SE176832C1 - - Google Patents

Info

Publication number
SE176832C1
SE176832C1 SE176832DA SE176832C1 SE 176832 C1 SE176832 C1 SE 176832C1 SE 176832D A SE176832D A SE 176832DA SE 176832 C1 SE176832 C1 SE 176832C1
Authority
SE
Sweden
Prior art keywords
boron
uranium
weight
alloy
natural
Prior art date
Application number
Other languages
Swedish (sv)
Publication date
Publication of SE176832C1 publication Critical patent/SE176832C1/sv

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C43/00Alloys containing radioactive materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/60Metallic fuel; Intermetallic dispersions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Uppfinnare: D W Lillie Prioritet begeird fran den 12 april 1957 (Amerikas Parente Stater) Denna uppfinning hanfor sig till karnklyvning och alldeles sarskilt till neutroniskt reaktiva komponenter omfattande legeringar av 233 och 235 isotoperna av uran. Inventor: D W Lillie Priority Begred from April 12, 1957 (United States Parent States) This invention relates to nuclear fission and, in particular, to neutronically reactive components comprising alloys of the 233 and 235 uranium isotopes.

Som bekant kunna isotoperna 132 och U253 klyvas genorn neutronbombardemang for att bilda klyvnings-neutroner, beta- och gammastralningar samt lattare element atfoljda av frigoringen av betydande varme. Mr en tillrackligt stor massa av uranisotoperna utsattas for ett sadant bombardemang, sker en sjalvunderhallande karnreaktion i systemet, varigenom forhallandet mellan antalet neutroner, som alstras i en generation genom klyvningarna, och det ursprungliga antalet neutroner, som igangsfitter klyvningarna, är storre fin ett, efter del att alla neutronfi3Huster aro franraknade. Detta fOrhallande, vilket for bekvamlighets skull kan benamnas k, Hiles foretradesvis yid ett varde liggande mellan 1,00 och 1,10. Reglering eller kontroll av detta forhallande kan verkstallas genom att selektivt i5ka eller minska stone-ken av de Iran reaktionen forlorade neutronerna. Detta har tidigare utforts genom att forma uranisotopmassan till manga diskreta eller alskilda »bransle»-element anordnade i ett gallerliknande monster inuti konstruktionen eller kroppen av reaktorn och infora en reglerbar mangd material, som aro i stand att infanga eller absorbera relativt hOga antal neutroner i mellanrum mellan nagra av eller alla bransleelementen. Alit eftersom del neutronabsorberande materialet smaningom avlagsnas frail reaktorn, Oro alit storre antal neutroner fria att inga i reaktionen, och en punkt under avlagsnandet uppnits, dOn reaktionen blir sjalvunderhallande. I denna punkt Or fOrhallandet k storre On ett. Om avlagsnandet stannas, nar Ogonblicksvardet av k Or litet storre On ett, Or reaktionen sjalvunderhallande men endast under en begransad lid, emedan alit eftersom reaktionen fortskrider, mangden uran smaningom utarmas och klyvningsprodukterna av reaktionen bliva verksamma for att infanga neutroner. Detta leder till en smaningom skeende minskning i vardet av k, tills reaktionen stan:nar. Man inser, att for en given reaktor av denna typ innehallande en given mangd uranbransle erfordras standig reglering av den neutroninfangande reglerings- eller kontrollanordningen for att bibehalla graden eller hastigheten av den .spilvunderhallande reaktionen inom de onskade granserna. Del skulle vara Onskvart att forminska beloppet av yttre reglering eller kontroll, som erfordras for att reglera reaktionshastigheten. As is well known, isotopes 132 and U253 can cleave the gene neutron bombardment to form fission neutrons, beta and gamma rays, and lighter elements accompanied by the release of significant heat. If a sufficiently large mass of the uranium isotopes is subjected to such a bombardment, a self-sustaining nuclear reaction takes place in the system, whereby the ratio between the number of neutrons generated in a generation by the fission and the original number of neutrons fitting the fission is greater. part that all neutronfi3Huster aro excluded. This ratio, which for convenience may be termed k, Hiles is preferably yd a value between 1.00 and 1.10. Regulation or control of this ratio can be effected by selectively increasing or decreasing the stone of the neutrons lost in the Iran reaction. This has previously been accomplished by shaping the uranium isotope mass into many discrete or distinct "fuel" elements arranged in a grid-like sample within the structure or body of the reactor and introducing an adjustable amount of material capable of trapping or absorbing relatively high numbers of neutrons at intervals. between some or all of the industry elements. Alit because some neutron absorbing material is gradually removed from the frail reactor, Alit alit larger number of neutrons free that none in the reaction, and a point during the removal is reached, dOn the reaction becomes self-sustaining. At this point Or the ratio k greater On one. If the precipitation is stopped, the instantaneous value of k Or slightly larger On one, Or the reaction is self-sustaining but only for a limited time, because alit as the reaction proceeds, the amount of uranium is gradually depleted and the fission products of the reaction become active to capture neutrons. This leads to a gradual decrease in the value of k, until the reaction stops. It will be appreciated that for a given reactor of this type containing a given amount of uranium fuel, constant control of the neutron trapping control or monitoring device is required to maintain the degree or rate of the spill maintenance reaction within the desired limits. Part would be Onskvart to reduce the amount of external regulation or control, which is required to regulate the reaction rate.

