SE1450254A1 - Procedure and system for regulating an internal combustion engine - Google Patents

Procedure and system for regulating an internal combustion engine Download PDF

Info

Publication number
SE1450254A1
SE1450254A1 SE1450254A SE1450254A SE1450254A1 SE 1450254 A1 SE1450254 A1 SE 1450254A1 SE 1450254 A SE1450254 A SE 1450254A SE 1450254 A SE1450254 A SE 1450254A SE 1450254 A1 SE1450254 A1 SE 1450254A1
Authority
SE
Sweden
Prior art keywords
combustion
combustion chamber
additive
temperature
amount
Prior art date
Application number
SE1450254A
Other languages
Swedish (sv)
Inventor
Ola Stenlåås
Kenan Muric
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE1350993A external-priority patent/SE539587C2/en
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1450254A priority Critical patent/SE1450254A1/en
Priority to DE112014003463.0T priority patent/DE112014003463T5/en
Priority to SE1450994A priority patent/SE1450994A1/en
Priority to PCT/SE2014/050982 priority patent/WO2015030661A1/en
Publication of SE1450254A1 publication Critical patent/SE1450254A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/04Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by adding non-fuel substances to combustion air or fuel, e.g. additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Föreliggande uppfinning hänför sig till ett förfarande för styrning av en förbränningsmotor (101), varvid nämnda förbränningsmotor (101) innefattar åtminstone en förbränningskammare (201) och organ (202) för tillförsel av bränsle till nämnda förbränningskammare (201), varvid förbränning i nämnda förbränningskammare (201) sker i förbränningscykler. Förfarandet äratt: - under en första förbränningscykel och genom utnyttjande av första sensororgan (406), fastställa ett första parametervärde representerande en storhet avseende nämnda förbränningskammare. (201) , - genom utnyttjande av nämnda första parametervärde, fastställa en första mängd tillsatsmedel för tillförsel till nämnda förbränningskammare, och - till nämnda förbränningskammare (201) tillföra nämnda första mängd tillsatsmedel.Uppfinningen avser även ett system och ett fordon.Fig. 5The present invention relates to a method of controlling an internal combustion engine (101), said internal combustion engine (101) comprising at least one combustion chamber (201) and means (202) for supplying fuel to said combustion chamber (201), wherein combustion in said internal combustion chamber (201) occurs in combustion cycles. The method is: during a first combustion cycle and by using first sensor means (406), determining a first parameter value representing a quantity with respect to said combustion chamber. (201), - by using said first parameter value, determining a first amount of additives for supply to said combustion chamber, and - supplying to said combustion chamber (201) said first amount of additives. The invention also relates to a system and a vehicle. 5

Description

1 FoRFARANDE OCH SYSTEM FOR REGLERING AV EN FoRBRANNINGSMOTOR Uppfinningens omrade Foreliggande uppfinning hanfor sig till forbranningsmetorer, och i synnerhet till ett forfarande for reglering av en forbranningsmotor enligt ingressen till patentkravet 1. FIELD OF THE INVENTION The present invention relates to combustion engines, and in particular to a method of controlling an internal combustion engine according to the preamble of claim 1.

Uppfinningen avser Oven ett system och ett fordon, liksom ett datorprogram och en datorprogramprodukt, vilka implementerar forfarandet enligt uppfinningen. The invention also relates to a system and a vehicle, as well as a computer program and a computer program product, which implement the method according to the invention.

Uppfinningens bakgrund Nedanstaende bakgrundsbeskrivning utgar bakgrundsbeskrivning for uppfinningen, och behover saledes inte nodvandigtvis utgora kand teknik. Background of the Invention The following description of the invention constitutes a background description of the invention, and thus does not necessarily constitute a prior art.

Pa grund av okade myndighetsintressen avseende fororeningar och luftkvalitet har utslapps (emissions) -standarder och utslappsbestammelser avseende utslapp fran forbranningsmotorer framtagits i manga jurisdiktioner. Due to increased government interests regarding pollution and air quality, emission standards and emission regulations regarding emissions from internal combustion engines have been developed in many jurisdictions.

Dylika utslappsbestammelser utgor ofta kravuppsattningar vilka definierar acceptabla granser for avgasutslapp vid fordon utrustade med forbranningsmotorer. Exempelvis regleras ofta nivaer for utslapp av kvaveoxider (NO), kolvaten (HC) och kolmonoxid (CO). Dessa utslappsbestammelser kan aven t.ex. hantera forekomst av partiklar i avgasutslapp. Such emission regulations often constitute sets of requirements which define acceptable limits for exhaust emissions in vehicles equipped with internal combustion engines. For example, levels of emissions of nitrogen oxides (NO), hydrocarbons (HC) and carbon monoxide (CO) are often regulated. These emission regulations can also e.g. manage the presence of particles in exhaust emissions.

I en stravan att uppfylla dessa utslappsbestammelser behandlas (renas) de avgaser som orsakas av forbranningsmotorns forbranning. T.ex. kan en s.k. katalytisk reningsprocess utnyttjas, varfor oaks& avgasbehandlingssystem, sasom vid t.ex. fordon och andra farkoster, vanligtvis innefattar en eller flera katalysatorer och/eller andra komponenter. T.ex. innefattar avgasbehandlingssystem vid fordon med dieselmotor ofta partikelfilter. 2 Katalysatorer vid forbranningsmotorer kan utgOras av ett flertal olika typer, dar olika typer kan erfordras for olika branslen och/eller omvandling av olika i avgasstrommen forekommande men oonskade foreningar. Betraffande atminstone nitrosa gaser (kvavemonoxid, kvavedioxid), i det faljande gemensamt benamnda kvaveoxider NOR, innefattar tunga fordon ofta en katalysator dar ett tillsatsmedel tillfOrs den fran forbranningsmotorns forbranning resulterande avgasstrommen for att reducera kvaveoxider NO huvudsakligen till kvavgas och vattenanga. In a penalty to comply with these emission regulations, the exhaust gases caused by the combustion engine combustion are treated (purified). For example. can a s.k. catalytic purification process is used, why oaks & exhaust gas treatment systems, as in e.g. vehicles and other vehicles, usually include one or more catalysts and / or other components. For example. exhaust gas treatment systems in vehicles with diesel engines often include particulate filters. 2 Catalysts in internal combustion engines can consist of a number of different types, where different types may be required for different industries and / or conversion of different but undesirable compounds present in the exhaust stream. Regarding at least nitrous gases (nitrogen monoxide, nitrogen dioxide), hereinafter collectively referred to as nitrogen oxides NOR, heavy vehicles often comprise a catalyst where an additive is supplied to the exhaust gas stream resulting from the combustion engine combustion to reduce nitrogen oxides NO mainly to nitrogen gas and water vapor.

Denna reduktion av utslapp av kvaveoxider fran dieselmotorer utfors vanligtvis genom en metod benamnd SCR (Selective Catalytic Reduction). Denna metod innebar att ett tillsatsmedel, vanligtvis en vattenlosning innehallande amnet urea, tillfors i en tillamplig dos till avgasstrommen uppstroms en SCR-katalysator. This reduction in emissions of nitrogen oxides from diesel engines is usually carried out by a method called SCR (Selective Catalytic Reduction). This method involved adding an additive, usually an aqueous solution containing the substance urea, in an appropriate dose to the exhaust stream upstream of an SCR catalyst.

SCR-katalysatorns funktion erfordrar vanligtvis tillgang till ammoniak (NH3), och vid t.ex. forangning av urea bildas ocksa ammoniak, varvid sedan ammoniak i SCR-katalysatorn reagerar med kvaveoxider i avgasstrommen med omvandling till kvavgas och vattenanga som resultat. The function of the SCR catalyst usually requires access to ammonia (NH3), and in e.g. evaporation of urea also forms ammonia, whereby then ammonia in the SCR catalyst reacts with nitrogen oxides in the exhaust stream with conversion to nitrogen gas and water vapor as a result.

Sammanfattning av uppfinningen Det Or ett syfte med fOreliggande uppfinning att tillhandahalla ett forfarande for reglering av en fOrbranningsmotor. Detta syfte uppnas med ett fOrfarande enligt patentkrav 1. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of controlling an internal combustion engine. This object is achieved by a method according to claim 1.

Foreliggande uppfinning hanfor sig till ett forfarande for styrning av en forbranningsmotor, varvid namnda forbranningsmotor innefattar atminstone en forbranningskammare och organ for tillforsel av bransle till namnda forbranningskammare, varvid forbranning i namnda 3 farbranningskammare sker i forbranningscykler. FOrfarandet är kannetecknat av att: under en forsta forbranningscykel och genom utnyttjande av forsta sensororgan faststalla ett forsta parametervarde representerande en storhet avseende namnda forbranningskammare, genom utnyttjande av namnda forsta parametervarde, faststalla en forsta mangd tillsatsmedel for tillforsel till namnda forbranningskammare, och - till namnda forbranningskammare tillfora namnda fbrsta mangd tillsatsmedel. The present invention relates to a method for controlling an internal combustion engine, said combustion engine comprising at least one combustion chamber and means for supplying fuel to said combustion chamber, wherein combustion in said 3 combustion chambers takes place in combustion cycles. The method is characterized by: during a first combustion cycle and by using first sensor means determining a first parameter value representing a quantity with respect to said combustion chamber, by using said first parameter value, determining a first quantity of additive for supply to said combustion chamber and combustion chamber, add the said first amount of additive.

Namnda tillsatsmedel kan t.ex. utgara ett tillsatsmedel for reduktion av kvaveoxider resulterande vid forbranning i namnda forbranningskammare. Vid forbranning i forbranningsmotorer, synnerhet dieselmotorer, genereras, atminstone delvis pa grund av det syreoverskott som allmant tillampas vid forbranning vid dieselmotorer, oonskade kvaveoxider NOR. Alternativt kan tillsatsmedlet avse reduktion av annan vid forbranningen resulterande substans. Said additives can e.g. constitute an additive for the reduction of nitrogen oxides resulting from combustion in said combustion chamber. During combustion in internal combustion engines, in particular diesel engines, unwanted nitrogen oxides NOR are generated, at least in part due to the excess oxygen that is generally applied during combustion in diesel engines. Alternatively, the additive may relate to the reduction of another substance resulting from the combustion.

Sasom har namnts erfordras, t.ex. pa grund av myndighetsregleringar, ofta nagon typ av behandling av avgasstrommen i syfte att reducera mangden kvaveoxider i avgasstrommen innan avgasstrommen slapps ut i fordonets omgivning, dar denna reduktion av utslapp kan utfOras genom att inspruta tillsatsmedel i en tillamplig dos till avgasstrommen uppstroms en SCR-katalysator. As has been called required, e.g. due to regulatory regulations, often some type of exhaust gas treatment in order to reduce the amount of nitrogen oxides in the exhaust stream before the exhaust stream is released into the vehicle environment, where this reduction in emissions can be accomplished by injecting additives in an appropriate dose to the exhaust stream upstream of an SCR catalyst .

