SE1500058A1 - Fuel for water-cooled nuclear reactors - Google Patents
Fuel for water-cooled nuclear reactors Download PDFInfo
- Publication number
- SE1500058A1 SE1500058A1 SE1500058A SE1500058A SE1500058A1 SE 1500058 A1 SE1500058 A1 SE 1500058A1 SE 1500058 A SE1500058 A SE 1500058A SE 1500058 A SE1500058 A SE 1500058A SE 1500058 A1 SE1500058 A1 SE 1500058A1
- Authority
- SE
- Sweden
- Prior art keywords
- water
- uranium
- porosity
- fuel
- fuels
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
- G21C3/62—Ceramic fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Ceramic Products (AREA)
Abstract
Ändamålet med föreliggande uppfinning är att tillhandahålla ett kärnbränsle med aktiniddensitet högre än 9.7 g/ cmkombinerat med förbättrad tolerans mot vatten och vattenånga vid temperaturer överstigande 250°C.Ett särskilt ändamål med föreliggande uppfinning är att tillhandahålla ett urannitridbränsle med förbättrad tolerans mot vatten och vattenånga vid temperaturer överstigande 250°C.Detta och andra syften uppnås med hjälp av uppfinningen såsom den definieras i de oberoende kraven.Ytterligare fördelaktiga utföringsformer av uppfinningen har angivits i de osjälvständiga patentkraven.Uppfinningen erbjuder en lösning på problem med korrosion av kärnbränslen med aktiniddensitet högre än 9.7 g/cmsom observerats vid exponering mot vatten och vattenånga vid temperaturer överstigande 250°C, och underlättar därför att använda denna typ av bränslen i kommersiella vattenkylda kärnkraftverk.I synnerhet nitridbränslen har historiskt sett varit svåra att tillverka med hög täthet, varför det förelegat en ansenlig grad av öppen porositet i de producerade kutsarna. Ånga och trycksatt hetvatten kan därmed tränga in och oxidera kutsen på djupet. Den större specifika volymen hos bildad urandioxid åstadkommer en inre expansion som på kort tid fragmenterar och slutligen pulvriserar kutsen. Genom att tillverka urannitridbränslen, uransilicidbränslen samt blandningar mellan dessa bränslen med en tillräckligt låg andel öppen porositet, begränsas oxidationen till ett ytligt korrosionsangrepp vilket betydligt fördröjer bränslets nedbrytning.Experiment med kutsar av olika täthet bekräftar att angreppets hastighet är mer beroende av kutsens porositet än av reaktionstemperaturen, vilket stöder slutsatsen att ökat skydd mot korrosion i ånga och trycksatt hetvatten lättast åstadkoms genom att eliminera den öppna porositeten.Urannitridbränslen med mycket låg porositet kan tillverkas genom att tillämpa starkströmsassisterad varmpressning (SPS) vid en temperatur överstigande 1600°C [Malkki 2014].Ytterligare en möjlighet att eliminera den öppna porositeten i ett urannitridbränsle uppnås genom att i urannitriden blanda in en viss andel uransilicid med smälttemperatur under 1600°C. Under kutstillverkning vid temperatur över 1600° utgör uransiliciden tack vare sin plasticitet en porfyllande sekundärfas, som reducerar kutsens porositet.The object of the present invention is to provide a nuclear fuel with actinide density higher than 9.7 g / cm 2 combined with improved tolerance to water and water vapor at temperatures exceeding 250 ° C. A particular object of the present invention is to provide a uranium nitride fuel with improved tolerance to water and water vapor at temperatures exceeding 250 ° C. This and other objects are achieved by means of the invention as defined in the independent claims. Further advantageous embodiments of the invention are set out in the dependent claims. The invention offers a solution to problems of corrosion of nuclear fuels with actin density higher than 9.7. g / cms as observed during exposure to water and water vapor at temperatures exceeding 250 ° C, and therefore facilitates the use of this type of fuel in commercial water-cooled nuclear power plants.In particular nitride fuels have historically been difficult to manufacture with high density, which is why have a considerable degree of open porosity in the pellets produced. Steam and pressurized hot water can thus penetrate and oxidize the pellet at depth. The larger specific volume of uranium dioxide formed produces an internal expansion which in a short time fragments and finally pulverizes the pellet. By manufacturing uranium nitride fuels, uranium silicide fuels and mixtures between these fuels with a sufficiently low proportion of open porosity, the oxidation is limited to a superficial corrosion attack which significantly delays the decomposition of the fuel. , which supports the conclusion that increased protection against corrosion in steam and pressurized hot water is most easily achieved by eliminating the open porosity. Uranium nitride fuels with very low porosity can be manufactured by applying high current assisted hot pressing (SPS) at a temperature exceeding 1600 ° C [Malkki 2014]. A further possibility of eliminating the open porosity in a uranium nitride fuel is achieved by mixing in the uranium nitride a certain proportion of uranium silicide with a melting temperature below 1600 ° C. During pellet production at temperatures above 1600 °, the uranium silicide, due to its plasticity, forms a pore-filling secondary phase, which reduces the pores' porosity.
