SE1600311A1 - Heat insulating disk unit forming an insulating box containing aerographite - Google Patents

Heat insulating disk unit forming an insulating box containing aerographite Download PDF

Info

Publication number
SE1600311A1
SE1600311A1 SE1600311A SE1600311A SE1600311A1 SE 1600311 A1 SE1600311 A1 SE 1600311A1 SE 1600311 A SE1600311 A SE 1600311A SE 1600311 A SE1600311 A SE 1600311A SE 1600311 A1 SE1600311 A1 SE 1600311A1
Authority
SE
Sweden
Prior art keywords
insulating
heat
space
aerographite
disk unit
Prior art date
Application number
SE1600311A
Other languages
Swedish (sv)
Other versions
SE540007C2 (en
Inventor
Eriksson Lars
Original Assignee
Lars Eriksson Dev Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lars Eriksson Dev Ab filed Critical Lars Eriksson Dev Ab
Priority to SE1600311A priority Critical patent/SE1600311A1/en
Priority to PCT/SE2017/000044 priority patent/WO2018088944A1/en
Publication of SE540007C2 publication Critical patent/SE540007C2/en
Publication of SE1600311A1 publication Critical patent/SE1600311A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/066Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of foam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Thermal Insulation (AREA)

Abstract

.Föreliggande uppfinning avser en värmeisolerande skivenhet (1), som uppvisar minst två skivor (2), företrädesvis glasskivor (3), åtskilda av minst ett mellanliggande distanselement (4), som innesluter minst ett utrymme (5), som innesluter minst en gas, bildande t.ex. en isolerruta (7), minst en del av utrymmet (5) mellan skivorna (2) är påfyllt med Aerografit (6) innehållande luft och kolnanorör (8), som till minst en del hindrar en gascirkulation mellan skivorna (2), som till minst någon del förbättrar isolerrutans värmeisolerande förmåga.The present invention relates to a heat-insulating disc unit (1), which has at least two sheets (2), preferably glass sheets (3), separated by at least one intermediate spacer element (4), which encloses at least one space (5), which encloses at least one gas , forming e.g. an insulating glass (7), at least a part of the space (5) between the discs (2) is filled with Aerography (6) containing air and carbon nanotubes (8), which at least partially impedes a gas circulation between the discs (2), at least some part improves the thermal insulating ability of the insulating glass.

Description

Värmeisolerande skivenhet Föreliggande uppfinning avser en värmeisolerandeskivenhet, som uppvisar minst två skivor, åtskilda avminst ett mellanliggande distanselement, som innesluterminst ett utrymme, som innesluter minst en gas. I minsten del av utrymmet är nanopartiklar anordnade, somminskar en gascirkulation mellan skivorna då en del avgasen uppvärms, för att förbättra den värmeisolerande skivenhetens värmeisolerande förmåga. The present invention relates to a heat insulating disc unit having at least two discs spaced apart by at least one intermediate spacer member enclosing at least one space enclosing at least one gas. In at least part of the space, nanoparticles are arranged, which reduces a gas circulation between the discs when some of the exhaust gas is heated, in order to improve the heat-insulating ability of the heat-insulating disc unit.

Vid på marknaden förekommande konstruktioner avifrågavarande slag, där man värmeisolerar med stenull,glasull och isolerglas, där luftmängder är inneslutna imindre utrymmen eller som. i en isolerruta ett antalglasskivor innesluter luftvolymer för att minskaluftcirkulationen, som överför värme via konvektiongenom isolerglaset. Ett antal glasskivor blir dyrt ochtungt i en isolerruta för att erhålla godvärmeisolering. För att ytterligare förbättravärmeisoleringen används lågemissionsskikt på minst enav glasskivornas insidor, för att reflektera invärmestrålning i ett värmeisolerat utrymme. Det är dyrtoch tidsödande. Dessa isolerrutor visar ändå en dåligvärmeisolering jämfört med en vanlig isolerad vägg, som har ca tre gånger bättre värmeisolering.In constructions on the market of the type in question, where thermal insulation is provided with rock wool, glass wool and insulating glass, where air volumes are enclosed in small spaces or as. in an insulating glass unit a number of glass sheets encloses air volumes in order to reduce the air circulation, which transfers heat via convection through the insulating glass. A number of glass sheets become expensive and heavy in an insulating glass to obtain good thermal insulation. To further improve the thermal insulation, low-emission layers are used on at least one of the insides of the glass sheets, to reflect heat radiation in a heat-insulated space. It is expensive and time consuming. These insulation windows still show poor thermal insulation compared to a standard insulated wall, which has about three times better thermal insulation.