Del Or dad& ett huvudandamal med denna uppfinning att astadkomma ett forfaringssatt f6r framstallning av neutronreaktorbransleelement, vilka ha bestandsdelar, som ha neutroninfangningskarakteristikor, vilka andra sig med en mer eller mindre konstant hastighet under reaktionen, sa att reaktorsystemets k-varde forblir verkligt konstant under en relativt lang tidsperiod utan att systemets yttre reglerings- eller kontroll-karakteristikor andras. Andra och skiljaktiga andamal med denna uppfinning skola framga under den utf Orliga beskrivning, som foljer nedan. A main object of this invention is to provide a method for producing neutron reactor fuel elements which have constituents which have neutron capture characteristics which change at a more or less constant rate during the reaction, so that the k-value of the reactor system remains truly constant during a relative long period of time without changing the external control or monitoring characteristics of the system. Other and different aspects of this invention will become apparent from the detailed description which follows.

I korthet kannetecknas forfaringssattet enligt uppfinningen av att en mangd metalliskt aluminium .eller zirkonium smaltes, att gasformig bortriklorid eller bortribromid bringas att. 2— — bubbla genom den smalta metallen, varigenom gasen sonderdelas sã, att det bildas en dispersion av bor i metallen, att blyvbart uran legeras med namnda smalta metall sa, att det bildas en legering bestaende av 0,002-0,20 vikt-% bor 10 eller naturlig bor i sadan mangd, att namnda halt av bor 10 erhalles, 5-23 vikt-% uran 233 eller uran 235 eller blandningar darav, varvid resten av legeringen Or aluminium eller zirkoniurn, och att namnda legering gjutes. Briefly, the process set according to the invention can be characterized in that a large amount of metallic aluminum or zirconium is melted, in that gaseous boron trichloride or boron tribromide is introduced. 2— - bubble through the molten metal, whereby the gas is subdivided so that a dispersion of boron is formed in the metal, that permanent uranium is alloyed with said molten metal so that an alloy consisting of 0.002-0.20% by weight boron is formed Or natural boron in such an amount that said content of boron 10 is obtained, 5-23% by weight of uranium 233 or uranium 235 or mixtures thereof, the rest of the alloy being aluminum or zirconium, and that said alloy being cast.

