been found that the ratio between the amounts of triethylaluminum and titanium tetrachloride used in the preparation of the catalyst is of significant importance for the course of the polymerization of styrene. In fact, the quantity and quality of the total polymerization product varies substantially with the said ratio.
Pa den bifogade ritningen visas i form av ett diagram resultaten av ett antal styrenpolymerisationsforsok med anvandning av en katalysator framstalld av titantetraklorid och trietylaluminium i olika forhallanden, varvid alla andra betingelser h011its oforandrade (infOrd styren 18 g, bensen 50 ml, temperatur 70° C, reaktionstid 7 timmar). P0 abskissan anges molforhallandena mellan Al(C2H)3 och TiC14 och p0 ordinatan anges vikten i gram av den erhallna polymeren samt procent omvandling av monomeren. Punkterna ange isotaktisk polymer och cirklarna ange den amorfa polymeren. The accompanying drawing shows in diagrammatic form the results of a number of styrene polymerization experiments using a catalyst prepared from titanium tetrachloride and triethylaluminum in various proportions, all other conditions being kept unchanged (introduced styrene 18 g, benzene 50 ml, temperature 70 ° C, reaction time 7 hours). The abscissa indicates the molar ratios of Al (C2H) 3 and TiCl4 and the ordinate indicates the weight in grams of the polymer obtained and the percentage conversion of the monomer. The dots indicate isotactic polymer and the circles indicate the amorphous polymer.
Det skall framhallas att den amorf a polymeren, vilken bildas praktiskt taget uteslutande nar laga fOrhallanden mellan Al(C21-1)3 och TiC14 anvandas, icke foreligger i produkten vid forhallanden hOgre an 2,5 eller 3 :1, medan den isotaktiska polymeren, vilken vid forhallanden mellan Al(C,H,), och TiCl, lagre an 2 Or nastan fullstandigt franvarande, bildas i hastigt okande mangd, nar namnda forhallande okas, varvid mangden uppnar ett maximum vid ett forhallande mellan 2 och 3. It should be noted that the amorphous polymer, which is formed practically exclusively when the proportions of Al (C21-1) 3 and TiCl4 are used, is not present in the product at ratios higher than 2.5 or 3: 1, while the isotactic polymer, which in the proportions between Al (C, H,), and TiCl, lower than 2 Or almost completely absent, is formed in a rapidly increasing amount, when said ratio is increased, the amount reaching a maximum at a ratio between 2 and 3.
Vid fortsatt okning av Al(C2H)3-halten i den katalytiska blandningen Over det fOrhallande, som motsvarar den maximala omvandlingen till en isotaktisk polymer, uppstar en gradvis minskming av mangden bildad isotaktisk polymer. Vid ett molforhallande mellan Al(C,H,), och TiC14 hogre On 10 sker polymerisationen endast i mycket ringa utstrackning. Vardet for det optimala forhallandet kan variera nagot, beroende pa sadana faktorer som de anvanda reaktionskomponenternas renhetsgrad, narvaron eller franvaron av fuktighet eller hut och losningsmedlets art. Nar ren n-heptan anvandes som losningsmedel, liar det visat sig aft bildningen av amorf polymer praktiskt taget upphOr, nar fOrhallandet mellan Al(C,H,), och TiC14 uppnar ett varde av 2 eller nagot under 2. I de i det Raj ande lamnade exemplen genomf Ores polymerisationen av styren i andamal aft belysa uppfinningen nastan alltid i relativt utspadda losningar (under 30 volymprocen monomer), namligen i avsikt aft erhalla mera reproducerbara resultat for god karakterisering av reaktionsmekanismen. With continued increase in the Al (C2H) 3 content of the catalytic mixture over the ratio corresponding to the maximum conversion to an isotactic polymer, a gradual decrease in the amount of isotactic polymer formed occurs. At a molar ratio between Al (C, H 2), and TiCl 4 higher On 10, the polymerization takes place only to a very small extent. The value of the optimum ratio may vary slightly, depending on such factors as the degree of purity of the reactants used, the presence or absence of moisture or skin and the nature of the solvent. When pure n-heptane is used as a solvent, it is found that the formation of amorphous polymer practically ceases when the ratio of Al (C, H 2) and TiCl 4 reaches a value of 2 or slightly below 2. In those in the Raj The following examples illustrate the polymerization of styrene in the form of illustrating the invention almost always in relatively dilute solutions (below 30% by volume of monomer), namely in order to obtain more reproducible results for good characterization of the reaction mechanism.
Nar polymerisationen utfores med hOgre koncentrationer av monomeren Or det mojligt att uppna hogre reaktionsgrader eller -hastigheter med hOgre utb3rten per anvand katalysatorenhet. Detta visas i exemplen 3 och 18. When the polymerization is carried out with higher concentrations of the monomer, it is possible to achieve higher reaction rates or rates with higher yields per catalyst unit used. This is shown in Examples 3 and 18.