Description
Patentansokan 1500058-1 Bransle for vattenkylda karnreaktorer Sammanfattning av uppfinningen Andamalet med foreliggande uppfinning är att tillhandahalla ett karnbransle med aktiniddensitet hogre an 9.7 g/ cm3 kombinerat med forbattrad tolerans mot vatten och vattenanga vid temperaturer overstigande 250°C. Patent Application 1500058-1 Fuel for water-cooled nuclear reactors Summary of the invention The object of the present invention is to provide a nuclear fuel with an actin density higher than 9.7 g / cm 3 combined with improved tolerance to water and water vapor at temperatures exceeding 250 ° C.
Ett sarskilt andamal med foreliggande uppfinning är att tillhandahalla ett urannitridbransle med forbattrad tolerans mot vatten och vattenanga vid temperaturer overstigande 250°C. A particular object of the present invention is to provide a uranium nitride fuel with improved tolerance to water and water vapor at temperatures in excess of 250 ° C.
Detta och andra syften uppnas med hjalp av uppfinningen sasom den definieras i de oberoende kraven. Ytterligare fOrdelaktiga utforingsformer av uppfinningen har angivits i de osjalvstandiga patentkraven. This and other objects are achieved by means of the invention as defined in the independent claims. Further advantageous embodiments of the invention are set out in the dependent claims.
Uppfinningen erbjuder en losning pa problem med korrosion av karnbranslen med aktiniddensitet hogre an 9.7 g/cm3 som observerats vid exponering mot vatten och vattenanga vid temperaturer overstigande 250°C, och underlattar dart& att anvanda denna typ av branslen i kommersiella vattenkylda karnkraftverk. The invention offers a solution to the problem of corrosion of the nuclear fuels with actin density higher than 9.7 g / cm3 observed on exposure to water and water vapor at temperatures exceeding 250 ° C, and facilitates the use of this type of industry in commercial water-cooled nuclear power plants.
I synnerhet nitridbranslen har historiskt sett varit svara att tillverka med hog tathet, varier det forelegat en ansenlig grad av Oppen porositet i de producerade kutsarna. Anga och trycksatt hetvatten kan darmed tranga in och oxidera kutsen pa djupet. Den starre specifika volymen hos bildad urandioxid astadkommer en inre expansion som pa kort tid fragmenterar och slutligen pulvriserar kutsen. Genom att tillverka urannitridbranslen, uransilicidbranslen samt blandningar mellan dessa branslen med en tillrackligt lag andel oppen porositet, begransas oxidationen till ett ytligt korrosionsangrepp vilket betydligt fordrojer branslets nedbrytning. Nitride fuels in particular have historically been responsible for manufacturing with high density, although there has been a considerable degree of open porosity in the pellets produced. Entering and pressurized hot water can thus penetrate and oxidize the puddle at depth. The more specific volume of uranium dioxide formed results in an internal expansion which in a short time fragments and finally pulverizes the pellet. By manufacturing the uranium nitride fuels, the uranium silicide fuels and mixtures between these industries with a sufficiently low proportion of open porosity, the oxidation is limited to a superficial corrosion attack, which significantly delays the degradation of the industry.