Alit eftersom dessa bransleelement forbrukas i karnreaktionen, transmuteras boren i bransleelementpartiklarna, sum ha en mycket hog neutroninfangningstvarsektion, dvs. en hag absorptionskarakteristik for neutroner, smaningom till litium, vilket har en mycket lagre neutroninfangningstvarsektion, enligt foljande reaktion: Blo ± nLiT Hel ± Q I den ovan angivna reaktionen representerar B" den borisotop, som har en atomvikt 10, n en neutron, Ur den litiumisotop, som har en atornvikt 7, He4 helium och Q utvecklad energi, mera specifikt 3,0 millioner elektronvolt. Sam bekant Or neutroninfangnings-tvarsektionen hos naturlig bor ornkring 750 barn, och fiir bor 10 omkring 3990 barn, raedan neutroninfangnings-tvarsektionen for litium 7 Or omkring 33 millibarn. Eftersom transmutationshastigheten av bar 10 till litium 7 Or proportionell mot bastigheten av klyvningsreaktionen, ser man, att alit eftersom uranen forbruhas genom reak!,ionen, forminskas antalet nentroner, som avlagsnas fran klyvningsreaktionen av boren, pronortionellt. Den legerande metallen, dvs. antingen aluminium eller zirkoniurn, tjanar ett tvafaldigt andamal, i det att den verkar som ett relativt inert utspadningsmedel far uranen och Oven erbjuder ett rnedel for forminskning av korrosionshastigheten has uranen vid forhajda temperaturer. I praktiken kan det vara onskvart att dessutom bald& ytorna av reaktorbransleelementet med ett relativt tunt skikt av den rena legeringsmetallen for att hattre kontrollera korrosionen. Alit because these fuel elements are consumed in the nuclear reaction, the boron in the fuel element particles is transmuted, sum have a very high neutron capture cross section, ie. a hag absorption characteristic of neutrons, gradually to lithium, which has a much lower neutron capture cross section, according to the following reaction: Blo ± nLiT Hel ± QI the above reaction represents B "the borisotope having an atomic weight 10, n a neutron, From the lithium isotope , which has an atomic weight of 7, He4 helium and Q developed energy, more specifically 3.0 million electron volts.Is known to the neutron capture cross section of natural boron around 750 children, and for 10 live about 3990 children, already the neutron capture cross section of lithium 7 Since the transmutation rate of bar 10 to lithium 7 Or is proportional to the rate of the fission reaction, it is seen that since the uranium is consumed by the reaction, the number of nentrons removed from the fission reaction of the boron decreases proportionally. , i.e. either aluminum or zirconia, serves a two-fold andamal, in that it acts as a relatively inert diluent gets the uranium and Oven offers a component for reducing the corrosion rate if the uranium is at elevated temperatures. In practice, it may be undesirable to additionally bald the surfaces of the reactor fuel element with a relatively thin layer of the pure alloy metal in order to control the corrosion.

Reaktorbransleelement, byggda enligt fareliggande uppfinning, skola salunda omfatta lampligt formade oeh dimensionerade kroppar hestaende av 5 till 23 vikt-% uran 233 eller uran 235, 0,002 till 0,20, lampligen 0,002-0,13, av bar 10, varvid resten Or aluminium eller zirkonium. Med hansyn till att naturlig bar innehaller omkring 18,8 vikt-% bor 10, kunna tillsattningarna av bor 10 verkstallas genom tillsattningar av naturlig bar eller naturlig bor, som Or antingen anrikad med bor eller innehaller mindre mangder bor 10. Eftersom den andra huvudisotopen av bor, bor 11, har en neutroninfangnings-tvarsektion av mindre an 0,05 barn, kan det vara onskvart att utnyttja en naturlig bor, som -har blivit anrikad med en forutbestamd mangd bor 11 for att effektivt Orminska halten av bor 10 med ett kant belopp. Detta tillvagagangssatt kan vara onskvart, nar legeringar innehallande mindre mangder bor 10 skola framstallas, eftersom noggrann analys av mycket laga borhalter Or svar att latt uppna i sadana legeringar. Reactor fuel elements, built according to the present invention, should thus comprise lamp-shaped and dimensioned bodies of 5 to 23% by weight of uranium 233 or uranium 235, 0.002 to 0.20, suitably 0.002-0.13, of bar 10, the remainder being aluminum or zirconium. In view of the fact that natural bar contains about 18.8% by weight of boron 10, the additions of boron 10 can be effected by the additions of natural bar or natural boron, which Or either enriched with boron or contains minor amounts of boron 10. Since the other main isotope of boron, boron 11, has a neutron capture cross section of less than 0.05 children, it may be unwise to utilize a natural boron which has been enriched with a predetermined amount of boron 11 to effectively reduce the content of boron 10 by an edge. amount. This approach can be inconvenient when alloys containing smaller amounts of boron are to be produced, since careful analysis of very low boron contents is an answer to be easily obtained in such alloys.