Genom foreliggande fOrfarande erhallas polymerer med mycket hog molekylvikt. Ett visat inflytande pa vardet pa molekylvikten kan, - - sasom !ram& av exemplen, utovas genom att man varierar fOrhallandet mellan Al(C21-1)3 och TiCI4. By the present process, polymers of very high molecular weight are obtained. A demonstrated influence on the value of the molecular weight can, as in the case of the examples, be exercised by varying the ratio between Al (C21-1) 3 and TiCl4.
En sankning av molekylvikten for polymeren kan uppnfis: genom okning av polymerisationstemperaturen; genom okning av mangden katalysator i forhallande till mangden monomer; genom minskning av monomerens koncentration i det inerta losningsmedlet, dvs. genom genomforande av polymerisationen i narvaro av tillracklig mangd losningsmedel for att halla styrenen vid lag koncentration. A decrease in the molecular weight of the polymer can be achieved: by increasing the polymerization temperature; by increasing the amount of catalyst in relation to the amount of monomer; by reducing the concentration of the monomer in the inert solvent, i.e. by carrying out the polymerization in the presence of a sufficient amount of solvent to keep the styrene at low concentration.
Verkan av en hojning av temperaturen visas genom de i nedanstaende tabell angivna vardena. Dessa varden ha erhallits vid polymerisationsfOrsok utforda under de betingelser, vilka anges i det foljande i exemplen 8, 9 och 12 men vid olika temperaturer. The effect of an increase in temperature is shown by the values given in the table below. These values have been obtained in polymerization experiments challenging under the conditions set forth below in Examples 8, 9 and 12 but at different temperatures.
Tabell II. Table II.
Isotaktisk polystyren Gransviskositet (i tetrahydronafta-Molekylvikt len vid 100 °C) dl/g 160 1,60 600000 12 1200000 100 4,3 2600000 84,93200000 70 6 4000000 7,5800000 Verkan av andringar av monomerkoncentrationen i losningsmedlet framgar av de i nedanstaende tabell angivna vardena, vilka erhallits vid polymerisationsforsok genomforda under de i exempel 18 angivna betingelserna, varvid den totala vatskevolymen hallits oforandrad medan monomerkoncentrationen varierats. Isotactic polystyrene Granular viscosity (in tetrahydronaphtha-Molecular weight len at 100 ° C) dl / g 160 1.60 600000 12 1200000 100 4.3 2600000 84.93200000 70 6 4000000 7.5800000 The effect of changes in the monomer concentration in the solvent is shown in the following The values given in Table 18 were carried out under polymerization experiments under the conditions given in Example 18, the total volume of liquid being kept unchanged while the monomer concentration was varied.
Tabell III. Table III.
Koncentration volym- procent av monomer Isotaktisk polymer Gransviskositet (i tetrahydronaftalen vid 100 °G) dl/g 1,8 2,7 3,6 5,3 60 5,7 80 6,0 Genom anvandning av inflytandet av dessa olika faktorer Or det salunda mojligt att reducera polymerens molekylvikt frau varden pa nagra miljoner ned till varden pa rthgra tiotusen. Concentration volume percentage of monomer Isotactic polymer Ground viscosity (in tetrahydronaphthalene at 100 ° G) dl / g 1.8 2.7 3.6 5.3 60 5.7 80 6.0 By using the influence of these various factors Or it it is thus possible to reduce the molecular weight of the polymer from the value of a few million down to the value of tens of thousands.
Det skall framhallas att alla i de foljande exemplen angivna proportioner avse viktproportioner, savitt ej annat anges. It should be noted that all proportions given in the following examples refer to weight proportions, unless otherwise indicated.
Exempel 1. 0,00345 mol TiC1416st 140 ml bensen anbringas i en kolv forsedd med omrdrare, termometer och dropptratt och nedsankt i ett termostatbad instant ph 70° C. En Riming av 0,01mol Al(C2H)3 i 10 ml bensen tillsattes droppvis vid en temperatur av 70° C. Darefter tillsattes 18 g styren. Reaktionen genomfOres vid 70° C i 7 timmar, darefter tillsattes ett overskott av metanol, varigenom en produkt utfalles, vilken visar sig besta av 0,05 g av en acetonloslig (amorf) polymer och 7,05 g av en acetonloslig (isotaktisk) polymer. Ur de metanolhaltiga tvattvatskorna utvinnes 0,65 g oljeartade produkter genom extrahering med bensen. Omvandlingen är omkring 43,1 % och procenthalterna av isotaktisk polymer, raknat pa den totala produkten och pa den fasta produkten, Oro 91 respektive 99,2 %. Example 1. 0.00345 moles of TiCl416 x 140 ml of benzene are placed in a flask equipped with a stirrer, thermometer and dropping funnel and immersed in a thermostatic bath instant ph 70 ° C. A defrost of 0.01 mol of Al (C2H) at a temperature of 70 ° C. Then 18 g of styrene was added. The reaction is carried out at 70 ° C for 7 hours, after which an excess of methanol is added, whereby a product precipitates, which is found to consist of 0.05 g of an acetone-soluble (amorphous) polymer and 7.05 g of an acetone-soluble (isotactic) polymer. . 0.65 g of oily products are extracted from the methanol-containing wash liquors by extraction with benzene. The conversion is about 43.1% and the percentages of isotactic polymer, calculated on the total product and on the solid product, Oro 91 and 99.2%, respectively.