Experiment med kutsar av olika tathet bekraftar att angreppets hastighet är mer beroende av kutsens porositet an av reaktionstemperaturen, vilket stoder slutsatsen att Okat skydd mot korrosion i anga och trycksatt hetvatten lattast astadkoms genom att eliminera den Oppna porositeten. Experiments with pellets of different densities confirm that the rate of attack is more dependent on the pore's porosity than on the reaction temperature, which concludes that Okat protection against corrosion in steam and pressurized hot water is most easily achieved by eliminating the open porosity.
Urannitridbranslen med mycket lag porositet kan tillverkas genom att tillampa starkstramsassisterad varmpressning (SPS) vid en temperatur overstigande 1600°C [Malkki 2014]. Uranium nitride fuels with very low porosity can be manufactured by applying high-voltage assisted hot pressing (SPS) at a temperature exceeding 1600 ° C [Malkki 2014].
Ytterligare en mojlighet aft eliminera den oppna porositeten i ett urannitridbransle uppnas genom att i urannitriden blanda in en viss andel uransilicid med smalttemperatur under 1600°C. Under kutstillverkning vid temperatur over 1600° utgor uransiliciden tack vare sin plasticitet en porfyllande sekundarfas, som reducerar kutsens porositet. Another possibility of eliminating the open porosity in a uranium nitride fuel is achieved by mixing in the uranium nitride a certain proportion of uranium silicide with a melting temperature below 1600 ° C. During pellet production at temperatures above 1600 °, the uranium silicide, due to its plasticity, forms a pore-filling secondary phase, which reduces the porosity of the pellet.
Patentansokan 1500058-1 Bransle for vattenkylda karnreaktorer Beskrivning av uppfinningen Karnbranslet är amnat att medge langre drifttid, alternativ hogre effekt, eller en kombination darav for vattenkylda karnreaktorbranslen. Branslets aktiniddensitet overstiger 9.7 g/cm3 och dess oppna porositet äí tillrackligt lag for aft vasentligt aka branslets korrosionsbestandighet. Branslekutsen är tillverkad med konventionell sintring, varmpressning, faltassisterad varmpressning, mikrovagsassisterad varmpressning eller starkstromsassisterad varmpressning (SPS). Patent Application 1500058-1 Fuel for water-cooled nuclear reactors Description of the invention The nuclear fuel is designed to allow longer operating time, alternative higher power, or a combination thereof for water-cooled nuclear reactor fuels. The actin density of the fuel exceeds 9.7 g / cm3 and its open porosity is sufficiently sufficient to significantly reduce the corrosion resistance of the industry. The fuel pellet is manufactured with conventional sintering, hot pressing, field-assisted hot pressing, microwave-assisted hot pressing or high-current assisted hot pressing (SPS).
I en foredragen konstruktion bestar branslet till mer an 80 volymprocent av urannitrid (UN) med en Oppen porositet understigande 0.1%. In a preferred construction, the industry consists of more than 80% by volume of uranium nitride (UN) with an open porosity of less than 0.1%.
I en annan foredragen konstruktion bestar branslet till mer an 80 volymprocent av urannitrid (UN) med en oppen porositet understigande 0.1%. Upp till 20 volymprocent bestar av en sekundarfas med lagre smaltpunkt an UN, som tack vare hogre plasticitet agerar porfyllare under sintringen. In another preferred construction, the industry consists of more than 80% by volume of uranium nitride (UN) with an open porosity of less than 0.1%. Up to 20% by volume consists of a secondary phase with a lower melting point than UN, which, thanks to higher plasticity, acts as a pore filler during sintering.
Industrial! anvandbarhet Uppfinningen är speciellt anvandbar i lattvattenkylda och tungvattenkylda karnkraftverk. Exempel 1) I detta exempel har labbtester utforts pa urannitridkutsar bestaende av mer an 80% UN, med varierande porositet och halt av UO2, U2N3 samt uransilicid. Vid exponering av UN mot vattenanga bildas urandioxid, ammoniak, samt vatgas enligt reaktionsformeln UN + 2H20 —> UO2 + NH3 + 0.H2 Testparametrar: Angtryck: 0.5 bar Angtemperatur: 400-425°C Labbtesterna visade att hastigheten for korrosionsattacken pa urannitridkutsen Or kraftigt beroende av dess porositet. Industrial! usability The invention is particularly useful in low water cooled and heavy water cooled nuclear power plants. Example 1) In this example, lab tests have been performed on uranium nitride pellets consisting of more than 80% UN, with varying porosity and content of UO2, U2N3 and uranium silicide. Upon exposure of UN to water vapor, uranium dioxide, ammonia, and hydrogen gas are formed according to the reaction formula UN + 2H20 -> UO2 + NH3 + 0.H2 Test parameters: Angle pressure: 0.5 bar Angle temperature: 400-425 ° C The lab tests showed that the rate of corrosion attack on the uranium nitride powder is highly dependent on its porosity.