Tillsatsmedlet forangas sedan vid kontakt med de heta avgaserna, varvid ammoniak bildas/frigars for att sedan i SCRkatalysatorn reducera kvaveoxider i avgaserna till kvavgas och vattenanga. 4 Tillsatsmedlet kan tillforas med hjalp av ett insprutningssystem innefattande ett eller flera munstycken for insprutning av tillsatsmedlet till avgasstrommen. Med korrekt dosering av tillsatsmedel kan utslapp av kvaveoxider reduceras i stor utstrackning. The additive is then evaporated on contact with the hot exhaust gases, whereby ammonia is formed / released to then in the SCR catalyst reduce nitrogen oxides in the exhaust gases to nitrogen gas and water vapor. The additive can be supplied by means of an injection system comprising one or more nozzles for injecting the additive into the exhaust stream. With the correct dosage of additives, emissions of nitrogen oxides can be greatly reduced.

Onskad funktion vid insprutning av tillsatsmedel är dock beroende av att avgaserna hiller en tillrackligt hog temperatur for att tillsatsmedlet ska foringas. Under stora delar av en dieselmotors drifttillstind hiller ocksi avgaserna vanligtvis en tillrackligt hog temperatur for att Onskad fordngning ska intraffa. The desired function when injecting additives is, however, dependent on the exhaust gases reaching a sufficiently high temperature for the additive to be lined. During large parts of a diesel engine's operating condition, the exhaust gases also usually reach a sufficiently high temperature for undesired displacement to occur.

Det finns dock situationer dar detta inte kan garanteras, och det kan vara svart att itminstone under vissa driftsforhallanden undvika att en del av det insprutade tillsatsmedlet, sisom t.ex. en urea-/vattenlosning, i ett joke fordngat tillstind kommer i kontakt med vaggytor hos t.ex. en eller flera av avgasror, katalysator, ljuddampare. Vid dylika situationer kan urea/ureabaserade sammansattningar fastna pa vaggytor i avgassystemet. However, there are situations where this cannot be guaranteed, and it may be difficult to avoid, at least in certain operating conditions, some of the injected additive, such as e.g. a urea / water solution, in a joke required condition comes into contact with cradle surfaces of e.g. one or more of exhaust pipes, catalytic converter, muffler. In such situations, urea / urea-based compositions can adhere to cradle surfaces in the exhaust system.

Om bildningen av fasta formationer Or storre an foringning av den bildade belaggningen kommer en successiv belaggningsuppbyggnad att ske. Resultatet kan vid ogynnsamma forhillanden bli en betydande uppbyggnad av fast material. Dessa uppbyggnader kan vaxa sig sipass stora att forbranningsmotorns prestanda pdverkas genom att avgasflodet i avgassystemet paverkas (stryps), och vid stor belaggningsuppbyggnad kan fortsatt motordrift i varsta fall helt forhindras. Belaggningen kan Oven skada komponenter i efterbehandlingssystemet om bildade formeringar, t.ex. i form av klumpar, slapper frin den plats dar de har bildats och sedan fors med avgasstrommen till t.ex. en efterfoljande SCR- katalysator eller andra komponenter. Belaggningsbildningen kan Oven medfora nedsOttning av avgasreningsfunktionen. If the formation of solid formations is greater than the formation of the formed coating, a successive coating build-up will take place. The result of unfavorable conditions can be a significant build-up of solid material. These structures can grow large enough that the performance of the internal combustion engine is affected by the exhaust flow in the exhaust system being affected (throttled), and with a large coating build-up, continued engine operation can in any case be completely prevented. The coating can also damage components in the finishing system if formed formations, e.g. in the form of lumps, the frin relaxes the place where they have formed and then rushes with the exhaust stream to e.g. a subsequent SCR catalyst or other components. Coating formation can also lead to a reduction in the exhaust gas cleaning function.

Enligt foreliggande uppfinning kan dylika problem med belOggningsbildning minskas. LikasO kan behovet av SCR- katalysatorer reduceras eller helt elimineras. Dessutom kan anvOndningen av tillsatsmedel anpassas till radande behov, varvid overdriven tillforsel av tillsatsmedel, med associerade kostnader, kan minskas. According to the present invention, such problems with coating formation can be reduced. Likewise, the need for SCR catalysts can be reduced or completely eliminated. In addition, the use of additives can be adapted to prevailing needs, whereby excessive supply of additives, with associated costs, can be reduced.

Enligt uppfinningen insprutas tillsatsmedel direkt in i forbrOnningsmotorns forbrOnningskammare. Temperaturen i forbrOnningskammaren Or, Otminstone vid forbrOnning av brOnsle, vOsentligt hogre On vid t.ex. SCR-katalysatorn, dl avgasstrommen successivt kyls ned vid passage av avgasrorledningen, bl.a. beroende pa att avgasrorledningen vanligtvis kyls av omgivande luft. Det är ocksO bl.a. pA grund av denna nedkylning som SCR-katalysatorn erfordras, dl annars reaktionshastigheten vid reduktion av NO genom utnyttjande av tillsatsmedlet skulle vara alltfor ldg for att onskad reduktion ska hinna utforas innan avgasstrommen utslOpps i fordonets omgivning. According to the invention, additives are injected directly into the combustion chamber of the internal combustion engine. The temperature in the combustion chamber Or, At least in the combustion of fuel, significantly higher On in e.g. The SCR catalyst, i.e. the exhaust stream, is gradually cooled down as the exhaust pipe is passed, e.g. due to the fact that the exhaust pipe is usually cooled by ambient air. It is also, among other things. Due to this cooling that the SCR catalyst is required, otherwise the reaction rate when reducing NO by using the additive would be too low for the desired reduction to have time to be carried out before the exhaust stream is discharged into the vehicle's surroundings.

I forbrOnningsmotorns forbrOnningskammare, I andra sidan, Or temperaturen vanligtvis sO pass hog att onskade reaktionshastigheter kan uppnas utan hjOlp av en katalysator, och genom att inspruta tillsatsmedel direkt in i forbrOnningskammaren kan en mycket hog reaktionshastighet vid reduktion av de resulterande kvaveoxiderna erh011as nOr avgastemperaturen fortfarande Or hog. In the combustion chamber of the combustion engine, on the other hand, the temperature is usually so high that the desired reaction rates can be achieved without the aid of a catalyst, and by injecting additives directly into the combustion chamber a very high reaction rate can be obtained while reducing the resulting nitrogen oxides. hog.

Enligt en foredragen utforingsform av foreliggande uppfinning estimeras de vid forbrOnningen resulterande kvOveoxiderna, varvid en tillOmplig mOngd tillsatsmedel kan insprutas som funktion av estimerad mangd resulterande kvaveoxider. Estimeringen kan t.ex. utforas under en forbrOnningscykel, 6 varvid mangden insprutat tillsatsmedel vid pafaljande forbranningscykler kan regleras baserat pa namnda estimerade mangd kvaveoxider. According to a preferred embodiment of the present invention, the nitrogen oxides resulting from the combustion are estimated, whereby an appropriate amount of additive can be injected as a function of the estimated amount of nitrogen oxides resulting from the combustion. The estimation can e.g. is carried out during a combustion cycle, 6 whereby the amount of injection injected during subsequent combustion cycles can be regulated based on the said estimated amount of nitrogen oxides.

Vid faststallelse av tillamplig mangd tillsatsmedel far insprutning kan t.ex. de kanda kemiska sambanden vid reaktionen mellan tillsatsmedel och kvaveoxider tillampas for att faststalla tillamplig mangd tillsatsmedel for tillforsel till forbranningskammaren. Vid denna faststallelse kan aven forbranningskammarens temperatur estimeras, varvid mangden tillsatsmedel t.ex. kan hero av farvantad reaktionshastighet. When determining the applicable amount of additive for injection, e.g. the known chemical relationships in the reaction between additives and nitrogen oxides are applied to determine the applicable amount of additives for supply to the combustion chamber. In this determination, the temperature of the combustion chamber can also be estimated, whereby the amount of additive e.g. can hero of advanced reaction rate.

Enligt en utforingsform kan en del av erfordrat tillsatsmedel vara anordnat att insprutas i forbranningskammaren, medan en ytterligare del kan insprutas pa konventionellt satt nedstroms forbranningsmotorn, varvid en del av reduktionen kan utforas i forbranningskammaren och en del i t.ex. en SCR-katalysator. According to one embodiment, a part of the required additive may be arranged to be injected into the combustion chamber, while a further part may be injected in a conventional manner downstream of the combustion engine, whereby part of the reduction can be carried out in the combustion chamber and a part in e.g. and SCR catalyst.

Enligt en utforingsform erfordras inte extern, i avgasroret anordnad injektor for tillforsel av tillsatsmedel, utan istallet tillfors tillsatsmedel via forbranningsmotorns forbranningskammare for transport till t.ex. en katalysator sasom en SCR-katalysator. Tillsatsmedel som tillforts farbranningskammaren enligt denna utfaringsform kan saledes nyttjas delvis for reduktion i forbranningskammaren och delvis for reduktion i en efterfaljande katalysator, alternativt helt for nyttjande i en efterfoljande katalysator. According to one embodiment, an external injector arranged in the exhaust pipe is not required for the supply of additives, but instead additives are supplied via the combustion engine's combustion chamber for transport to e.g. a catalyst such as an SCR catalyst. Additives fed to the combustion chamber according to this embodiment can thus be used partly for reduction in the combustion chamber and partly for reduction in a subsequent catalyst, or alternatively entirely for use in a subsequent catalyst.

Vidare kan estimering av mangden vid forbranning resulterande kvaveoxider t.ex. vara anordnad att utforas vid tillampliga tidpunkter, sasom varje gang en vasentlig forandring av forbranningen sker, sasom t.ex. en forandring av insprutad mangd bransle. T.ex. kan estimering utforas under en eller ett tillampligt antal forbranningscykler, varvid sedan insprutning av tillsatsmedel kan utforas baserat pa namnda estimering, 7 t.ex. sa lange som forhallandena är desamma eller vasentligen desamma. Furthermore, estimating the amount of combustion resulting nitrogen oxides can e.g. be arranged to be carried out at appropriate times, as every time a significant change of the combustion takes place, as e.g. a change in the amount of fuel injected. For example. estimation can be performed during one or an applicable number of combustion cycles, whereby then injection of additives can be performed based on said estimation, 7 e.g. as long as the conditions are the same or essentially the same.

Enligt en utforingsform estimeras mangden resulterande kvaveoxider for vane forbranningscykel och under pagaende forbranningscykel, varvid tillforsel av tillsatsmedel vid vane forbranningscykel kan anpassas under pagaende forbranningscykel till den pagaende forbranningscykelns forbranning, och Oven insprutas under pagaende forbranningscykel. According to one embodiment, the amount of resulting nitrogen oxides for the usual combustion cycle and during the current combustion cycle is estimated, whereby the supply of additives for the regular combustion cycle can be adapted during the current combustion cycle to the combustion of the current combustion cycle, and Oven is injected during the continuous combustion cycle.

Enligt en utforingsform tillampas Oven signaler fran en nedstroms forbranningsmotorn anordnad NOx-sensor vid bestamning av tillamplig mangd tillsatsmedel for tillforsel till forbranningskammaren. I detta fall kan t.ex. en av NOx-sensorn indikerad oonskat hog NOR-halt medfora en hojning av mangden tillfort reduktionsmedel. According to one embodiment, the above signals are applied from a NOx sensor arranged downstream of the combustion engine when determining the applicable amount of additive for supply to the combustion chamber. In this case, e.g. an undesired high NOR content indicated by the NOx sensor causes an increase in the amount of reducing agent added.