Exempel 2.0,00345 mol TiC14 lost i 40 ml bensen anbringas i den ovan beskrivna reaktionsapparaten, som Mlles i en atmosfar av torr kvavgas. En losning av 0,01 mol Al(C211)3, 18 g styren och 10 ml bensen tillsattes lingsamt droppvis vid en temperatur av 70° C. Efter 7 timmars reaktion bestar den pa samma sttt som i fOregaende exempel behandlade reaktionsprodukten av 3,89 g oljeartad produkt, 0,88 g amorf polymer och 8,40 g isotaktisk polymer. Omvandlingen utgor 73,2 %. Den isotaktiska polymeren motsvarar 63,8 % av hela produkten och 90,5 % av den fasta produkten. Example 2.0.00345 moles of TiCl4 dissolved in 40 ml of benzene are placed in the reaction apparatus described above, which is melted in an atmosphere of dry nitrogen gas. A solution of 0.01 mol of Al (C211) 3, 18 g of styrene and 10 ml of benzene was slowly added dropwise at a temperature of 70 ° C. After 7 hours of reaction, the reaction product treated in the same manner as in the previous example consists of 3.89 g. g oily product, 0.88 g amorphous polymer and 8.40 g isotactic polymer. The conversion is 73.2%. The isotactic polymer corresponds to 63.8% of the whole product and 90.5% of the solid product.
Exempel 3.-En losning av 0,0039 mol TiCI4 i 100 ml bensen anbringas i en 500 ml kolv forsedd med omrorare, termometer och dropptratt, upphettad till 70° C med hjalp av ett oljebad och sh anordnad, att den kan lianas i en inert gasatmosfar. 10 g styren innehallande 0,010 molAl(C21-1)3 tillsattes langsamt droppvis under °mitring. Efter 2 minuter tillsattes ytterligare 260 g styren langsamt pa en tid av omkring 1 timme. Nar tillsatsen fullbordats avbrytes omroringen och massan lamnas att reagera i 24 timmar vid 70° C. Genom koagulering och tvattning med metanol erhalles 101,3 g polymer, moisvarande en omvandling av 37,6 % raknat pa den anvanda monomeren. Av denna produkt Oro 7,3 g losliga i aceton och 94,0 g olosliga i kokande aceton. Den isotaktiska polymeren representerar darfOr 92,7 % av den bildade fasta polymeren och 34,8 °,/,, av den anvanda monomeren. Ur metylalkoholen, som anvandes for att avskilja och tvatta polymeren Iran reaktionsblandningen, erhalles 4,50 g oljeartade produkter, motsvarande 1,6 % av den anvanda monomeren. Example 3.-A solution of 0.0039 mol of TiCl 4 in 100 ml of benzene is placed in a 500 ml flask equipped with a stirrer, thermometer and dropping funnel, heated to 70 ° C by means of an oil bath and sh arranged so that it can be dissolved in a inert gas atmosphere. 10 g of styrene containing 0.010 molAl (C21-1) 3 was added slowly dropwise during metering. After 2 minutes, an additional 260 g of styrene was added slowly over a period of about 1 hour. When the addition is complete, stirring is stopped and the mass is left to react for 24 hours at 70 ° C. Coagulation and washing with methanol give 101.3 g of polymer, corresponding to a conversion of 37.6% on the monomer used. Of this product Oro 7.3 g soluble in acetone and 94.0 g insoluble in boiling acetone. The isotactic polymer therefore represents 92.7% of the solid polymer formed and 34.8% of the monomer used. From the methyl alcohol used to separate and wash the polymer Iran reaction mixture, 4.50 g of oily products are obtained, corresponding to 1.6% of the monomer used.
Exempel 4. 0,00368 mol TiC14 i 400 ml bensen inf Ores i en 250 ml glaskolv forsedd med omrorare, termometer och dropptratt, upphettad till 70° C genom nedsankning i ett termoreglerat oljebad och hallen i en atmosfar av torr kvavgas. 0,0 mol Al(C21-1), i 10 ml bensen tillsattes langsamt droppvis under °mitring. En minut efter avslutandet av denna operation tillsattes 18 g monomer styren och blandningen lamnas att reagera i 5 timmar vid 70° C. Genom de ovan beskrivna behandlingarna erhalles 0,02 g amorf polymer, 6,62 g isotaktisk polystyren och 1,20 g oljeartade produkter. Monomeromvandlingen Lill isotaktisk polymer utgor 36,8 % och procenthalten isotaktisk polymer raknat pa den totala polymeren Or omkring 84 %. Example 4. 0.00368 moles of TiCl 4 in 400 ml of benzene are introduced into a 250 ml glass flask equipped with a stirrer, thermometer and dropping funnel, heated to 70 ° C by immersion in a thermoregulated oil bath and the hall in an atmosphere of dry nitrogen. 0.0 moles of Al (C21-1) in 10 ml of benzene were added slowly dropwise during metering. One minute after the end of this operation, 18 g of monomeric styrene were added and the mixture was left to react for 5 hours at 70 ° C. The treatments described above gave 0.02 g of amorphous polymer, 6.62 g of isotactic polystyrene and 1.20 g of oily products. Monomer conversion Little isotactic polymer is 36.8% and the percentage of isotactic polymer calculated on the total polymer is about 84%.