Figur 1 visar uppmatt produktionsrat for vatgas, samt total produktion av vatgas som funktion av tid for urannitridkutsar med 2.3%, 13.0% samt 22.4% porositet. 0 0.0 2 300 3 1001200 lid [minuter] 100 Rat [22.4% porositet] — Rat [13.0% porositet] — Rat [2.3% porositet] ProclukUt, 122.4 tkti oska] — Produktion [13.0% porositet] Produktionporositet] ...•. Figure 1 shows the measured production rate for hydrogen gas, as well as total production of hydrogen gas as a function of time for uranium nitride pellets with 2.3%, 13.0% and 22.4% porosity. 0 0.0 2 300 3 1001200 lid [minutes] 100 Steering wheel [22.4% porosity] - Steering wheel [13.0% porosity] - Steering wheel [2.3% porosity] ProclukUt, 122.4 tkti oska] - Production [13.0% porosity] Production porosity] ... •.
• •• Produktion av H2 [% av teoretiskt maximum] 7 .0 C.1 :0 3 as -0 E Patentansokan 1500058-1 Figur 1: Produktionsrat samt total produktion av vatgas vid exponering av UN far vattenanga. Exempel 2) I detta exempel har urannitridkutsar med olika grader av Oppen porositet tillverkats med SPS-metoden vid olika temperaturer och tryck. Den 'Vona porositeten har uppmats med Arkimedes metod samt kloroform som medium. Figur 2 visar den 'Vona porositeten som funktion av total porositiet. Matningarna visar att nar den totala porositeten i urannitridkutsen är under 2.5%, sa understiger den oppna porositeten 0.1%. oppen porositet [%] 12.0 H6g porOsii.et Overgar4s.om .4de Ful t sluWi parosite 9.0 6.0 3.0 0.0 ...... 0.03.06.09.012.015.0 Total porositet [°/0] Figur 2: ()poen porositet i UN-kutsar som funktion av total porositet • •• Production of H2 [% of theoretical maximum] 7 .0 C.1 : 0 3 as -0 E Patent Application 1500058-1 Figure 1: Production rate and total production of hydrogen gas when exposed to UN water vapor. Example 2) In this example, uranium nitride pellets with different degrees of open porosity have been manufactured with the SPS method at different temperatures and pressures. The 'Vona porosity has been measured with Archimedes' method and chloroform as medium. Figure 2 shows the 'Hope porosity as a function of the total porosity. The feeds show that when the total porosity of the uranium nitride powder is below 2.5%, the open porosity is less than 0.1%. open porosity [%] 12.0 H6g porOsii.et Overgar4s.om .4de Ugly t sluWi parosite 9.0 6.0 3.0 0.0 ...... 0.03.06.09.012.015.0 Total porosity [° / 0] Figure 2: () Points of porosity in UN pellets as a function of total porosity
Claims (2)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1500058A SE1500058A1 (en) | 2015-01-30 | 2015-01-30 | Fuel for water-cooled nuclear reactors |
PCT/SE2016/000004 WO2016122374A1 (en) | 2015-01-30 | 2016-01-29 | Fuel for water-cooled nuclear reactors |
CA3010876A CA3010876C (en) | 2015-01-30 | 2016-01-29 | Nuclear fuel for water-cooled nuclear reactors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1500058A SE1500058A1 (en) | 2015-01-30 | 2015-01-30 | Fuel for water-cooled nuclear reactors |
Publications (1)
Publication Number | Publication Date |
---|---|
SE1500058A1 true SE1500058A1 (en) | 2016-07-31 |
Family
ID=56543844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1500058A SE1500058A1 (en) | 2015-01-30 | 2015-01-30 | Fuel for water-cooled nuclear reactors |
Country Status (3)
Country | Link |
---|---|
CA (1) | CA3010876C (en) |
SE (1) | SE1500058A1 (en) |
WO (1) | WO2016122374A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110415845B (en) * | 2019-08-06 | 2021-06-11 | 中国核动力研究设计院 | High-uranium-density composite fuel pellet and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2055686C3 (en) * | 1970-11-12 | 1979-11-15 | Nukem Gmbh, 6450 Hanau | Process for the production of a nuclear fuel from uranium monocarbide or uranium mononitride |