Enligt en utforingsform estimeras/nyttjas Oven radande temperatur i forbranningskammaren, varvid insprutning av tillsatsmedel t.ex. kan vara anordnad att endast utforas am forbranningskammarens temperatur overstiger nagon tillamplig temperatur. Detta har fordelen att oonskade belaggningsbildningar i/nedstroms forbranningskammaren och orsakade av tillsatsmedel i star utstrackning kan undvikas. According to one embodiment, the above radiating temperature in the combustion chamber is estimated / used, whereby injection of additives e.g. may be arranged to be carried out only if the temperature of the combustion chamber exceeds any applicable temperature. This has the advantage that unwanted coating formations in / downstream of the combustion chamber and caused by additives to a large extent can be avoided.

Enligt en utforingsform av uppfinningen utfors en extra bransleinsprutning infor eller samtidigt med insprutning av tillsatsmedel, varvid temperaturen i forbranningskammaren kan hojas genom utnyttjande av den extra bransleinsprutningen, for att darmed mojliggora onskade kemiska reaktioner. According to an embodiment of the invention, an additional fuel injection is carried out before or at the same time as the injection of additives, whereby the temperature in the combustion chamber can be raised by utilizing the additional fuel injection, thereby enabling desired chemical reactions.

Enligt en utforingsform av uppfinningen kombineras uppfinningen med en reglering av forbranningsmotorns forbranning under pagaende forbranningscykel, dar forbranningen kan regleras mot nagot tillampligt att ett flertal kriterier, sasom en eller flera av: resulterande 8 kvaveoxider, farbranningstemperatur, tryckamplitud och/eller tryckforandringshastighet, varmeforluster, genererat arbete vid farbranningen. According to one embodiment of the invention, the invention is combined with a control of the combustion engine combustion during the current combustion cycle, where the combustion can be controlled against a number of criteria, such as one or more of: resulting 8 nitrogen oxides, combustion temperature, pressure amplitude and / or pressure change rate, work at the burning.

Insprutningen av tillsatsmedel kan aven vara anordnad att utforas individuellt for varje cylinder, dvs. resulterande kvaveoxider kan faststallas individuellt for respektive forbranningskammare, varvid insprutning av tillsatsmedel kan anpassas individuellt for respektive forbranningskammare. The injection of additives can also be arranged to be performed individually for each cylinder, ie. the resulting nitrogen oxides can be determined individually for each combustion chamber, whereby injection of additives can be adapted individually for each combustion chamber.

Uppfinningen mojliggor saledes reglering dar t.ex. skillnader mellan olika cylindrar kan detekteras och kvaveoxidvariationer kan kompenseras genom utnyttjande av individuell anpassning av insprutad mangd tillsatsmedel for respektive forbranningskammare. Det kan aven vara sá att insprutning av olika mangder tillsatsmedel i olika forbranningskammare kan vara onskvard, t.ex. for att styra vissa cylindrar mot uppfyllande av nagot kriterium, och andra cylindrar mot nagot annat tillampligt kriterium, vilket ocksa kan astadkommas enligt uppfinningen. Vidare kan endast en eller en delmangd av cylindrarna vara anordnade att styras enligt uppfinningen, medan forbranningen i ovriga cylindrar kan utforas pa sedvanligt eller annat tillampligt satt. The invention thus enables regulation where e.g. differences between different cylinders can be detected and nitrogen oxide variations can be compensated by using individual adaptation of the injected amount of additive for each combustion chamber. It may also be the case that the injection of different amounts of additives into different combustion chambers can be harmful, e.g. to steer certain cylinders against fulfillment of any criterion, and other cylinders against any other applicable criterion, which can also be achieved according to the invention. Furthermore, only one or a subset of the cylinders can be arranged to be controlled according to the invention, while the combustion in other cylinders can be carried out in the usual or otherwise applicable manner.

Forfarandet enligt foreliggande uppfinning kan t.ex. implementeras genom utnyttjande av en eller flera FPGA (Field-Programmable Gate Array)- kretsar, och/eller en eller flera ASIC (application-specific integrated circuit)-kretsar, eller andra typer av kretsar som kan hantera onskad berakningshastighet. The process of the present invention can e.g. implemented by utilizing one or more FPGAs (Field-Programmable Gate Array) circuits, and / or one or more ASIC (application-specific integrated circuit) circuits, or other types of circuits that can handle the desired computational speed.

Ytterligare kannetecken for foreliggande uppfinning och fordelar darav kommer att framga ur foljande detaljerade beskrivning av exempelutforingsformer och de bifogade ritningarna. 9 Kort beskrivning av ritningar Fig. 1A visar schematiskt ett fordon vid vilket foreliggande uppfinning kan anvdndas. Additional features of the present invention and advantages thereof will become apparent from the following detailed description of exemplary embodiments and the accompanying drawings. Brief Description of the Drawings Fig. 1A schematically shows a vehicle in which the present invention can be used.

Fig. 1B visar en styrenhet i styrsystemet for det i fig. 1A visade fordonet. Fig. 1B shows a control unit in the control system of the vehicle shown in Fig. 1A.

Fig. 2visar efterbehandlingssystemet mer i detalj for det i fig. 1 visade fordonet. Fig. 2 shows the finishing system in more detail for the vehicle shown in Fig. 1.

Fig. 3visar ett exempel pa ett doseringssystem far tillforsel av tillsatsmedel till avgasstrommen. Fig. 3 shows an example of a dosing system for supply of additives to the exhaust stream.

Fig. 4visar forbranningsmotorn vid det i fig. lA visade fordonet mer i detalj. Fig. 4 shows the internal combustion engine of the vehicle shown in Fig. 1A in more detail.

Fig. visar ett exempelforfarande enligt fOreliggande uppfinning. Fig. Shows an exemplary method according to the present invention.

Fig. 6visar ett exempel pi temperaturspar, kvdveoxidfordndring samt vdrmefrigOrelse fOr en forbramning. Fig. 6 shows an example of temperature savings, nitric oxide change and heat release for a combustion.

Fig. 7visar ett exempel pa ett tryckspar i en fOrbrdnningskammare, ddr insprutning av tillsatsmedel utfors innan forbranning. Fig. 7 shows an example of a pressure pair in a combustion chamber where injection of additives is performed before combustion.

Detaljerad beskrivning av utforingsformer Fig. 1A visar schematiskt en drivlina i ett fordon 100 enligt en utfaringsform av fareliggande uppfinning. Drivlinan innefattar en forbranningsmotor 101, vilken pa ett sedvanligt sdtt, via en pa ferbrdnningsmotorn 101 utgaende axel, vanligtvis via ett svdnghjul 102, Or forbunden med en vdxellada 103 via en koppling 106. Detailed Description of Embodiments Fig. 1A schematically shows a driveline in a vehicle 100 according to an embodiment of the present invention. The driveline comprises an internal combustion engine 101, which in a conventional manner, via a shaft extending on the internal combustion engine 101, usually via a flywheel 102, is connected to a gearbox 103 via a clutch 106.

Farbrdnningsmotorn 101 styrs av fordonets styrsystem via en styrenhet 115. Likasa styrs kopplingen 106, vilken t.ex. kan utgOras av en automatiskt styrd koppling, och vdxelladan 103 av fordonets styrsystem genom utnyttjande av en eller flera tillampliga styrenheter (ej visat). Naturligtvis kan fordonets drivlina aven vara av annan typ sasom t.ex. av en typ med konventionell automatvaxellada eller av en typ med en manuellt vaxlad vaxellada etc. The combustion engine 101 is controlled by the control system of the vehicle via a control unit 115. Likewise, the clutch 106, which e.g. can be constituted by an automatically controlled clutch, and the shaft 103 of the vehicle control system by using one or more applicable control units (not shown). Of course, the vehicle's driveline can also be of another type such as e.g. of a type with conventional automatic gearbox or of a type with a manually geared gearbox etc.

En fran vaxelladan 103 utgaende axel 107 driver drivhjul 113, 114 pa sedvanligt satt via slutvaxel och drivaxlar 104, 105. I fig. 1A visas endast en axel med drivhjul 113, 114, men pa sedvanligt satt kan fordonet innefatta fler an en axel forsedd med drivhjul, liksom aven en eller flera ytterligare axlar, sasom en eller flera stodaxlar. Fordonet 100 innefattar vidare ett avgassystem med ett efterbehandlingssystem 200 for sedvanlig behandling (rening) av avgasutslapp resulterande fran forbranning i forbranningsmotorns 101 forbranningskammare (t.ex. cylindrar). A shaft 107 emanating from the gearbox 103 drives drive wheels 113, 114 in the usual manner via end shaft and drive shafts 104, 105. In Fig. 1A only one shaft with drive wheels 113, 114 is shown, but in the usual way the vehicle can comprise more than one shaft provided with drive wheels, as well as one or more additional axles, such as one or more stand axles. The vehicle 100 further comprises an exhaust system with a post-treatment system 200 for the usual treatment (purification) of exhaust emissions resulting from combustion in the combustion chamber (eg cylinders) of the combustion engine 101.

Efterbehandlingssystemet visas mer i detalj i fig. 2. Figuren visar fordonets 100 forbranningsmotor 101, vilken utgors av en motor med turbo, varfor de vid forbranningen genererade avgaserna (avgasstrommen) leds via ett turboaggregat 220. Alternativt kan turboaggregatet t.ex. vara av compound-typ. The after-treatment system is shown in more detail in Fig. 2. The figure shows the internal combustion engine 101 of the vehicle 100, which consists of an engine with a turbo, for which the exhaust gases generated during combustion are led via a turbocharger 220. Alternatively, the turbocharger can e.g. be of compound type.

Funktionen for olika typer av turboaggregat är valkand, och beskrivs darfar inte narmare har. The function for different types of turbochargers is valkand, and is described need not be closer.

Avgasstrommen leds sedan via en rorledning 204 (indikerat med pilar) till ett dieselpartikelfilter (Diesel Particulate Filter, DPF) 202 via en dieseloxidationskatalysator (Diesel Oxidation Catalyst, DOC) 205. Vid forbranning i forbranningsmotorn bildas sotpartiklar, och partikelfiltret 202 anvands for att fanga upp dessa sotpartiklar. Avgasstrommen leds genom en filterstruktur dar sotpartiklar fangas upp fran den passerande avgasstrommen och upplagras i partikelfiltret. The exhaust stream is then passed via a pipeline 204 (indicated by arrows) to a diesel particulate filter (DPF) 202 via a diesel oxidation catalyst (DOC) 205. During combustion in the internal combustion engine, soot particles are formed, and the particulate filter 202 is used for combustion. these soot particles. The exhaust stream is passed through a filter structure where soot particles are captured from the passing exhaust stream and stored in the particulate filter.