Temperatur °C - - Exempel 5. 0,00368 mol TiC14 i 40 ml bensen infores under kvavgas i den i exempel 4 beskrivna reaktionsapparaten. 0,010 mol A1(C2H)8 110 ml bensen tillsattes langsamt droppvis under omr6ring vid en temperatur av 70° C. Efter 20 minuter tillsattes 18 g styren och blandningen ldmnas att reagera vid 70° C i 5 timmar. Genom koagulering med metylalkohol och extrahering med aceton erhfilles 0,07 g amorf polymer och 6,40 g (motsvarande ett utbyte av 35,6 % rdknat pa den anv5nda monomeren) isotaktisk polymer. Ur metylalkoholen utvinnes 1,00 g oljeartade produkter. Temperature ° C - - Example 5. 0.00368 moles of TiCl4 in 40 ml of benzene are introduced under nitrogen into the reaction apparatus described in Example 4. 0.010 mol Al (C 2 H) 8 110 ml of benzene were added slowly dropwise with stirring at a temperature of 70 ° C. After 20 minutes, 18 g of styrene were added and the mixture was allowed to react at 70 ° C for 5 hours. Coagulation with methyl alcohol and extraction with acetone gave 0.07 g of amorphous polymer and 6.40 g (corresponding to a yield of 35.6% by weight of the monomer used) of isotactic polymer. 1.00 g of oily products are recovered from the methyl alcohol.
Exempel 6. 0,00368 mol TiC14 i 40 ml bensen infores under kvavgas i den i exempel 4 beskrivna apparaten. 0,010 mol A1(C21-1,)3 i 10 ml bensen tillsattes langsamt droppvis under omroring yid 70° C. En timme efter denna operation infores 18 g styren och reaktionen genomfores ph 5 timmar vid 70° C. Man erhaller 0,09 g amorf polystyren ilislig i aceton, 0,78 g oljeartade produkter losliga i metylalkohol och 3,47 g isotaktisk polymer, motsvarande en omvandling av 19,3 %. Example 6. 0.00368 moles of TiCl 4 in 40 ml of benzene are introduced under nitrogen into the apparatus described in Example 4. 0.010 mol of Al (C21-1) 3 in 10 ml of benzene was added slowly dropwise with stirring at 70 ° C. One hour after this operation, 18 g of styrene are introduced and the reaction is carried out for 5 hours at 70 ° C. amorphous polystyrene soluble in acetone, 0.78 g of oily products soluble in methyl alcohol and 3.47 g of isotactic polymer, corresponding to a conversion of 19.3%.
Exempel 7. 10 ml bensen och 0,010 mol Al(C2I-1)3 inforas droppvis vid 70° C i den vanliga reaktionsapparaten, som Mlles under kvavgas och innehaller 0,00368 mol TiC14 och 40 ml bensen. Tvã timmar efter avslutandet av denna operation tillsattes 18 g styren och blandningen ldmnas att reagera i 5 timmar vid 70° C. Example 7. 10 ml of benzene and 0.010 mol of Al (C 2 I-1) 3 are introduced dropwise at 70 ° C into the usual reaction apparatus, which is milled under nitrogen and contains 0.00368 mol of TiCl 4 and 40 ml of benzene. Two hours after the end of this operation, 18 g of styrene were added and the mixture was allowed to react for 5 hours at 70 ° C.
- Genom den redan beskrivna proceduren isoleras 0,97 g oljeartade produkter, 0,20 g amorf polymer och 3,30 g isotaktisk polystyren, motsvarande 18,3 % av den anvanda monomeren. The procedure already described isolates 0.97 g of oily products, 0.20 g of amorphous polymer and 3.30 g of isotactic polystyrene, corresponding to 18.3% of the monomer used.
Exempel 8. 0,0035 mol T1C14 i 40 ml tetralin anbringas i en 250 ml kolv forsedd med omrorare, termometer och dropptratt, nedsankt i ett termostatbad under kvavgas. LOsningen upphettas till 40° C och 0,00945 mol Al(C211)3 I 10 ml tetralin tillsdttes droppvis under omroring. Efter 2-3 minuter tillsdttes 18 g styren och blandningen lamnas att reagera i 7 timmar vid 40° C. Genom den redan beskrivna separeringsproceduren erhalles 0,11 g amorf polystyren och 0,73 g isotaktisk polymer, motsvarande en omvandling av 4,05 %. Example 8. 0.0035 mol of T1Cl4 in 40 ml of tetralin is placed in a 250 ml flask equipped with a stirrer, thermometer and dropping funnel, immersed in a thermostatic bath under nitrogen. The solution is heated to 40 [deg.] C. and 0.00945 mol of Al (C211) 3 in 10 ml of tetralin are added dropwise with stirring. After 2-3 minutes, 18 g of styrene were added and the mixture was left to react for 7 hours at 40 ° C. Through the separation procedure already described, 0.11 g of amorphous polystyrene and 0.73 g of isotactic polymer were obtained, corresponding to a conversion of 4.05%. .