US20110206174A1 (en) * | 2010-02-22 | 2011-08-25 | Westinghouse Electric Sweden Ab | Nuclear fuel, a fuel element, a fuel assembly and a method of manufacturing a nuclear fuel |
US10790065B2 (en) * | 2012-08-15 | 2020-09-29 | University Of Florida Research Foundation, Inc. | High density UO2 and high thermal conductivity UO2 composites by spark plasma sintering (SPS) |
-
2015
- 2015-01-30 SE SE1500058A patent/SE1500058A1/en not_active Application Discontinuation
-
2016
- 2016-01-29 WO PCT/SE2016/000004 patent/WO2016122374A1/en active Application Filing
- 2016-01-29 CA CA3010876A patent/CA3010876C/en active Active
Also Published As
Publication number | Publication date |
---|---|
CA3010876C (en) | 2023-08-29 |
WO2016122374A1 (en) | 2016-08-04 |
CA3010876A1 (en) | 2016-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SE1500058A1 (en) | Fuel for water-cooled nuclear reactors | |
Mahaffey et al. | Materials corrosion in high temperature supercritical carbon dioxide | |
PH12018500400B1 (en) | A process of controlling the morphology of graphite | |
CN102616771A (en) | Method for preparing sulfur-free low-ash expanded graphite | |
MY178976A (en) | Method of improving metal-impregnated catalyst performance | |
Forti et al. | Transition metals monoxides. An LDA+ U study | |
HUANG et al. | A density functional theory study on the mechanism of levoglucosan pyrolysis | |
Buchanan | The effects of long-term isothermal ageing on the microstructure of HP-Nb and HP-NbTi alloys | |
Park et al. | Decomposition analysis of energy consumption and GHG emissions by industry classification for Korea's GHG reduction targets | |
CN103771672B (en) | Sludge deodorant | |
Hu et al. | Correction to: Carbon-Based Metal-Free Electrocatalysis for Energy Conversion, Energy Storage, and Environmental Protection | |
CN105732051A (en) | A thermal insulation agent for cast steel member risers | |
Rachkov et al. | Analysis and prediction of the physico-mechanical properties of reactor steel by means of artificial intelligence and applied statistics | |
CN203171315U (en) | Saw machine for cutting sacrificial anode | |
Rozvany et al. | Erratum to: Critical examination of recent assertions by Logo (2013) about the paper ‘Analytical and numerical solutions for a reliability based benchmark example’(Rozvany and Maute 2011) | |
Sutter et al. | Iron-rich Carbonates as the Potential Source of Evolved CO 2 Detected by the Sample Analysis at Mars (SAM) instrument in Gale Crater. | |
Massara et al. | Thermodynamics of advanced fuels-international database project | |
Dewayanto et al. | Kinetic study on the catalytic pyrolysis of decanter cake from palm oil milling plant by using thermogravimetry data | |
Kim et al. | Synthesis of P Doped EDTA-Co Structure and Synergistic Effect of ORR as Electrochemical Catalyst | |
CN104275486A (en) | Screw rod manufacturing technology | |
Elistratov et al. | GREENHOUSE GAS EMISSIONS FROM HYDROELECTRIC RESERVOIRS: ANALYSIS OF RESEARCH EXPERIENCE AND ORGANIZATION OF RESEARCH IN RUSSIA | |
Vasylieva et al. | A compare of the phylogenetic reconstructions sequence results in the program mega 5 and the matlab package | |
Shah et al. | Failure investigation of waste heat recovery boiler in a Nitric acid production plant. | |
Hilfer et al. | Experimental and Simulation-Based Study of Decomposition Processes with Regard to the LDPE High-Pressure Synthesis | |
Hyunsik et al. | Nanostructured oxide and metal hydroxide electrodes for enhanced electrochemical energy storage and oxygen evolution reaction via morphology engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NAV | Patent application has lapsed |