Det har befunnits, att en tillrackligt jamn dispersion av bor icke kan uppnas genom att tillsatta bor till de smalta legeringarna i form av en huvud- eller stamlegering. I ett reaktorbransleelement, i vilkettboren ieke Or i huvudsak j-amnt fordelad genom hela bransleelementet, ha beta flackar benagenhet att utveckla sig I zoner, som ha liten eller ingen bor, fororsakande skada pa elementet. Beaktorbransleelement, som ha en tillfredsstallande fordelning av borpartiklar, beredas enligt foreliggande uppfinning pa foljande satt. It has been found that a sufficiently uniform dispersion of boron cannot be achieved by adding boron to the narrow alloys in the form of a main or tribal alloy. In a reactor fuel element, in which the drill bits are not substantially evenly distributed throughout the fuel element, beta flats have a tendency to develop in zones which have little or no boron, causing damage to the element. Reactor fuel elements, which have a satisfactory distribution of boron particles, are prepared according to the present invention in the following manner.

En lamplig mangd aluminium eller zirkonium smaltes, och en gasformig borhalogenid bubblas genom badet. Bortriklorid eller bortribromid begagnas foretradesvis. Dessa borhalogenider reagera med den .smalta metallen badet far att bilda en flyktig metallhalogenid, vilken stiger upp till ytan av badet och sprides, och en fin dispersion av bor fordelas genom badet. Det torde inses, att benamningen »uran» innefattar naturlig uran, som innehalter °valuing 0,7 vikt-% uran 235, och naturlig uran, som anrikats genom tillsattning av antingen uran 235 .eller uran 233 dartill. I varje fall skall uranhalten i legeringarna innehalla fran 5 vikt-% oak Foretractesvis fran omkring 10 till 23 vikt-% av antingen uran 233 eller uran 235, och under vissa omstandigheter, sarskilt dar naturlig uran har .anrikats genom tillsOttning av uran 233, kan legeringen innehalla Iran 5 till 23 vikt-% av en blandning eller kombination av uran 233 och uran 235. Efter det att tillrackligt med bor bar inforts i det smalta metallbadet pa detta satt, tillsattes en forutbestamd mangd uran till badet, smaltes och legeras med metallen dart, och legeringen gjutes i en lamplig gjutform. Gjutstycket kan sedan formas till den anskade konturformen genom konventionella bearbetningsforfaranden. och eventuellt bekladas. An appropriate amount of aluminum or zirconium was melted, and a gaseous boron halide was bubbled through the bath. Boron trichloride or boron tribromide are preferably used. These boron halides react with the molten metal bath to form a volatile metal halide, which rises to the surface of the bath and disperses, and a fine dispersion of boron is distributed throughout the bath. It will be appreciated that the term "uranium" includes natural uranium, which contains 0.7% by weight of uranium 235, and natural uranium, which is enriched by the addition of either uranium 235 or uranium 233 thereto. In each case, the uranium content of the alloys should contain from 5% by weight, preferably from about 10% to 23% by weight of either uranium 233 or uranium 235, and in certain circumstances, especially where natural uranium has been enriched by the addition of uranium 233, the alloy contains Iran 5 to 23% by weight of a mixture or combination of uranium 233 and uranium 235. After sufficient boron was introduced into the narrow metal bath in this way, a predetermined amount of uranium was added to the bath, melted and alloyed with the metal. dart, and the alloy is cast in a suitable mold. The casting can then be formed into the desired contour shape by conventional machining methods. and possibly be clothed.