Exempel 9 0,0035 mol TiC1, i 40 ml tetralin infores under kvavgas i den i exempel 8 beskrivna apparaten. Termostatbadet upphettas till 100° C och 0,00945 mol A1(C21-1)3 tillsattes droppvis under ()mitring. Efter 2-3 minuter tillsattes 18 g styren och reaktionen genomfores i 7 timmar vid 100° C. Man erhaller 1,60 g amorf polymer och 8,93 g isotaktisk polystyren, motsvarande en ornvandling av 49,1 %. Example 9 0.0035 mol of TiCl 4 in 40 ml of tetralin are introduced under nitrogen into the apparatus described in Example 8. The thermostat bath is heated to 100 ° C and 0.00945 moles of Al (C21-1) 3 was added dropwise during () metering. After 2-3 minutes, 18 g of styrene were added and the reaction was carried out for 7 hours at 100 DEG C. 1.60 g of amorphous polymer and 8.93 g of isotactic polystyrene were obtained, corresponding to a conversion of 49.1%.
Exempel 10. 0,0035 mol TiC1, i 40 ml tetralin infores under kvavgas i den i exempel 8 beskrivna apparaten. Ltisningen upphettas till 100° C och 0,00945 mol Al(C21-1)3 tillsattes langsamt under omniring. Blandningen kyles hastigt genom installning av termostatbadet ph 40° C och 2-3 minuter efter tillsatsen av Al(C21-3 tillsattes 18 g styren. Blandningen ldmnas att reagera vid 40° C i 7 timmar. Man erhaller 0,21 g amorf polymer och 3,68 g (20,4 %) isotaktisk polymer. Example 10. 0.0035 moles of TiCl 4 in 40 ml of tetralin are introduced under nitrogen into the apparatus described in Example 8. The ice was heated to 100 ° C and 0.00945 moles of Al (C21-1) 3 was added slowly with stirring. The mixture is rapidly cooled by installing the thermostat bath at 40 ° C and 2-3 minutes after the addition of Al (C21-3) 18 g of styrene were added. The mixture is allowed to react at 40 ° C for 7 hours. 0.21 g of amorphous polymer is obtained and 3.68 g (20.4%) of isotactic polymer.
Exempel 11. En losning av 0,0035 mol TiC14ml tetralin anbringas under kvavgas i den i exempel 8 beskrivna apparaten. Kolven upphettas till 40° C genom nedsankning i ett termoreglerat oljebad och 10 ml tetralin innehallande 0,00945 mol Al(C21-1)3 tillsdttes under omroring. Blandningen upphettas darefter hastigt till 100° C och 18 g styren tillsdttes. Efter 7 timmars reaktion vid 100° C erhalles 4,08 g amorf polymer lOslig i aceton och 0,75 g isotaktisk polystyren, motsvarande 4,17 % av den ursprungliga monomeren. Example 11. A solution of 0.0035 mol of TiCl 4 ml of tetralin is applied under nitrogen in the apparatus described in Example 8. The flask is heated to 40 ° C by immersion in a thermoregulated oil bath and 10 ml of tetralin containing 0.00945 moles of Al (C21-1) 3 is added with stirring. The mixture is then heated rapidly to 100 ° C and 18 g of styrene are added. After 7 hours of reaction at 100 DEG C., 4.08 g of amorphous polymer soluble in acetone and 0.75 g of isotactic polystyrene are obtained, corresponding to 4.17% of the original monomer.
Exempel 12. 0,0035 mol TiC1, i 40 ml tetralin infores i den i exempel 8 beskrivna apparaten och Mlles under kvavgas och upphettades till 130° C, och 0,00945 mol Al(C21-1)3 i 10 ml tetralin tillsdttes langsamt droppvis under omroring. Efter 2-3 minuter tillsdttes 18 g styren och reaktionen talkies fortgh. i 7 timmar vid 130° C. Man erhaller 5,95 g amorf polymer och 4,89 g isotaktisk polystyren, motsvarande en omvandling 27,3 % rdknat ph anvand styren. Example 12. 0.0035 moles of TiCl 4 in 40 ml of tetralin was introduced into the apparatus described in Example 8 and Mlles under nitrogen and heated to 130 ° C, and 0.00945 moles of Al (C 21-1) 3 in 10 ml of tetralin was added slowly dropwise with stirring. After 2-3 minutes, 18 g of styrene were added and the reaction talc continued. for 7 hours at 130 ° C. 5.95 g of amorphous polymer and 4.89 g of isotactic polystyrene are obtained, corresponding to a conversion of 27.3% of the pH used by styrene.