Betraffande oxidationskatalysatorn DOC 205 har denna flera funktioner, och anvands normalt primart for att vid 11 efterbehandlingen oxidera kvarvarande kolvaten och kolmonoxid i avgasstrommen till koldioxid och vatten. Oxidationskatalysatorn 205 kan aven oxidera en stor andel av de i avgasstrommen forekommande kvavemonoxiderna (NO) till kvavedioxid (NO2). Oxideringen av kvavemonoxid NO till kvavedioxid NO2 är fordelaktig vid reduktion av kvaveoxider NOR. Sasom har namnts ovan anvands i detta syfte vanligtvis en SCR (Selective Catalytic Reduction) -katalysator 201, vilken anvander ammoniak (NH3), eller sammansattning ur vilken ammoniak kan genereras/bildas, sasom t.ex. urea, som tillsatsmedel for reduktion av mangden kvaveoxider NOx avgasstrommen. Effektiviteten for denna reduktion paverkas dock av ferhallandet mellan NO och NO2 i avgasstremmen, varfOr reduktionens reaktion paverkas i positiv riktning av feregaende oxidation av NO till NO2. Regarding the oxidation catalyst DOC 205, this has several functions, and is normally used primarily to oxidize the remaining hydrocarbons and carbon monoxide in the exhaust stream to carbon dioxide and water during the post-treatment. The oxidation catalyst 205 can also oxidize a large proportion of the nitrogen monoxides (NO) present in the exhaust stream to nitrogen dioxide (NO2). The oxidation of nitrogen monoxide NO to nitrogen dioxide NO2 is advantageous in the reduction of nitrogen oxides NOR. As mentioned above, for this purpose a SCR (Selective Catalytic Reduction) catalyst 201 is usually used, which uses ammonia (NH3), or a composition from which ammonia can be generated / formed, such as e.g. urea, as an additive to reduce the amount of nitrogen oxides NOx the exhaust gas stream. However, the efficiency of this reduction is affected by the ratio between NO and NO2 in the exhaust gas stream, whereby the reaction of the reduction is affected in a positive direction by ferrous oxidation of NO to NO2.

Betraffande fareliggande uppfinning kan efterbehandlingssystemet allmant vara av olika typ, och behOver t.ex. inte innefatta partikelfilter 202 eller oxidationskatalysator 205. Enligt en foredragen utforingsform erfordras inte nagon SCR-katalysator, eftersom reduktionen av kvaveoxider helt kan utforas i forbranningsmotorns ferbranningskammare. Efterbehandlingssystemet kan aven innefatta ytterligare icke-visade komponenter. Regarding the present invention, the finishing system can generally be of different types, and needs e.g. do not include particle filter 202 or oxidation catalyst 205. According to a preferred embodiment, no SCR catalyst is required, since the reduction of nitrogen oxides can be completely carried out in the combustion chamber of the internal combustion engine. The finishing system may also include additional components not shown.

SCR-katalysatorn erfordrar alltsa tillsatsmedel for att reducera koncentrationen av kvaveoxider i avgaserna. Detta tillsatsmedel är ofta ureabaserat, och kan t.ex. besta av produkten AdBlue, vilken i princip utgars av urea utblandat med vatten. The SCR catalyst therefore requires additives to reduce the concentration of nitrogen oxides in the exhaust gases. This additive is often urea-based, and can e.g. consists of the product AdBlue, which in principle consists of urea mixed with water.

Ett exempel pa ett konventionellt system for tillforsel av tillsatsmedel visas mer i detalj i fig. 3, dar av de ovanstaende komponenterna endast partikelfilter 202 och SCRkatalysator 201 visas, och dar systemet forutom namnda 12 katalysator 201 innefattar en ureatank 302, vilken ar forbunden med ett ureadoseringssystem (UDS) 303. An example of a conventional additive supply system is shown in more detail in Fig. 3, where of the above components only particle filter 202 and SCR catalyst 201 are shown, and where the system in addition to said catalyst 201 comprises a urea tank 302, which is connected to a urea dosing system (UDS) 303.

Ureadoseringssystemet 303 innefattar, eller styrs av, en UDSstyrenhet 304, vilken genererar styrsignaler for styrning av tillforsel av tillsatsmedel sa att onskad mangd insprutas i den av forbranningen i forbranningsmotorns 101 cylindrar resulterande avgasstrommen fran ureatanken 302 med hjalp av ett insprutningsmunstycke 305 uppstroms am SCR-katalysatorn 201. I fig. 3 visas aven en nedstroms SCR-katalysatorn 201 anordnad NOR-sensor 308. The urea metering system 303 includes, or is controlled by, a UDS control unit 304, which generates control signals for controlling the supply of additives so that the desired amount is injected into the exhaust stream resulting from the combustion in the cylinders of the internal combustion engine 101 from the urea tank 302 by means of an injection nozzle SCR 30. 201. Fig. 3 also shows a NOR sensor 308 arranged downstream of the SCR catalyst 201.

Ureadoseringssystemens mer specifika funktion finns val beskrivna i den kanda tekniken, och det exakta forfarandet vid insprutning av tillsatsmedel beskrivs darfor inte narmare har. Allmant galler dock att temperaturen vid insprutningspunkt/SCR-katalysator 201 bor vara atminstone 200- 2°C, foretradesvis Over 300°C for att onskade reaktionshastigheter, och clamed onskad reduktion av namnda forsta forening, sasom en eller flera typer av kvaveoxider, ska erhdllas. The more specific function of the urea dosing systems is choices described in the prior art, and the exact procedure for injecting additives is therefore not described in more detail. In general, however, the temperature at the injection point / SCR catalyst 201 should be at least 200-2 ° C, preferably above 300 ° C in order to obtain the desired reaction rates, and the desired reduction of said first compound, such as one or more types of nitrogen oxides. .

Enligt ovan Or dock dylika system forknippade med vissa nackdelar. Om t.ex. temperaturen vid den position i efterbehandlingssystemet dar tillforsel av tillsatsmedel sker Or alltfor lag finns det en risk for att urea som insprutas med hjalp av insprutningsmunstycket 305 istallet far att direkt forangas av den forbipasserande avgasstrOmmen traffar forhallandevis lagt tempererade rarvaggar, varvid tillsatsmedel fastnar och borjar bygga upp kristaller. Sa lange som fordonet framfors med varierande och periodvis hogre belastning med darmed associerade hojningar av temperaturen i efterbehandlingssystemet kommer denna kristalluppbyggnad inte att hinna vaxa sig oonskat star innan kristallerna branns bort 13 av den forbipasserande avgasstrommen. Om, daremot, fordonet under en tid framfors under forhallandevis statiska farhallanden med farhallandevis lag belastning, med laga temperaturer i avgassystemet som foljd, kan denna kristalluppbyggnad fortga till dess att fordonets prestanda i en oonskad utstrackning paverkas negativt av det okade fladesmotstandet. Kristalluppbyggnaden kan dessutom medfOra att SCR-systemets formaga att konvertera NO paverkas am tillferseln av urea (sasom t.ex. spraybild, mangd) stars pga. att en belaggning i form av klumpbildning uppstar. Enligt ovan loses detta enligt foreliggande uppfinning genom att inspruta tillsatsmedlet direkt in i forbranningskammaren. According to the above Or, however, such systems are associated with certain disadvantages. If e.g. the temperature at the position in the after-treatment system where the supply of additives takes place Or too law, there is a risk that urea injected with the aid of the injection nozzle 305 instead may be directly evaporated by the passing exhaust stream hits relatively temperate cradles, whereby additives get stuck and start to build up crystals. As long as the vehicle is driven with varying and periodically higher loads with associated increases in the temperature in the finishing system, this crystal build-up will not have time to grow undesirably before the crystals are burned off 13 by the passing exhaust stream. If, on the other hand, the vehicle is driven for a time under relatively static conditions with relatively low load, with low temperatures in the exhaust system as follows, this crystal build-up can continue until the vehicle's performance is adversely affected by the increased surface resistance. The crystal build-up can also mean that the SCR system's ability to convert NO is affected by the supply of urea (such as spray image, quantity) due to that a coating in the form of lump formation arises. As above, this is solved according to the present invention by injecting the additive directly into the combustion chamber.

Forbranningsmotorer vid fordon av den i fig. 1A visade typen Or ofta forsedda med styrbara injektorer for att tillfora onskad branslemangd vid onskad tidpunkt i forbranningscykeln, sasom vid en specifik kolvposition (vevvinkelgrad) i fallet med en kolvmotor, till forbranningsmotorns forbranningskammare. Internal combustion engines in vehicles of the type Or shown in Fig. 1A are often provided with controllable injectors to supply the desired amount of fuel at the desired time in the combustion cycle, as at a specific piston position (crank angle) in the case of a piston engine, to the combustion engine combustion chamber.

I fig. 4 visas schematiskt ett exempel pd ett bransleinsprutningssystem for den i fig. 1A exemplifierade forbranningsmotorn 101. Bransleinsprutningssystemet utgors av ett s.k. Common Rail-system, men uppfinningen Or lika tillamplig vid andra typer av insprutningssystem. I fig. 4 visas endast en cylinder/forbranningskammare 401 med en i cylindern verkande kolv 403, men forbranningsmotorn 101 utgors i foreliggande exempel av en sexcylindrig forbranningsmotor, och kan allmant utgoras av en motor med ett godtyckligt antal cylindrar/forbranningskammare, sasom t.ex. ett godtyckligt antal cylindrar/forbranningskammare i intervallet 1-20 eller annu fler. Forbranningsmotorn innefattar vidare atminstone en respektive injektor 402 for vane forbranningskammare (cylinder) 401. Varje respektive injektor anvands saledes for 14 insprutning/tillfarsel av bransle i en respektive forbranningskammare 401. Alternativt kan tva eller flera injektorer per forbranningskammare anvandas. Injektorerna 402 är individuellt styrda av respektive och vid respektive injektor anordnade aktuatorer (ej visat), vilka baserat pa mottagna styrsignaler, sasom t.ex. fran styrenheten 115, styr oppning/stangning av injektorerna 402. Fig. 4 schematically shows an example of a fuel injection system for the internal combustion engine 101 exemplified in Fig. 1A. The fuel injection system consists of a so-called Common Rail systems, but the invention is equally applicable to other types of injection systems. Fig. 4 shows only a cylinder / combustion chamber 401 with a piston 403 acting in the cylinder, but the combustion engine 101 in the present example consists of a six-cylinder internal combustion engine, and can generally consist of an engine with any number of cylinders / combustion chamber, such as e.g. . any number of cylinders / combustion chambers in the range 1-20 or more. The internal combustion engine further comprises at least one respective injector 402 for conventional combustion chamber (cylinder) 401. Each respective injector is thus used for 14 injection / supply of fuel in a respective combustion chamber 401. Alternatively, two or more injectors per combustion chamber may be used. The injectors 402 are individually controlled by respective actuators (not shown) arranged at each injector, which are based on received control signals, such as e.g. from the control unit 115, controls the opening / closing of the injectors 402.

Styrsignalerna for styrning av aktuatorernas oppning/stangning av injektorerna 402 kan genereras av nagon tillamplig styrenhet, sasom i detta exempel av motorstyrenheten 115. The control signals for controlling the opening / closing of the actuators of the injectors 402 can be generated by any applicable control unit, as in this example by the motor control unit 115.

Motorstyrenheten 115 faststaller saledes den mangd bransle som faktiskt skall insprutas vid nagon given tidpunkt, t.ex. baserat pa radande driftsforhallanden hos fordonet 100. The motor control unit 115 thus determines the amount of fuel that is actually to be injected at any given time, e.g. based on the prevailing operating conditions of the vehicle 100.