Sam ett specifikt exempel p0 det lona omtalade forfarandet ma det antagas, att man onskar framstalla ett ettkilogramsgjutstycke innehallande 20 % uran, omkring 0,3 % naturlig bor och resten i huvudsak hell rent aluminium. En sats av omkring 805 g i huvudsak rent aluminium smaltes i en induktionsugn. Badtemperaturen halles vid omkring 800' CI, och bortrikloridgas bubblas genom det smalta aluminiet. Stokiometriskt skulle det erfordras 6,2 I bortriklorid vid 760 mm kvicksilvertryek och 20° C f8r att reagera med omkring 7,5 g aluminium for alstring av 3 g bor, den erforderliga mangden. Det har emellertid befunnits, att utvinningen av bor vid denna reaktion under dessa betingelser vanligen Or mindre On — — %. Darfor kan anda till 125 1 bortrikloridgas vid de forut angivna standardbetingelserna ifraga om temperatur och tryck erfordras. Efter det att bortrikloriden bar bubblats igenom badet, tillsattes omkring 200 g uran till det smalta aluminiet, okas badets temperatur till omkring 9000--11000 C saint smaltes uranen med aluminium-bor-basen for att bilda den onskade legeringen. Smaltan kan sedan gjutas i konventionella gjutformar av t. ex. grafit och tillata:s att stelna. Gjutstycket kan sedan formas genom konventionella bearbetningsforfaranden, sasom t. ex. smidning eller valsning, till bransleelement av den Onskade konturformen och eventuellt bekladas med aluminium. In a specific example of the process described above, it must be assumed that it is desired to produce a one-kilogram casting containing 20% uranium, about 0.3% natural boron and the remainder mainly pure aluminum. A batch of about 805 g of substantially pure aluminum was melted in an induction furnace. The bath temperature is maintained at about 800 ° C, and boron trichloride gas is bubbled through the molten aluminum. Stochiometrically, 6.2 L of boron trichloride would be required at 760 mm Hg and 20 ° C to react with about 7.5 g of aluminum to produce 3 g of boron, the required amount. However, it has been found that the recovery of boron in this reaction under these conditions is usually Or less On - -%. Therefore, it can breathe to 125 l of boron trichloride gas at the standard conditions specified above, regardless of whether temperature and pressure are required. After the boron trichloride was bubbled through the bath, about 200 g of uranium was added to the molten aluminum, the temperature of the bath was raised to about 9000 DEG-110 DEG C. The uranium was melted with the aluminum boron base to form the desired alloy. The melt can then be cast in conventional molds of e.g. graphite and allow: s to solidify. The casting can then be formed by conventional machining methods, such as e.g. forging or rolling, into industry elements of the desired contour shape and possibly coated with aluminum.

Vid utovandet av uppfinningen kan zirkonium ersatta aluminiet pa en direkt viktgrundval med lampliga justeringar i smalttemperaturer, och bortribromid kan ersdtta boririklorid med yederborliga stokiometriska justeringar, om sa Onskas. Vidare ar det, om man iinskar beklada dessa zirkonium-uranbor-reaktorbransleelement, lampligast, att zirkonium begagnas som ett bekladnadsmaterial. In the practice of the invention, zirconium may replace the aluminum on a direct weight basis with appropriate adjustments in melting temperatures, and boron tribromide may replace boron chloride with additional stoichiometric adjustments, if desired. Furthermore, if one wishes to coat these zirconium-uranium boron reactor fuel elements, it is most appropriate that zirconium be used as a cladding material.

I reaktorbransleelement innehadlande antingen aluminium eller zirkonium framstallda enligt foreliggande uppfinning är borhalten i huvudsak jamnt fOrdelad genom hela legeringsmatrisen, varigenom icke onskvarda heta flackar undgas under en karnreaktion, och i huvudsak konstant k-varde for en reaktor innefattande dessa brAnsleelement kan bihehallas Over relativt langa tidsperioder riled ett minimum av yttre kontroll. In reactor fuel elements containing either aluminum or zirconium produced according to the present invention, the boron content is substantially evenly distributed throughout the alloy matrix, thereby avoiding unsightly hot flakes during a nuclear reaction, and substantially constant k-value for a reactor comprising these fuel cell elements. riled a minimum of external control.

Claims (6)