Exempel 13. 40 ml bensen innehallande 0,00348 mol TiC14 infores vid en temperatur av 70° C i den i exempel 8 beskrivna apparaten och Mlles i en atmosfar av ton kvavgas. Ddrefter tillsdttes 0,00355 mol Al(C21-1)3 i 10 ml bensen droppvis under omroring. (Al(C21-1),/TiC14 = 1,02). 18 g styren tillsfittes darefter och reaktionen lamnas att fortskrida i 7 timmar. Efter de i fOregh ende exempel beskrivna tvattnings- och extraheringsbehandlingarna erhalles 7,99 g amorf polystyren och 0,19 g isotaktisk polystyren. Ur metylalkoholen, som anvandes for att koagulera och tvdtta den fasta polymeren, utvinnes 5,30 g oljeartade produkter. Den bildade isotaktiska polystyrenen bar en gransviskositet i tetralin vid 100° C av 3,37 dl/g. Example 13. 40 ml of benzene containing 0.00348 mol of TiCl 4 are introduced at a temperature of 70 ° C into the apparatus described in Example 8 and Mlles in an atmosphere of one tonne of gas. Then 0.00355 mol of Al (C21-1) 3 in 10 ml of benzene was added dropwise with stirring. (Al (C21-1), / TiCl4 = 1.02). 18 g of styrene are then added and the reaction is allowed to proceed for 7 hours. Following the washing and extraction treatments described in the preceding examples, 7.99 g of amorphous polystyrene and 0.19 g of isotactic polystyrene are obtained. From the methyl alcohol used to coagulate and wash the solid polymer, 5.30 g of oily products are recovered. The isotactic polystyrene formed had a granular viscosity in tetralin at 100 ° C of 3.37 dl / g.
Exempel 14. 0,00348 mol TiC14 i 40 ml bensen infores under kvavgas i den i exempel 8 beskrivna apparaten och Mlles vid 70° C. Ddrefter tillsattes 0,00707 mol Al(C211)3 i 10 ml bensen (Al(C21-1)3/T1C14 = 2,03) och darefter 18 g styren. Example 14. 0.00348 moles of TiCl4 in 40 ml of benzene are introduced under nitrogen into the apparatus described in Example 8 and Mlles at 70 ° C. Then 0.00707 moles of Al (C211) 3 in 10 ml of benzene (Al (C21-1) are added. ) 3 / T1C14 = 2.03) and then 18 g of styrene.
Efter 7 timmars reAtion erhalles 4,23 g oljeartade produkter, 0,54 g amorf polystyren och 0,89 g isotaktisk polystyren. Gransviskositeten i tetralin vid 100° C for den isotaktiska polystyrenen är 4,50 dl/g. After 7 hours of reaction, 4.23 g of oily products, 0.54 g of amorphous polystyrene and 0.89 g of isotactic polystyrene are obtained. The bulk viscosity of tetralin at 100 ° C for the isotactic polystyrene is 4.50 dl / g.
Exempel 15. 0,00885 mol Al(C21-1)3 i 10 ml bensen sates langsamt droppvis under omroring till 0,00348 mol TiC14 i 40 ml bensen i den i exempel 8 beskrivna apparaten och Mlles vid 70° C under kvavgas (Al(C21-1)3/T1C14 = 2,54). Darefter tillsattes 18 g styren och reaktionen tillates att fortgh. i 7 timmar vid 70° C. Example 15. 0.00885 moles of Al (C21-1) 3 in 10 ml of benzene is slowly added dropwise with stirring to 0.00348 moles of TiCl4 in 40 ml of benzene in the apparatus described in Example 8 and Mlles at 70 ° C under nitrogen (Al (C21-1) 3 / T1C14 = 2.54). Then 18 g of styrene were added and the reaction was allowed to proceed. for 7 hours at 70 ° C.
Genom de i foregaende exempel beskrivna tvdttflings- och extraheringsprocedurerna erhalles 0,57 g oljeartade produkter, 0,11 g amorf polystyren cob 7,17 g isotaktisk polystyren. The washing and extraction procedures described in the preceding examples give 0.57 g of oily products, 0.11 g of amorphous polystyrene and 7.17 g of isotactic polystyrene.
Gransviskositeten i tetralin vid 100° C fOr den isotaktiska polystyrenen är 5,40 dl/g. The bulk viscosity of tetralin at 100 ° C for the isotactic polystyrene is 5.40 dl / g.
Exempel 16. 0,00348 mol TiC14 i 40 ml bensen infores under kvdvgas i den i exempel 8 beskrivna - - apparaten. Vid en temperatur av 70° C tillsattes 0,0143 mol Al(C211)3 (A1(C21-13)3/T1C14 = 4,11) i 10 ml bensen och darefter 18 g styren. Efter 7 timmars reaktion erhalles en produkt, vilken innehaller 0,85 g oljeartade polymerer och 3,80 g isotaktisk polymer, vars gransviskositet i tetralin vid 100° C är 3,40 dl/g. Example 16. 0.00348 moles of TiCl 4 in 40 ml of benzene are introduced under nitrogen into the apparatus described in Example 8. At a temperature of 70 ° C, 0.0143 mol of Al (C211) 3 (Al (C21-13) 3 / T1Cl4 = 4.11) was added in 10 ml of benzene and then 18 g of styrene. After 7 hours of reaction, a product is obtained which contains 0.85 g of oily polymers and 3.80 g of isotactic polymer, the granular viscosity of tetralin at 100 ° C is 3.40 dl / g.