Det i fig. 4 visade insprutningssystemet utgors alltsa av ett s.k. Common Rail-system, vilket innebar att samtliga injektorer (och darmed forbranningskammare) forsorjs med bransle fran ett gemensamt bransleror 404 (Common Rail), vilket medelst en branslepump 405 fylls med bransle fran en bransletank (ej visad) samtidigt som branslet i roret 404, ocksa genom utnyttjande av branslepumpen 405, trycksatts till ett visst tryck. Det i det gemensamma roret 404 hogt trycksatta branslet insprutas sedan i forbranningsmotorns 101 forbranningskammare 401 vid oppning av respektive injektor 402. Flera oppningar/stangningar av en specifik injektor kan utforas under en och samma forbranningscykel, varvid saledes flera insprutningar kan utforas under en forbranningscykels forbranning. Vidare är vane forbranningskammare forsedd med en respektive trycksensor 406 for avgivande av signaler av ett I forbranningskammaren radande tryck till t.ex. styrenheten 115. Trycksensorn kan t.ex. vara piezo-baserad och bor vara sa pass snabb att den kan avge vevvinkelupplosta trycksignaler, sasom t.ex. vid var 10:e, var 5:e eller vane vevvinkelgrad eller annat tillampligt intervall, sasom t.ex. an oftare. The injection system shown in Fig. 4 thus consists of a so-called Common Rail system, which means that all injectors (and thus combustion chambers) are supplied with fuel from a common fuel line 404 (Common Rail), which by means of a fuel pump 405 is filled with fuel from a fuel tank (not shown) at the same time as the fuel in the pipe 404, also by utilizing the fuel pump 405, pressurized to a certain pressure. The highly pressurized fuel in the common tube 404 is then injected into the combustion chamber 401 of the internal combustion engine 101 at the opening of the respective injector 402. Several openings / rods of a specific injector can be made during one and the same combustion cycle, thus several injections can be made during one combustion cycle. Furthermore, the usual combustion chamber is provided with a respective pressure sensor 406 for emitting signals of a pressure radiating in the combustion chamber to e.g. the control unit 115. The pressure sensor can e.g. be piezo-based and should be so fast that it can emit crank angle-resolved pressure signals, such as e.g. at every 10, every 5th or habit crank angle degree or other applicable interval, such as e.g. an oftare.

Med hjalp av system av den i fig. 4 visade typen kan forbranningen under en forbranningscykel i en forbranningskammare styras i star utstrackning, t.ex. genom utnyttjande av multipla insprutningar, dar insprutningstidpunkter och/eller varaktighet kan regleras, och dar data fran t.ex. trycksensorerna 406 kan tas i beaktande vid regleringen. Genom utnyttjande av data fran t.ex. trycksensorn kan aven de vid forbranningen resulterande kvaveoxiderna estimeras, varvid tillsatsmedel kan tillfOras forbranningen t.ex. i beroende av estimerad mangd resulterande kvaveoxider. Betraffande tillforsel av tillsatsmedel innefattar varje forbranningskammare, eller enbart en del av forbranningsmotorns forbranningskammare, en injektor 410 genom utnyttjande av vilken tillsatsmedel kan tillforas forbranningskammaren 401 fran en tank 411. With the aid of systems of the type shown in Fig. 4, the combustion during a combustion cycle in a combustion chamber can be controlled to a large extent, e.g. by utilizing multiple injections, where injection times and / or duration can be regulated, and where data from e.g. the pressure sensors 406 can be taken into account in the control. By utilizing data from e.g. the pressure sensor can also be estimated from the nitrogen oxides resulting from the combustion, whereby additives can be added to the combustion, e.g. depending on the estimated amount of resulting nitrogen oxides. Regarding the supply of additives, each combustion chamber, or only a part of the combustion chamber of the internal combustion engine, comprises an injector 410 by utilizing which additive can be supplied to the combustion chamber 401 from a tank 411.

I fig. 5 visas ett exempelforfarande 500 for tillforsel av tillsatsmedel till forbrdnningskammaren enligt foreliggande uppfinning, ddr forfarandet enligt foreliggande exempel är anordnat att utforas av den i fig. 1A-B visade motorstyrenheten 115. Fig. 5 shows an exemplary method 500 for supplying additives to the combustion chamber according to the present invention, the method according to the present example being arranged to be performed by the motor control unit 115 shown in Figs. 1A-B.

Allmdnt bestar styrsystem i moderna fordon av ett kommunikationsbussystem bestaende av en eller flera kommunikationsbussar for att sammankoppla ett antal elektroniska styrenheter (ECU:er) sasom styrenheten, eller controller, 115, och olika pa fordonet anordnade komponenter. Sasom är }cant kan dylika styrsystem innefatta ett start antal styrenheter, och ansvaret for en specifik funktion kan vara uppdelat pa fler an en styrenhet. 16 For enkelhetens skull visas i fig. 1A-B, endast motorstyrenheten 115 i vilken fbreliggande uppfinning är implementerad i den visade utfaringsformen. Uppfinningen kan dock aven implementeras i en for fbreliggande uppfinning dedikerad styrenhet, eller helt eller delvis i en eller flera andra vid fordonet redan befintliga styrenheter. Ned tanke pa den hastighet med vilken berdkningar enligt fbreliggande uppfinning utfors kan uppfinningen vara anordnad att implementeras i en styrenhet som är sdrskilt avpassad fbr realtidsberakningar av typen enligt nedan. Implementering av fereliggande uppfinning har visat att t.ex. ASIC- och FPGAlbsningar Or lampade for och val klarar av berakningar enligt fereliggande uppfinning. Generally, control systems in modern vehicles consist of a communication bus system consisting of one or more communication buses for interconnecting a number of electronic control units (ECUs) such as the control unit, or controller, 115, and various components arranged on the vehicle. As such, such control systems may include a starting number of control units, and the responsibility for a specific function may be divided into more than one control unit. For the sake of simplicity, in Figs. 1A-B, only the motor control unit 115 in which the present invention is implemented in the embodiment shown is shown. However, the invention can also be implemented in a control unit dedicated to the present invention, or in whole or in part in one or more other control units already existing in the vehicle. In view of the speed at which calculations according to the present invention are carried out, the invention can be arranged to be implemented in a control unit which is specially adapted for real-time calculations of the type as below. Implementation of the present invention has shown that e.g. ASIC and FPGAlbsningar Lamped lining and selection can handle calculations according to the present invention.

Styrenhetens 115 (eller den/de styrenheter vid vilken/vilka fbreliggande uppfinning Or implementerad) funktion enligt fareliggande uppfinning kan, farutom att bero av sensorsignaler fran trycksensorn 202, t.ex. bero av signaler fran andra styrenheter eller sensorer. Allmant galler att styrenheter av den visade typen normalt Or anordnade att ta emot sensorsignaler fran olika delar av fordonet, liksom fran olika pa fordonet anordnade styrenheter. The function of the control unit 115 (or the control unit / units in which the present invention is implemented) according to the present invention may, in addition to being dependent on sensor signals from the pressure sensor 202, e.g. depend on signals from other controllers or sensors. In general, control units of the type shown are normally arranged to receive sensor signals from different parts of the vehicle, as well as from different control units arranged on the vehicle.

Styrningen styrs ofta av programmerade instruktioner. Dessa programmerade instruktioner utgors typiskt av ett datorprogram, vilket nar det exekveras i en dator eller styrenhet astadkommer att datorn/styrenheten utfor onskad styrning, sasom fbrfarandesteg enligt fbreliggande uppfinning. The control is often controlled by programmed instructions. These programmed instructions typically consist of a computer program, which when executed in a computer or control unit causes the computer / control unit to perform the desired control, such as the steps of the present invention.

Datorprogrammet utgor vanligtvis del av en datorprogramprodukt, dar datorprogramprodukten innefattar ett tillampligt lagringsmedium 121 (se fig. 1B) med datorprogrammet lagrat pa namnda lagringsmedium 121. The computer program usually forms part of a computer program product, where the computer program product comprises an applicable storage medium 121 (see Fig. 1B) with the computer program stored on said storage medium 121.

Datorprogrammet kan vara icke-flyktigt lagrat pa namnda lagringsmedium 121. Namnda digitala lagringsmedium 121 kan 17 t.ex. utgaras av nAgon ur gruppen: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash-minne, EEPROM (Electrically Erasable PROM), en hdrddiskenhet, etc., och vara anordnat i eller i forbindelse med styrenheten, varvid datorprogrammet exekveras av styrenheten. Genom att dndra datorprogrammets instruktioner kan sdledes fordonets upptrddande i en specifik situation anpassas. The computer program may be non-volatile stored on said storage medium 121. Said digital storage medium 121 may 17 e.g. is made by someone from the group: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically Erasable PROM), a hard disk drive, etc., and be arranged in or in connection with the control unit, the computer program being executed by the control unit. By changing the instructions of the computer program, the behavior of the vehicle in a specific situation can thus be adapted.

En exempelstyrenhet (styrenheten 115) visas schematiskt i fig. 1B, varvid styrenheten i sin tur kan innefatta en berdkningsenhet 120, vilken kan utgoras av t.ex. ndgon lamplig typ av processor eller mikrodator, t.ex. en krets for digital signalbehandling (Digital Signal Processor, DSP), en eller flera FPGA (Field-Programmable Gate Array)- kretsar eller en eller flera kretsar med en forutbestamd specifik funktion (Application Specific Integrated Circuit, ASIC). Berakningsenheten 120 Or forbunden med en minnesenhet 121, vilken tillhandahaller berdkningsenheten 120 t.ex. den lagrade programkoden och/eller den lagrade data berakningsenheten 1 behaver far att kunna utfara berdkningar. Berakningsenheten 120 Or aven anordnad att lagra del- eller slutresultat av berdkningar i minnesenheten 121. An exemplary control unit (control unit 115) is shown schematically in Fig. 1B, wherein the control unit may in turn comprise a bending unit 120, which may be constituted by e.g. ndgon appropriate type of processor or microcomputer, e.g. a Digital Signal Processor (DSP), one or more Field-Programmable Gate Array (FPGAs) circuits or one or more circuits with an Application Specific Integrated Circuit (ASIC) function. The calculating unit 120 Or connected to a memory unit 121, which provides the calculating unit 120 e.g. the stored program code and / or the stored data calculation unit 1 need to be able to perform calculations. The calculation unit 120 is also arranged to store partial or final results of reports in the memory unit 121.

Vidare är styrenheten forsedd med anordningar 122, 123, 124, 125 for mottagande respektive sdndande av in- respektive utsignaler. Dessa in- respektive utsignaler kan innehalla vdgformer, pulser, eller andra attribut, vilka av anordningarna 122, 125 for mottagande av insignaler kan detekteras som information for behandling av berakningsenheten 120. Anordningarna 123, 124 far sdndande av utsignaler Or anordnade att omvandla berakningsresultat frdn berdkningsenheten 120 till utsignaler for everfaring till andra delar av fordonets styrsystem och/eller den/de 18 komponenter for vilka signalerna är avsedda. Var och en av anslutningarna till anordningarna for mottagande respektive sdndande av in- respektive utsignaler kan utgOras av en eller flera av en kabel; en databuss, sdsom en CAN-bus (Controller Area Network bus), en MOST-bus (Media Oriented Systems Transport), eller ndgon annan busskonfiguration; eller av en tradlas anslutning. Furthermore, the control unit is provided with devices 122, 123, 124, 125 for receiving and transmitting input and output signals, respectively. These inputs and outputs may contain waveforms, pulses, or other attributes, which of the input signals 122, 125 may be detected as information for processing the calculation unit 120. The devices 123, 124 may send output signals or arranged to convert calculation results from the calculation unit. 120 to output signals for experience to other parts of the vehicle control system and / or the 18 component (s) for which the signals are intended. Each of the connections to the devices for receiving and transmitting input and output signals, respectively, may be constituted by one or more of a cable; a data bus, such as a CAN bus (Controller Area Network bus), a MOST bus (Media Oriented Systems Transport), or any other bus configuration; or by a wired connection.