Syfte med föreliggande uppfinning är att eliminera denackdelar som finns med ovan nämnda konstruktioner,genom att minska konvektionen i en värme isolerandeskivenhet genom att mer eller mindre fylla det utrymmesom finns mellan skivorna med Aerografit, som består avett nätverk av kolnanorör och luft. Aerografit består av i huvudsak luft. Aerografit kan bära 40 000 gånger sin egen vikt och o materialet klämmas ihop fjädrar dettillbaka till sin ursprungliga form, Detta gör attkonvektionen minskar drastiskt i en isolerruta, vilket drastiskt förbättra dess värmeisolerande förmåga.The object of the present invention is to eliminate the disadvantages present with the above-mentioned constructions, by reducing the convection in a heat insulating disc unit by more or less filling the space which exists between the discs with Aerografit, which consists of a network of carbon nanotubes and air. Aerography consists mainly of air. Aerography can carry 40,000 times its own weight and if the material is squeezed, it springs back to its original shape. This causes the convection to decrease drastically in an insulating glass, which drastically improves its heat-insulating ability.

Tack vare uppfinningen har man nu åstadkommit anordningvid värmeisolerande skivenhet, som uppvisar minst tvåskivor, företrädesvis glasskivor, som åtskilda avmellanliggande distanselement, som innesluter minst ettutrymme, som innesluter' minst en gas, för att. bildat.ex. en isolerruta. Enligt uppfinningen är utrymmetfyllt med Aerografit, som tangerar och fyllerisolerrutans utrymme mellan glasen och i huvudsakhindrar en gascirkulation mellan skivorna, då del avgasen uppvärms. Då uppstår i huvudsak ingen konvektion,varför bara mycket lite av den uppvärmda gasen kan viakonvektionen transporteras igenom. isolerrutan, som. dåerhåller en starkt förbättrad värmeisolerande förmåga.Kolnanorören är så små att de uppvisar en storlek, somär osynlig för blotta ögat. För att ge så bravärmeisolering som möjligt utbreder varje kolnanorörmot varandra och stöttar varandra. På det viset stoppaskonvektionen effektivare, speciellt om de uppvisarutskott, som krokar tag i varandra i utrymmet. I envariant av uppfinningen uppvisar Aerografit glestanordnade långsträckta kolnanorör,. På detta viserhålles en stor utbredning i förhållande till dessvikt av varje nanopartikel, vilket ökar dessljusgenomsläpplighet, vilket är bra. i ett isolerglasför att få ljust inomhus. Genom att Kolnanorören ärgjorda av ett ljus och/eller värmereflekterandematerial, som reflekterar tillbaka energi in i ettuppvärmt utrymme, som är värmeisolerat kan den värmeisolerande egenskapen ytterligare förbättras för att reflektera utstrålande värme från ett uppvärmt utrymme tillbaka till detta.Uppfinningen beskrivs närmare med hjälp av någraföredragna utföringsexempel under hänvisning tillbifogade ritningar, på vilka Fig. 1 visar en skivenhet som en isolerruta. fig. 2 visar ett antal sammankopplade kolnanorör.Thanks to the invention, a device has now been provided for heat-insulating disc unit, which has at least two sheets, preferably glass sheets, as separate intermediate spacer elements, which enclose at least one space, which encloses at least one gas, in order to. formed.ex. an insulating glass. According to the invention, the space is filled with Aerografit, which touches and the space of the filling insulation window between the glasses and in the main prevents a gas circulation between the plates, when part of the exhaust gas is heated. Then essentially no convection occurs, which is why very little of the heated gas can be transported through the via convection. the isolation box, which. provides a greatly improved thermal insulating ability. The carbon nanotubes are so small that they have a size that is invisible to the naked eye. To provide as good thermal insulation as possible, each carbon nanotube extends towards each other and supports each other. In this way, the convection convection is more efficient, especially for the display committees, which hook into each other in space. In a variant of the invention, Aerografit has sparsely arranged elongate carbon nanotubes. On this, a large spread in relation to the failure of each nanoparticle is maintained, which increases its light transmittance, which is good. in an insulating glass to get light indoors. Because the carbon nanotubes are made of a light and / or heat-reflecting material which reflects energy back into a heated space which is heat-insulated, the heat-insulating property can be further improved to reflect radiating heat from a heated space back thereto. exemplary embodiments with reference to the accompanying drawings, in which Fig. 1 shows a disk unit as an insulating glass. Fig. 2 shows a number of interconnected carbon nanotubes.

Såsom framgår av figur 1, visas en värmeisolerandeskivenhet 1, som uppvisar två skivor 2, i form avglasskivor 3, åtskilda av ett mellanliggandedistanselement 4, som innesluter ett utrymme 5, sominnesluter en Aerografit 6, bildande t.ex. en isolerruta 7. Utrymmet 5 är fyllt med kolnanorör 8, som hindrar en gascirkulation mellan skivorna 2.As shown in Figure 1, a heat insulating disc unit 1 is shown, which has two discs 2, in the form of glass sheets 3, separated by an intermediate spacer element 4, which encloses a space 5, which encloses an Aerograph 6, forming e.g. an insulating glass 7. The space 5 is filled with carbon nanotubes 8, which prevent a gas circulation between the discs 2.