Exempel 17. 0,00087 mol TiC14 i 40 ml bensen infores under kvdvgas i den i exempel 8 beskrivna apparaten. Vid 70° C tillsattes 0,0087 mol Al-(02113)3 110 ml bensen (Al(C21-13)3/TiC14 = 10) och darefter tillsattes 18 g styren. Efter 7 timmars reaktion erhalles 0,35 g oljeartade produkter och 0,03 g isotaktisk polystyren. Grdnsviskositeten Mr den senare är 1,75 dl/g, bestamd i tetralinlosning vid 100° C. Example 17. 0.00087 moles of TiCl 4 in 40 ml of benzene are introduced under nitrogen into the apparatus described in Example 8. At 70 ° C, 0.0087 mol of Al- (02113) 3 110 ml of benzene (Al (C21-13) 3 / TiCl4 = 10) was added and then 18 g of styrene were added. After 7 hours of reaction, 0.35 g of oily products and 0.03 g of isotactic polystyrene are obtained. The soil viscosity Mr the latter is 1.75 dl / g, determined in tetralin solution at 100 ° C.
Exempel 18. 0,01 mol A1(C21-13)3 i 10 ml bensen och darefter 80 ml monomer styren anbringas i den i exempel 8 beskrivna apparaten Mien vid 70° C under kvavgas och innehallande 0,0032 mol TiC14 i 10 ml bensen. Efter 5 timmars reaktion och efter de i foregaende exemplen beskrivna tvattnings- och extraheringsprocedurerna erhalles 0,12 g av en acetonloslig amorf polymer, 0,80 g oljeartade lfigpolymerer och 23,90 g isotaktisk polystyren. Example 18. 0.01 mol of Al (C21-13) 3 in 10 ml of benzene and then 80 ml of monomeric styrene are applied in the apparatus described in Example 8 Mien at 70 ° C under nitrogen and containing 0.0032 mol of TiCl4 in 10 ml of benzene. . After 5 hours of reaction and following the washing and extraction procedures described in the preceding examples, 0.12 g of an acetone-soluble amorphous polymer, 0.80 g of oily liquid polymers and 23.90 g of isotactic polystyrene are obtained.
Foljande fOrsok A och B, vilka belysa fall ddr reaktionsblandningen bildas p annat sat an enligt uppfinningen, lamnas for jdmforelse. The following experiments A and B, which illustrate cases in which the reaction mixture is formed in another way according to the invention, are left for comparison.
ForsOk A. ForsOk A.
Detta fOrsok visar de resultat som erhfillas Mr polymerisationen genomfores genom tillsats av titanforeningen till blandningen av styren och aluminiumalkylforening. This test shows the results obtained. The polymerization is carried out by adding the titanium compound to the mixture of styrene and aluminum alkyl compound.
En losning av 0,00345 mol TiC14 110 ml bensen sattes langsamt droppvis under omroring till en 250 ml glaskolv fOrsedd med omrOrare, termometer och dropptratt, nedsankt i ett termostatbad instant pa 70° C, i en kvavgasatmosfar, innehallande 18 g monomer styren, 0,01 mol Al(C 21-1) och 40 ml bensen. Efter 7 timmars reaktion tillsattes ett overskott av metanol. Den utfallda polymeren extraheras i 5 timmar med kokande aceton. Harvid kvarldmnas en aterstod av 2,46 g isotaktisk polymer, motsvarande 13,7 viktprocent av den anvdnda styrenen. AcetonlOsningen av den amorfa polymeren Mlles i metanol och genom filtrering och torkning utvinnes 3,37 g amorf polystyren, motsvarande 18,7 % av den anvancla monomerens vikt. Metylalkoholen, som frail borjan anvdndes for att sonderdela den katalytiska blandningen och utalla och tvatta polymeren, indunstas och extraheras med bensen. Efter avlagsnande av bensenen erhalles 1,47 g oljeartade produkter, motsvarande 8,2 % av den ursprungliga monomerens vikt. Den erhfillna isotaktiska polymeren representerar 33,7 % av den totala produktens vikt och 42,3 % av den fasta polymerens vikt. A solution of 0.00345 moles of TiCl 4 110 ml of benzene was slowly added dropwise with stirring to a 250 ml glass flask equipped with a stirrer, thermometer and dropping funnel, immersed in a thermostatic bath instant at 70 ° C, in a nitrogen atmosphere containing 18 g of monomeric styrene. .01 mol Al (C 21-1) and 40 ml benzene. After 7 hours of reaction, an excess of methanol was added. The precipitated polymer is extracted for 5 hours with boiling acetone. This leaves a residue of 2.46 g of isotactic polymer, corresponding to 13.7% by weight of the styrene used. The acetone solution of the amorphous polymer is dissolved in methanol and by filtration and drying 3.37 g of amorphous polystyrene are recovered, corresponding to 18.7% of the weight of the monomer used. The methyl alcohol initially used to probe the catalytic mixture and crystallize and wash the polymer is evaporated and extracted with benzene. After removal of the benzene, 1.47 g of oily products are obtained, corresponding to 8.2% by weight of the original monomer. The resulting isotactic polymer represents 33.7% of the weight of the total product and 42.3% of the weight of the solid polymer.