Ater till det i fig. 5 visade forfarandet 500 startar forfarandet i steg 501, dar det faststalls huruvida den uppfinningsenliga tillforseln av tillsatsmedel till forbranningskammaren for kvaveoxidreduktion ska utforas. Den uppfinningsenliga regleringen kan t.ex. vara anordnad att utfOras kontinuerligt sd fort fOrbranningsmotorn 101 startas. Enligt en utfaringsform utfors insprutning av tillsatsmedel i en forbrdnningskammare endast am insprutningen foregds av en farbrdnning under samma farbrdnningscykel. Returning to the process 500 shown in Fig. 5, the process starts in step 501, in which it is determined whether the supply of additives according to the invention to the combustion chamber for nitrogen oxide reduction is to be carried out. The regulation according to the invention can e.g. be arranged to be carried out continuously as soon as the internal combustion engine 101 is started. According to one embodiment, injection of additives into a combustion chamber is performed only if the injection is carried out by a combustion during the same combustion cycle.

Forfarandet enligt foreliggande uppfinning utgors alltsa av ett forfarande for tillforsel av tillsatsmedel till forbranningsmotorns 101 forbranningskammare under det att forbranning sker i namnda forbranningskammare 201 i forbranningscykler. Sdsom Or kant Or termen forbranningscykel definierad som de steg en forbranning vid en forbranningsmotor innefattar, sdsom t.ex. tvdtaktsmotorns tvd takter respektive fyrtaktsmotorns fyra takter. Termen innefattar Oven cykler dar inget bransle faktiskt insprutas, men dar forbranningsmotorn andd drivs vid nagot varvtal, sdsom av fordonets drivhjul via drivlinan vid t.ex. slapning. Dvs. Oven am ingen insprutning av bransle utfors sker fortfarande en forbranningscykel for t.ex. varje tvd vary (vid fyrtaktsmotor), eller t.ex. varje vary (tvdtaktsmotor), som forbranningsmotorns utgdende axel roterar. Det motsvarande galler Oven andra typer av forbranningsmotorer. 19 I steg 502 faststalls huruvida en forbranningscykel har eller kommer att paborjas, och nar Si är fallet fortsatter farfarandet till steg 503, dar en vid forbranningen resulterande mangd kvaveoxider estimeras. The method according to the present invention thus consists of a method for supplying additives to the combustion chamber of the combustion engine 101 while combustion takes place in said combustion chamber 201 in combustion cycles. As Or edge Or the term combustion cycle is defined as the steps a combustion at an internal combustion engine includes, such as e.g. the two-stroke engine's two-stroke engine and the four-stroke engine's four-stroke engine, respectively. The term includes Oven cycles where no fuel is actually injected, but where the internal combustion engine is driven at a certain speed, such as by the vehicle's drive wheel via the driveline at e.g. relaxation. Ie. In addition to no injection of fuel, a combustion cycle still takes place for e.g. each tvd vary (for four-stroke engine), or e.g. each vary (two-stroke engine), which rotates the output shaft of the internal combustion engine. The corresponding grille Oven other types of internal combustion engines. In step 502 it is determined whether a combustion cycle has or will be started, and when Si is the case the procedure proceeds to step 503, where an amount of nitrogen oxides resulting from the combustion is estimated.

Allmant galler att tillforseln av bransle till forbranningskammaren, bide avseende mangd och pi vilket satt, dvs. de en eller flera bransleinsprutningar som ska utfOras under forbranningscykeln, normalt ar pi forhand definierade, t.ex. i beroende av det arbete (vridmoment) som forbranningsmotorn ska utratta under forbranningscykeln. In general, it is important that the supply of fuel to the combustion chamber, bide regarding quantity and pi which sat, ie. the one or more fuel injections to be performed during the combustion cycle are normally predefined, e.g. depending on the work (torque) that the internal combustion engine must perform during the combustion cycle.

Bransleinsprutning utfors alltsa normalt enligt ett insprutningsschema dar ett flertal insprutningar kan vara anordnade att utforas under en och samma forbranningscykel. Forbranning i samband med dessa bransleinsprutningar kommer att ge upphov till resulterande kvaveoxider. Thus, fuel injection is normally performed according to an injection schedule where a plurality of injections may be arranged to be performed during one and the same combustion cycle. Combustion in connection with these industry injections will give rise to the resulting nitrogen oxides.

Enligt fOreliggande uppfinning faststalls under forbranningscykeln vasentligen kontinuerligt radande tryck i forbranningskammaren genom utnyttjande av trycksensorn 406, sasom med tillampliga intervall, t.ex. varje 0,1- vevvinkelgrader. According to the present invention, during the combustion cycle, substantially continuous erasing pressure is established in the combustion chamber by using the pressure sensor 406, as at applicable intervals, e.g. every 0.1 degree crank angle.

Forbranningsforloppet i en forbranningskammare kan allmant beskrivas med den tryckforandring i fOrbranningskammaren som forbranningen ger upphov till. Tryckforandringen under en fOrbranningscykel kan representeras med ett tryckspar, dvs. en representation av hur trycket i forbranningskammaren varierar under fOrbranningen. The process of combustion in a combustion chamber can be generally described with the pressure change in the combustion chamber which the combustion gives rise to. The pressure change during a combustion cycle can be represented by a pressure pair, ie. a representation of how the pressure in the combustion chamber varies during combustion.

I steg 503 faststalls saledes vasentligen kontinuerligt trycket pf i namnda ferbranningskammare 401 genom utnyttjande av namnda trycksensor 206 under det att forbranning pagar i ferbranningskammaren. Genom utnyttjande av tryckforandringen kan genererade kvaveoxider NO under forbranningscykeln estimeras genom utnyttjande av tillampliga berakningar, dar ett satt att utfora berakningen exemplifieras nedan. Alternativt kan andra modeller med motsvarande funktion tillampas. Thus, in step 503, the pressure pf in said combustion chamber 401 is substantially continuously determined by utilizing said pressure sensor 206 while combustion is paging in the combustion chamber. By utilizing the pressure change, generated nitrogen oxides NO during the combustion cycle can be estimated by utilizing applicable calculations, where a method of performing the calculation is exemplified below. Alternatively, other models with a corresponding function can be applied.

Allmant galler att kvaveoxider NO vid en forbranningsprocess i huvudsak bildas av tre olika anledningar. Dels kan branslet innefatta kvave, varvid kvave kommer att frigoras vid forbranning och Atminstone bilda kvavgas N2 samt kvaveoxider NOR. Denna typ av NOR-bildning kan vid vissa typer av forbranning och i beroende av typ av bransle sta for en stor del av den totala mangden kvaveoxider NO som genereras vid forbranningen. Sasom forklaras nedan kan denna typ av NOxbildning dock bortses ifran vid normal forbranning enligt t.ex. dieselcykeln. En annan kalla till NOR-bildning utgors av s.k. prompt NOR-bildning, men denna kalla kan allmant bortses ifran cid inverkan är liten i forhallande till ovriga kallor. En tredje kalla, som vid normal forbranning ocksA utgOr den huvudsakliga orsaken till NOR-bildning vid forbranning vid hoga forbranningstemperaturer, utgors av termisk bildning av NOR, vilken kan sta for i storleksordningen 90-95% eller an mer av NOR-bildningen under forbranningscykeln. It is generally the case that nitrogen oxides NO in a combustion process are mainly formed for three different reasons. On the one hand, the industry may include nitrogen, whereby nitrogen will be released during combustion and At least form nitrogen gas N2 and nitrogen oxides NOR. This type of NOR formation can, in certain types of combustion and depending on the type of industry, account for a large part of the total amount of nitrogen oxides NO generated during the combustion. As explained below, however, this type of NOx formation can be disregarded during normal combustion according to e.g. the diesel cycle. Another call to NOR formation consists of so-called prompt NOR formation, but this cold can be generally disregarded if the impact is small in relation to other colds. A third cold, which in normal combustion is also the main cause of NOR formation during combustion at high combustion temperatures, consists of thermal formation of NOR, which can account for in the order of 90-95% or more of the NOR formation during the combustion cycle.

NOR-bildningen Or alltsA starkt beroende av forbranningstemperaturen, och sjalva bildandet av termisk NO kan pa valkant satt beskrivas t.ex. enligt tre huvudreaktioner (den utokade Zeldovich mekanismen): N2 + 0 , NO + N N + 02 , NO + 0(1) N + OH , NO + H , cidr saledes reaktienshastigheten Or starkt temperaturberoende, och dar aven temperaturberoendet i sig Or 21 'cant, varvid medelst kannedom cm (substans)mangden for de ingaende substanserna samt temperatur mangden bildade kvaveoxider NO kan estimeras. The formation of NOR is thus strongly dependent on the combustion temperature, and the actual formation of thermal NO can be described on the selection edge e.g. according to three main reactions (the undocumented Zeldovich mechanism): N2 + 0, NO + NN + 02, NO + 0 (1) N + OH, NO + H, cidr thus the reaction rate Or strongly temperature dependent, and there also the temperature dependence itself Or 21 ' cant, whereby by means of knowledge cm (substance) the amount of the constituent substances as well as the temperature the amount of nitrogen oxides formed NO can be estimated.

Enligt foreliggande uppfinning estimeras NO2-bildningen genom utnyttjande av ovanstaende kemiska samband, ekv. (1), och genom utnyttjande av en estimering av ytterligare forbranningsdata. Berakningen erfordrar alltsa aven kannedom om tillganglig mangd kvavgas N2 respektive syrgas 02 samt aven kannedom am tillgang till vate H. Dessa kan erhallas ur forbranningens forbranningskemi, vilken är kand for fackmannen, och vid vilken tillford mangd bransle respektive forbranningsluft samt ev. avgasaterforing är kand, varvid i kombination med det faktum att branslets sammansattning normalt är kand mangderna for de i ekv. (1) ingaende substanserna kan beraknas. According to the present invention, the NO2 formation is estimated by utilizing the above chemical compounds, eq. (1), and by using an estimate of additional combustion data. The calculation therefore requires both knowledge of the available amount of nitrogen gas N2 and oxygen 02 and also knowledge of access to water H. These can be obtained from the combustion chemistry of combustion, which is known to those skilled in the art, and at which required amount of fuel and combustion air and possibly. exhaust gas feed is bachelor, whereby in combination with the fact that the composition of the industry is normally bachelor the quantities for those in eq. (1) the substances can be calculated.

Det erfordras aven en estimering av forbranningens temperatur for att mangden genererade kvaveoxider NO ska kunna estimeras eftersom reaktionshastigheten är temperaturberoende. Likasa erfordras tryck och/eller medeltemperatur i forbranningskammaren for att medelst forbranningskemin kunna estimera frigjord kvavgas respektive syrgas vid forbranningen. An estimation of the combustion temperature is also required in order for the amount of nitrogen oxides generated NO to be estimated, since the reaction rate is temperature dependent. Likewise, pressure and / or average temperature in the combustion chamber are required in order to be able to estimate released nitrogen gas and oxygen, respectively, during combustion chemistry.