Såsom framgår av fig. 2 visas att kolnanorören 8uppvisar utskott, som krokar tag i varandra.Kolnanorören 8 uppvisar glest anordnade långsträcktananoelement 10, som kolnanorören 8 är uppbyggd av, föratt erhålla en stor utbredning i förhållande till dessvikt. Kolnanorören 8 är något ljus och/ellervärmereflekterande material 11, som reflekterartillbaka energi in i ett uppvärmt rum inomhus, som är värmeisolerat.As can be seen from Fig. 2, it is shown that the carbon nanotubes 8 have projections which hook on to each other. The carbon nanotubes 8 have sparsely arranged elongate nanoelements 10, of which the carbon nanotubes 8 are made up, in order to obtain a large extent in relation to failure. The carbon nanotubes 8 are some light and / or heat-reflecting material 11, which reflect energy back into a heated room indoors, which is heat-insulated.

SE1600311A 2016-11-08 2016-11-08 Heat insulating disk unit forming an insulating box containing aerographite SE1600311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE1600311A SE1600311A1 (en) 2016-11-08 2016-11-08 Heat insulating disk unit forming an insulating box containing aerographite
PCT/SE2017/000044 WO2018088944A1 (en) 2016-11-08 2017-11-08 Heat insulating sheet unit forming an insulating glass containing aerographite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1600311A SE1600311A1 (en) 2016-11-08 2016-11-08 Heat insulating disk unit forming an insulating box containing aerographite

Publications (2)

Publication Number Publication Date
SE540007C2 SE540007C2 (en) 2018-02-20
SE1600311A1 true SE1600311A1 (en) 2018-02-20

Family

ID=61190199

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1600311A SE1600311A1 (en) 2016-11-08 2016-11-08 Heat insulating disk unit forming an insulating box containing aerographite

Country Status (2)

Country Link
SE (1) SE1600311A1 (en)
WO (1) WO2018088944A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3614978A1 (en) * 1986-05-02 1987-11-12 Heinz Kunert WALL AND / OR BALANCE ELEMENT
WO2008002237A1 (en) * 2006-06-29 2008-01-03 Lars Eriksson Fire resisting sheet unit
CA2654576A1 (en) * 2006-06-30 2008-07-17 Cardinal Cg Company Carbon nanotube glazing technology
BE1019690A3 (en) * 2010-06-24 2012-10-02 Agc Glass Europe INSULATING GLAZING.
EP3113874B1 (en) * 2014-03-04 2018-05-09 Hutchinson Gelled composition for organic monolithic gel, uses thereof and process for preparing same

Also Published As

Publication number Publication date
WO2018088944A1 (en) 2018-05-17
SE540007C2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
Ghosh et al. Measured thermal performance of a combined suspended particle switchable device evacuated glazing
Cuce et al. Novel glazing technologies to mitigate energy consumption in low‐carbon buildings: a comparative experimental investigation
Ignjatović et al. Influence of glazing types and ventilation principles in double skin façades on delivered heating and cooling energy during heating season in an office building
El-Sadi et al. CFD analysis of turbulent natural ventilation in double-skin façade: Thermal mass and energy efficiency
Singh et al. Suitable Glazing Selection for Glass‐Curtain Walls in Tropical Climates of India
SE1600311A1 (en) Heat insulating disk unit forming an insulating box containing aerographite
Fujita et al. Improvement of outdoor radiative environment by high-reflective facade: Effect of heat-shielding film with retro-reflective property in near infrared band
Laouadi Thermal performance modelling of complex fenestration systems
CN203999381U (en) Fireproof hollow glass
Ananacha et al. Daylighting and thermal performance of thai modern façade wall
WO2015000090A3 (en) Fire-resistant glass pane and fire-resistant glazing
Chmúrny Ultra thin glass membranes for advanced glazing of nZEB
Needham et al. Response of the Vertical Structure of Radiative-Convective Equilibrium to Sea Surface Temperatures
Tudiwer et al. Façade Greening On Buildings
Pont et al. Transparent Facade Constructions: A Comparison between Conventional Insulation Glass and Vacuum Glazing
Gandjalikhan Nassab et al. Transient numerical analysis of a multi-layered porous heat exchanger including gas radiation effects
Putra et al. Reducing Energy Consumption through Innovative Glass Layering Construction with Polyethylene Bubble Wrap at 2nd Floor Dean Faculty Room
Alsaad et al. The Efficiency of Night Insulation Using Aerogel Filled Polycarbonate Panels During the Heating Season
Molina Piernas et al. Experimental thermomechanical damage as first approach to understand the petrophysical behavior of the granitic host-rocks from an active fractured-geothermal system (Liquiñe, Chile-39º S)
Pujar et al. A Review on Insulation in Windows Using Aerogel
Mulyadi Determining Overall Heat Transfer Coefficient and Shading Coefficient of Double-Skin Façade
Kato et al. The applicability of glazing system with dynamic insulation for residential buildings
Cvetkovska et al. Parametric analysis of the impact of windows on energy needs of buildings with energy passive house standard
Xie et al. Is Convection Sensitive to Model Vertical Resolution and Why?
KR101559229B1 (en) Window having Peltier effect device

Legal Events

Date Code Title Description
NUG Patent has lapsed