Fors& B. Fors & B.
Detta forst& visar forloppet av polymerisationen ndr reaktionen genomfores genom att reaktionskomponenterna sammanforas i folj ande ordning: Trietylaluminium, titantetraklorid, styren. 0,01 mol Al(C2I-13), i 40 ml bensen infores vid en temperatur av 70° C i en likadan apparat som den ovan beskrivna, vilken Mlles i en kvavgasapparat. 0,00345 mol Tiel, lost i 10 ml bensen tillsattes ddrefter langsamt droppvis och ddrefter 18 g styren. Efter 7 timmars reaktion bestar den totala produkten, behandlad sasom beskrivits i forsOk A, av 2,03 g amorf polymer (11,3 procent av monomerens vikt), 2,46 g oljeartad produkt (13,7 procent av monomerens vikt) och 0,36 g isotaktisk polystyren (2 procent av monomerens vikt). Den senare motsvarar 7,4 % av den totala reaktionsproduktens vikt och 15,0 % av den bildade fasta produktens vikt. This shows the course of the polymerization when the reaction is carried out by bringing the reactants together in the following order: triethylaluminum, titanium tetrachloride, styrene. 0.01 mol of Al (C2I-13), in 40 ml of benzene is introduced at a temperature of 70 ° C into an apparatus similar to that described above, which is milled in a nitrogen gas apparatus. 0.00345 mol of Tiel, dissolved in 10 ml of benzene, was then slowly added dropwise and then 18 g of styrene. After 7 hours of reaction, the total product, treated as described in Experiment A, consists of 2.03 g of amorphous polymer (11.3 percent by weight of monomer), 2.46 g of oily product (13.7 percent by weight of monomer) and 36 g of isotactic polystyrene (2% by weight of the monomer). The latter corresponds to 7.4% of the weight of the total reaction product and 15.0% of the weight of the solid product formed.
Claims (8)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE193122T |
Publications (1)
Publication Number | Publication Date |
---|---|
SE193122C1 true SE193122C1 (en) | 1964-01-01 |
Family
ID=41979277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE193122D SE193122C1 (en) |
Country Status (1)
Country | Link |
---|---|
SE (1) | SE193122C1 (en) |
-
0
- SE SE193122D patent/SE193122C1/sv unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Natta et al. | Crystalline polymers of phenyl‐and n‐butylisocyanates | |
US4032513A (en) | Process of producing alkenylphenol polymers | |
JPS58109428A (en) | Manufacture of linear olefin product | |
KR940007561B1 (en) | Method of preparing low or medium-density straight-chain polyethylene and catalysts suitable for this purpose | |
JPH0725834B2 (en) | Method for producing propylene homopolymer and copolymer | |
Overberger et al. | A convenient laboratory preparation of isotactic polystyrene | |
Vogl | Polymerization of higher aldehydes. IV. Crystalline isotactic polyaldehydes: anionic and cationic polymerization | |
SE193122C1 (en) | ||
US3311603A (en) | Polymerization process in the presence of a ziegler catalyst water and an amine | |
EP0094016B1 (en) | Anhydrous precipitation of polycycloolefins | |
JPS58204023A (en) | Sedimentation of high bulk density polycycloolefin | |
US3161624A (en) | Polymerization of stryrene | |
US2072904A (en) | Polymerization of organic compounds | |
US3230209A (en) | Cobaltous halide-aluminium-mercuric halide or hydrogen halide-aromatic solvent reaction product catalyst for the polymerization of olefins | |
CA1087154A (en) | Cationic polymerization process | |
EP0094013B1 (en) | Precipitation of polycycloolefins | |
US3159614A (en) | Process and three-component catalyst for propylene polymerization containing an organo aluminum compound and titanium tetrachloride-hydrogen sulfide or hydrogen selenide reaction product | |
JPH0737490B2 (en) | Method for producing propylene homopolymer and copolymer | |
JPH0725833B2 (en) | Method for producing propylene homopolymer and copolymer | |
Perry et al. | Enhancement of stereospecificity in isoprene polymerization with alkylaluminum–titanium chloride catalysts through use of carbon disulfide | |
US3026313A (en) | Preparation of cis 1, 4 polyisoprene | |
US2314904A (en) | Polymerization of unsaturated compounds having the cyclopentadiene nucleus | |
US3160622A (en) | Process for polymerizing olefins utilizing a ziegler catalyst | |
US3631013A (en) | Method for making solid rubbery copolymers or isoolefins and diolefin | |
US1360665A (en) | Process of producing resin |