Vid estimering av mangden bildade kvaveoxider NOx erfordras alltsa kannedom am sjalva forbranningens temperatur. Temperaturen är hogre i den del av forbranningskammaren dar forbranning pagar, och forbranningskammaren kan betraktas sasom bestaende av tva zoner, (Jar forbranning sker i ena zonen, med hog temperatur i denna zon som foljd, medan ingen forbranning, med lagre resulterande temperatur, sker i den andra zonen. Sammantaget erhalls saledes vid varje Ogonblick en medeltemperatur i forbranningskammaren som understiger forbranningens temperatur dar forbranning pagar. For att kunna 22 utfOra Onskad bestamning av farbranningens temperatur erfordras aven kannedom am varmefrigorelsen vid forbranning. When estimating the amount of nitrogen oxides formed NOx, knowledge of the temperature of the combustion itself is therefore required. The temperature is higher in the part of the combustion chamber where combustion occurs, and the combustion chamber can be considered as consisting of two zones, (Jar combustion takes place in one zone, with high temperature in this zone as follows, while no combustion, with lower resulting temperature, takes place in Thus, at each instant, an average temperature in the combustion chamber is obtained which is below the temperature of the combustion at which combustion takes place.In order to be able to carry out the desired determination of the temperature of the combustion, knowledge of the heat release during combustion is also required.

Denna kan faststallas pa olika satt. T.ex. kan, sasom beskrivs nedan, varmefrigorelsen medelst estimering predikteras genom utnyttjande av en forbranningsmodell. Detta exemplifieras i de nedan beskrivna svenska patentansokningarna. I dessa ansokningar estimeras kommande del av en forbranning, medan enligt en utforingsform av foreliggande uppfinning trycksignaler fran trycksensorn 406 kan nyttjas far att berakna varmefrigorelsen vid forbranning. This can be determined in different ways. For example. can, as described below, the heat release by estimation can be predicted by using a combustion model. This is exemplified in the Swedish patent applications described below. In these applications, the next part of a combustion is estimated, while according to an embodiment of the present invention, pressure signals from the pressure sensor 406 can be used to calculate the heat release during combustion.

Varmefrigorelsen vid forbranning kan da uttryckas som: dQ1 = pdV+Vdp+ dQH,(2) Ddr dQ är frigjord vdrme, p utgor trycket i forbranningskammaren, V utgor forbrdnningskammarens volym, medan dV utgor forbranningskammarens volymandring. The heat release during combustion can then be expressed as: dQ1 = pdV + Vdp + dQH, (2) Ddr dQ is released heat, p constitutes the pressure in the combustion chamber, V constitutes the volume of the combustion chamber, while dV constitutes the volume change of the combustion chamber.

V(co), this. ferbranningskammarens volym som funktion av vevvinkel, kan med fordel finnas tabellerad i styrsystemets dV minne alternativt beraknas pa tillampligt satt, varvid aven dço kan faststdllas. V (co), this. the volume of the combustion chamber as a function of crank angle, can advantageously be tabulated in the dV memory of the control system or alternatively calculated in an appropriate manner, whereby even this can be determined.

C (t)C r= P =Pddr C och/eller C finns framtagna och C(t) Cp —R tabellerade for olika molekyler, och genom att farbrdnningskemin är kdnd kan dessa tabellerade varden anvandas tillsammans med forbranningskemin for att alarmed 23 herakna vardera molekyls (t.ex. vatten, kvave, syre etc.) inverkan pa t.ex. det totala Cp-vOrdet, varvid detta kan bestOmmas for berOkningarna ovan med god noggrannhet. Alternativt kan Cp och eller C approximeras p1 tillampligt satt. dp utgar tryckfOrOndringen i forbrOnningskammaren, vilken faststalls med trycksensorn 406. dQHT representerar den vid forbranningen frigjorda varmen, vilken kan faststallas pa satt sasom finns val beskrivet i den kanda tekniken av exempelvis Woschni. Harvid kan hansyn aven tas till svartkroppsstralning i ferbranningskammaren pa kOnt satt. I den svenska patentansokan 1350510-2, med titeln "FORFARANDE OCH SYSTEM FOR REGLERING AV EN FORBRANNINGSMOTOR IV" finns beskrivet ett forfarande for att under en pagaende ferbranning estimera frigjord varme. Det i denna ansokan visade forfarandet kan tillampas enligt foreliggande uppfinning. Vidare kan det i namnda ansokan visade forfarandet forenklas dl ingen estimering av trycket enligt foreliggande utfOringsform erfordras, utan trycksignaler fran trycksensorn 406 kan anvandas under pagaende forbranningscykel fram till den tidpunkt enligt nedan (Jar maximal mangd kvaveoxider anses ha genererats. I namnda ansokan visas Oven hur varmefrigOrelsen kan estimeras infOr en fOrbrOnning. C (t) C r = P = Pddr C and / or C are produced and C (t) Cp —R are tabulated for different molecules, and because the combustion chemistry is known, these tabulated values can be used together with the combustion chemistry to alarm 23 each. molecules (eg water, nitrogen, oxygen, etc.) effect on e.g. the total Cp value, whereby this can be determined for the calculations above with good accuracy. Alternatively, Cp and or C can be approximated p1 suitably. dp emits the pressure change in the combustion chamber, which is determined by the pressure sensor 406. dQHT represents the heat released during combustion, which can be determined in the manner described in the prior art by, for example, Woschni. In this case, the sight can also be taken to black body radiation in the combustion chamber in a concise manner. Swedish patent application 1350510-2, entitled "PROCEDURES AND SYSTEMS FOR REGULATING AN COMBUSTION ENGINE IV" describes a method for estimating released heat during an ongoing combustion. The method shown in this application can be applied according to the present invention. Furthermore, the procedure shown in the said application can be simplified by no estimation of the pressure according to the present embodiment is required, but pressure signals from the pressure sensor 406 can be used during the current combustion cycle up to the time below (Jar maximum amount of nitrogen oxides is considered to have been generated. the heat release can be estimated before a combustion.

Enligt foreliggande exempel kan dock varmefrigorelsen estimeras enligt ekv. (2) genom utnyttjande av signaler fran trycksensorn 406. I fig. 6 visas, som en grov approximation, hur varmefrigerelsen 603 kan ferandras under en forbranningscykel. Istallet for att utrycka ferbranningsferloppet som funktion av tid är det i stallet uttryckt som funktion av vevvinkelrad T. Fig. 6 visar Oven hur 24 den vid farbranningen resulterande modellerade NOx-mangden 601 forandras under forbranningscykeln, liksom hur medeltemperaturen 602 i farbranningskammaren farandras under forbranningscykeln. According to the present example, however, the heat release can be estimated according to eq. (2) by utilizing signals from the pressure sensor 406. Fig. 6 shows, as a rough approximation, how the heat release 603 can be changed during a combustion cycle. Instead of expressing the combustion process as a function of time, it is instead expressed as a function of crankshaft row T. Fig. 6 also shows how the modeled NOx amount 601 resulting from the combustion changes during the combustion cycle, as well as how the average temperature 602 in the combustion chamber changes during the combustion cycle.

Tryckforandringen p som funktion av vevvinkelgrad cp i en cylinder (forbranningskammare) for en forbranningscykel kan enligt ovan erhallas genom utnyttjande av sensorsignalerna fran trycksensorn 406. Vidare kan, genom utnyttjande av faststallt tryck, temperaturen for den del av forbranningskammaren dar ingen forbranning sker estimeras genom utnyttjande av estimerat tryck samt genom utnyttjande av ekv. (3), cid temperaturen for den del av forbranningskammaren dar ingen forbranning sker uttryckas som: Tn+1= Tn -\K 1 Pn+1 (3) Pn , cid/. Tr o kan utgora motsvarande forbranningslufttemperatur for t.ex. den tidpunkt/vevvinkelposition dar ventilerna stangs efter tillforsel av ferbranningsluft. The pressure change p as a function of crank angle degree cp in a cylinder (combustion chamber) for a combustion cycle can be obtained as above by using the sensor signals from the pressure sensor 406. Furthermore, by using fixed pressure, the temperature for the part of the combustion chamber where no combustion takes place can be estimated by using of estimated pressure and by utilizing eq. (3), cid the temperature of the part of the combustion chamber where no combustion takes place is expressed as: Tn + 1 = Tn - \ K 1 Pn + 1 (3) Pn, cid /. Tr o can be the corresponding combustion air temperature for e.g. the time / crank angle position when the valves are closed after the supply of combustion air.

Vidare utgor n, n+1, etc. utgor pa varandra foljande tidpunkter eller vevvinkelpositioner. Furthermore, n, n + 1, etc. constitute consecutive times or crank angle positions.

K=1 varvid saledes aven K kan faststallas enligt vad som angivits fer 7 ovan. K = 1, whereby also K can be determined as stated in fer 7 above.

Genom utnyttjande av ekv. (3) kan saledes temperaturen for den del av fOrbranningskammaren (Jar ingen forbranning pagar faststallas, dar denna temperatur dock paverkas av pagaende ferbranning genom varmefrigorelsens inverkan pa trycket, vilket aterspeglas i de fran trycksensorn avgivna signalerna, vilket i sin tur paverkar temperaturen enligt ekv. (3). Nar sedan en forbranning sker kommer varmefrigorelsen att ge upphov till en temperaturakning i den/de delar av fOrbranningskammaren dar fOrbranning sker. Denna temperaturakning, vilken adderas till den enligt ekv. (3) faststallda temperaturen for att erhalla farbranningstemperaturen, kan beraknas ur sambandet: dQ = inC pdT(4) , cidr dQ utgOr varmefrigOrelsen, vilken kan faststallas enligt ovan. m utgbrs av fOrbrand massa (dvs. bransle + luft + EGR som ingar i forbranningen), vilken ocksa faststalls enligt ovan, Cp, dvs. specifik varmekapacitet, som ocksa kan beraknas enligt ovan. dT utgbr temperaturbkningen som fas av fOrbranningen vid given ferbrand massa och vid givet Cp-varde. By utilizing eq. (3) the temperature for that part of the combustion chamber can thus be determined (where no combustion pag is determined, where this temperature is affected by pagan combustion by the effect of the heat release on the pressure, which is reflected in the signals emitted from the pressure sensor, which in turn affects the temperature according to eq. When a combustion takes place, the heat release will give rise to a temperature rise in the part (s) of the combustion chamber where combustion takes place.This temperature rise, which is added to the temperature determined according to eq. (3) to obtain the combustion temperature, can be calculated. out of relation: dQ = inC pdT (4), cidr dQ constitutes the heat release, which can be determined as above. m is formed by combustion mass (ie fuel + air + EGR which is involved in the combustion), which is also determined as above, Cp, ie specific heat capacity, which can also be calculated as above, which means that the temperature rise is the phase of the combustion at a given ferrous mass and we d given Cp value.

Genom utnyttjande av ekv (4) kan saledes dT och darmed nT faststallas, varvid den av fOrbranningen genererade okningen vid vane tidpunkt/vevvinkelposition kan adderas till temperaturen for den del av fOrbranningskammaren dar ingen forbranning sker, och som ges av ekv. (3), for att erhalla fOrbranningstemperaturen. Thus, by using equ (4), dT and thus nT can be determined, whereby the increase generated by the combustion at the usual time / crank angle position can be added to the temperature for the part of the combustion chamber where no combustion takes place, and which is given by eq. (3), to obtain the combustion temperature.