Patentansprik:Patent claim: 1. FOrfaringssatt for framstallning av nentronreaktorbransteelement, kannetecknat darav, att en .mangd metallisk aluminium eller zirkonium smaltes, att gasformig bortriklorid eller bortribromid bringas att bubbla genom den smalta metallen, varigenom gasen sonderdelas sa, att .det bildas en dispersion av bor rnetallen, att klyvbart uran legeras med namnda smalta metall sa, att det bildas en legering bestaende av 0,002-0,20 vikt-% bor 10 eller naturlig bor i ,saclan mangd, •att namnda halt av bor 10 erhalles, 5-23 vikt-% uran 233 .eller uran 235 eller blandningar Gray, varvid resten av legeringen är alminium eller zirkonium, och att naninda legering gjutes.1. A process for the production of nentron reactor fuel elements, characterized in that a large amount of metallic aluminum or zirconium is melted, that gaseous boron trichloride or boron tribromide is caused to bubble through the molten metal, whereby the gas is separated so that a dispersion of the boron is formed. fissile uranium is alloyed with said molten metal so that an alloy is formed consisting of 0.002-0.20% by weight of boron 10 or natural boron in, saclan amount, • that said content of boron 10 is obtained, 5-23% by weight of uranium 233 .or uranium 235 or mixtures Gray, the remainder of the alloy being aluminum or zirconium, and the naninda alloy being cast. 2. FOrfaringssatt enligt patentanspraket 1, kannetecknat daray, att namnda legering innehaller frau 10 till 23 vikt-% av namnda uran.2. A method according to claim 1, characterized in that said alloy contains from 10 to 23% by weight of said uranium. 3. Forfaringssatt enligt patentanspraket 1, kannetecknat darav, att namnda legering innehaller fran 10 till 23 vikt-% uran 233.3. A process according to claim 1, characterized in that said alloy contains from 10 to 23% by weight of uranium 233. 4. F5rfaringssatt enligt patentanspraket 1, kannetecknat darav, att naranda legering innehaller frail 10 till 23 vikt- uran 235.4. An experience according to claim 1, characterized in that the naranda alloy contains from 10 to 23 weight uranium 235. 5. Forfaringssatt enligt patentanspraket 1, kannetecknat darav, att narnncla legering innehaller frau 0,002 till 0,13 vikt-% bor 10.5. A process according to claim 1, characterized in that this alloy contains from 0.002 to 0.13% by weight of boron. 6. Forfaringssatt enligt patentanspraket 1, kannetecknat därav aLt gasen är naturlig bortriklorid eller naturlig borlribromid. Anforda publikationer: Stockholm 1961. Bungl. Boktr. P. A. Norstedt & Saner. 010089Process according to claim 1, characterized in that the gas is natural boron trichloride or natural boron ribbromide. Request publications: Stockholm 1961. Bungl. Boktr. P. A. Norstedt & Saner. 010089
SE176832D SE176832C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE176832T

Publications (1)

Publication Number Publication Date
SE176832C1 true SE176832C1 (en) 1961-01-01

Family

ID=38408810

Family Applications (1)

Application Number Title Priority Date Filing Date
SE176832D SE176832C1 (en)

Country Status (1)

Country Link
SE (1) SE176832C1 (en)

Similar Documents

Publication Publication Date Title
JP7238179B2 (en) Ceramic nuclear fuel dispersed in alloy matrix
JP2011115860A (en) Method for producing cast part
NO123365B (en)
Burkes et al. Metallic fast reactor fuel fabrication for the global nuclear energy partnership
Saliba-Silva et al. Fabrication of U3Si2 powder for fuels used in IEA-R1 nuclear research reactor
Revil-Baudard et al. Solidification of a vacuum arc-remelted zirconium ingot
Kim et al. Microstructural characterization of U‐Zr alloy fuel slugs for sodium‐cooled fast reactor
Kim et al. Preparation of U–Zr–Mn, a surrogate alloy for recycling fast reactor fuel
SE176832C1 (en)
Kim et al. Injection casting of U–Zr and U–Zr–RE fuel slugs and their characterization
US2992178A (en) High strength control rods for neutronic reactors
US3177069A (en) Methods of manufacturing fissionable materials for use in nuclear reactors
US2967812A (en) Neutronic reactor fuel composition
Aikin Jr Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds
US9305667B1 (en) Nuclear fuel alloys or mixtures and method of making thereof
US2904429A (en) Plutonium-thorium alloys
US2929706A (en) Delta phase plutonium alloys
US3326673A (en) Process for separating plutonium from uranium from fission products
US2885283A (en) Plutonium-aluminum alloys
Song et al. Fabrication and Characterization of U–Zr Fuel Slug for Sodium-Cooled Fast Reactor
Chellew et al. The melt refining of irradiated uranium: application to EBR-II fast reactor fuel. XII. The behavior of ruthenium, molybdenum, palladium, rhodium, technetium, antimony, cadmium, and tellurium
Baeslack III et al. Weld solidification and HAZ liquation in a metastable-beta titanium alloy-Beta-21S.[Ti-15wt% Mo-2. 7wt% Nb-3wt% Al-0. 2wt% Si]
Song et al. Casting Development of Metallic Fuel for SFR
Atoda et al. NEUTRON-SHIELD MATERIALS. PART I. FUNDAMENTAL STUDIES ON BORAL-INGOT PREPARATION
Conner Preparation of thin actinide metal disks using a multiple disk casting technique