Nar forbranningstemperaturen har estimerats kan saledes koncentrationer och/eller absoluta mangder av framfbrallt N2 och 02 beraknas genom utnyttjande av forbranningskemin, varvid sedan, genom utnyttjande av ekv. (1) samt dess forbranningstemperaturberoende, genererade kvaveoxider NOx successivt kan estimeras och ackumuleras far forbranningscykeln. De modellerade kvaveoxiderna genereras i princip fram till dess att maximal forbranningstemperatur har 26 uppnatts, eller viss tid darefter, indikerat med vevvinkelpositionen T1 i fig. 6. Thus, when the combustion temperature has been estimated, concentrations and / or absolute amounts of emitted N2 and O2 can be calculated by using the combustion chemistry, then, by using eq. (1) and its combustion temperature-dependent, generated nitrogen oxides NOx can be successively estimated and accumulated over the combustion cycle. The modeled nitrogen oxides are generated in principle until the maximum combustion temperature has been reached, or some time thereafter, indicated by the crank angle position T1 in Fig. 6.

Saledes kan det parallellt med estimeringen av resulterande kvaveoxider faststallas huruvida Tmax for forbranningscykeln har uppnatts, steg 504, varvid, nar sa Or fallet, forfarandet fortsatter till steg 505 for faststallande av tillamplig mangd tillsatsmedel for insprutning till forbranningskammaren 201 genom utnyttjande av injektorn 410, dar tillamplig mangd tillsatsmedel for insprutning t.ex. kan faststallas genom utnyttjande av de kanda kemiska sambanden vid reaktionen mellan tillsatsmedel och kvaveoxider. T.ex. kan mangden tillsatsmedel faststallas som en stokiometrisk mangd tillsatsmedel, dvs. den mangd tillsatsmedel som erfordras for att helt omvandla mangden kvaveoxider. Den mangd tillsatsmedel som tillfors forbranningskammaren kan Oven t.ex. utgoras av nagon tillamplig andel av stokiometrisk mangd, sasom overstigande eller understigande denna mangd. T.ex. kan det vara onskvart att endast reducera kvaveoxider NOviss utstrackning, varvid en mindre mangd kan tillforas. T.ex. kan en mangd tillforas som forvantas medfora att fordonets utslapp uppfyller radande myndighetsbestammelser dar fordonet framfors. Thus, in parallel with the estimation of the resulting nitrogen oxides, it can be determined whether Tmax for the combustion cycle has been reached, step 504, wherein, if so, the process proceeds to step 505 for determining the amount of additive for injection into the combustion chamber 201 using the injector 410, where applicable amount of additive for injection e.g. can be determined by using the known chemical compounds in the reaction between additives and nitrogen oxides. For example. the amount of additive can be determined as a stoichiometric amount of additive, i.e. the amount of additive required to completely convert the amount of nitrogen oxides. The amount of additive that is supplied to the combustion chamber can Oven e.g. consists of any applicable proportion of the stoichiometric quantity, such as in excess of or less than that quantity. For example. it may be unwise to reduce nitrogen oxides to a certain extent NOviss, whereby a smaller amount can be added. For example. a quantity can be added which is expected to mean that the vehicle's emissions comply with the applicable regulatory regulations where the vehicle is driven.

Alternativt kan mangden vara anordnad att overstiga stokiometrisk mangd t.ex. i syfte att erhalla en hog reaktionshastighet. Mangden kan aven vara anordnad att understiga stokiometrisk mangd, t.ex. am endast en viss reducering erfordras eller onskas i forbranningskammaren. ytterligare reducering kan vid behov t.ex. astadkommas genom utnyttjande av en SCR-katalysator enligt ovan. Alternatively, the quantity may be arranged to exceed the stoichiometric quantity e.g. in order to obtain a high reaction rate. The set can also be arranged to be less than a stoichiometric set, e.g. only a certain reduction is required or desired in the combustion chamber. further reduction can, if necessary, e.g. achieved by using an SCR catalyst as above.

Enligt en utforingsform nyttjas Oven forbranningskammarens temperatur, dvs. temperatursparet 602 i fig. 6, vid bestamning 27 av tillamplig mangd tillsatsmedel da reaktionshastigheten är starkt temperaturberoende, varvid mangden tillsatsmedel saledes t.ex. kan faststallas som funktion av en eller flera av mangden resulterande kvaveoxider, tryck i farbranningskammaren, temperatur i forbranningskammaren. According to one embodiment, the temperature of the combustion chamber is used above, i.e. the temperature pair 602 in Fig. 6, when determining 27 the applicable amount of additive as the reaction rate is strongly temperature dependent, the amount of additive thus e.g. can be determined as a function of one or more of the resulting nitrogen oxides, pressure in the combustion chamber, temperature in the combustion chamber.

Enligt en utforingsform estimeras successivt mangden resulterande NON, varvid nar det faststalls att denna har natt maximum och/eller borjar minska, sasom vid eller efter positionen p i fig. 6, vilket ocksa normalt sker aven via andra kemiska reaktioner an vid reaktion med tillsatsmedel, am an med betydligt lagre reaktionshastighet, tillamplig mangd tillsatsmedel for tillforsel kan faststallas. According to one embodiment, the amount of resulting NON is successively estimated, whereby it is determined that it has a night maximum and / or begins to decrease, as at or after the position in Fig. 6, which also normally occurs via other chemical reactions than in reaction with additives, e.g. With a significantly lower reaction rate, the applicable amount of additive for delivery can be determined.

Tillsatsmedlet insprutas sedan i steg 506, varvid fOrfarandet sedan kan aterga till steg 501 for ny bestOmning for en efterfoljande forbranningscykel. Enligt foreliggande uppfinning kan saledes mangden resulterande kvOveoxider under en forbranningscykel estimeras, varvid en till mangden genererade kvOveoxider anpassad mOngd tillsatsmedel kan insprutas i forbranningskammaren for att astadkomma reduktion av kvOveoxiderna redan i forbrOnningsmotorn dOr hOg temperatur rader, och darfor utan behov av SCR-katalysator. Foreliggande uppfinning har darmed fordelen att behovet av SCR-katalysator helt kan elimineras, alternativt atminstone reduceras. Enligt en utforingsform kan tillsatsmedel insprutas Oven uppstroms en SCR-katalysator vid behov, dar t.ex. en mindre SCR-katalysator On som annars Or mojligt kan anvandas, men i manga fall forsvinner behovet av SCR-katalysator helt vid nyttjande av foreliggande uppfinning. Vidare kan problem med kristallbildning etc. pga. laga temperaturer enligt ovan ocksa helt eller i star utstrackning undvikas enligt foreliggande uppfinning. 28 Enligt en utfaringsform utfors inte insprutning av tillsatsmedel sdvida inte forbranningskammarens medeltemperatur overstiger flagon tillamplig temperatur Turn, t.ex. 700-750°C. Denna utforingsform erfordrar sdledes kannedom am inte bara forbranningens temperatur enligt ovan, utan Oven medeltemperaturen, dvs. kurvan 602 i fig. 6, for farbranningskammaren. Denna medeltemperatur 602 kan t.ex. estimeras enligt vad som beskrivs i den svenska patentansokan 1350507-8, dar det utferligt beskrivs hur medeltemperaturen i en forbranningskammare kan estimeras genom utnyttjande av bland annat trycket i forbranningskammaren, vilket kan erhallas med trycksensorn 406. The additive is then injected in step 506, the process then returning to step 501 for re-determination of a subsequent combustion cycle. According to the present invention, the amount of resulting nitrogen oxides during a combustion cycle can thus be estimated, whereby an amount of additive adapted to the amount generated can be injected into the combustion chamber to effect reduction of the nitrogen oxides already in the internal combustion engine without high temperature and catalyst requirements. The present invention thus has the advantage that the need for SCR catalyst can be completely eliminated, or alternatively at least reduced. According to one embodiment, additives can be injected. Upstream of an SCR catalyst if necessary, where e.g. a smaller SCR catalyst On which may otherwise be possible to use, but in many cases the need for SCR catalyst disappears completely when using the present invention. Furthermore, problems with crystal formation etc. due to low temperatures as above are also completely or to a large extent avoided according to the present invention. 28 According to one embodiment, injection of additives is not performed unless the average temperature of the combustion chamber exceeds the flake applicable temperature. 700-750 ° C. This embodiment thus requires knowledge of not only the temperature of the combustion as above, but also the average temperature, i.e. curve 602 in Fig. 6, for the color combustion chamber. This average temperature 602 can e.g. is estimated according to what is described in the Swedish patent application 1350507-8, where it is described in detail how the average temperature in a combustion chamber can be estimated by using, among other things, the pressure in the combustion chamber, which can be obtained with the pressure sensor 406.

Enligt det i namnda ansokan visade forfarandet utfors en estimering for kommande tid, och denna estimering kan Oven tillampas vid foreliggande uppfinning for att sOledes genom estimering prediktera tillOmplig mOngd for insprutning redan innan de genererade kvaveoxiderna har nOtt maximal niva. I detta fall kan Oven den i namnda ansokan visade modellen, eller annan tillamplig modell, av forbranningen anvandas. According to the method shown in the said application, an estimation is performed for the coming time, and this estimation can also be applied to the present invention so as to predict by estimating the applicable amount for injection even before the generated nitrogen oxides have reached a maximum level. In this case, the model shown in the said application, or other applicable model, of the combustion can be used.

Enligt en utforingsform nyttjas dock alltsO det faktum att trycksignaler fran trycksensorn 206 representerande det faktiskt rOdande trycket i forbrOnningskammaren kan nyttjas anda fram till dess att mangden kvaveoxider har natt maximal mOngd kvaveoxider, dvs. positionen 21 i fig. 6, varvid estimering ej erfordras, och dar varmefrigorelsen t.ex. kan estimeras enligt ovan, och dOr medeltemperaturen kan faststallas t.ex. enligt allmanna gaslagen. Saledes kan det enligt en utforingsform faststallas att temperaturen Or tillrackligt hog for att onskade reaktioner ska uppsta, sasom t.ex. en radande medeltemperatur i forbrOnningskammaren overstigande 700-750°C, dar denna medeltemperatur alltsa kan faststallas genom utnyttjande av allmanna gaslagen pa kOnt 29 satt och sasom aven visas i namnda ansakan, varvid o6nskad kristallbildning kan undvikas. According to one embodiment, however, the fact is used that pressure signals from the pressure sensor 206 representing the actual reddening pressure in the combustion chamber can be used until the amount of nitrogen oxides has reached a maximum amount of nitrogen oxides, i.e. position 21 in Fig. 6, whereby estimation is not required, and where the heat release e.g. can be estimated as above, and where the average temperature can be determined e.g. according to the general gas law. Thus, according to one embodiment, it can be determined that the temperature Or is sufficiently high for the desired reactions to occur, such as e.g. a radiating average temperature in the combustion chamber exceeding 700-750 ° C, where this average temperature can thus be determined by utilizing the general gas layers on account 29 and as also shown in the said application, whereby undesired crystal formation can be avoided.

Suedes utfors enligt en utforingsform insprutning endast am temperaturen overstiger temperaturen him, visad i fig. 6, varvid suedes intervalletP2 utgor ett "fonster" i vilket insprutning av tillsatsmedel bor ske. Detta "fonster" kan aven t.ex. vara begransat i avseendet maximal temperatur, dvs. insprutning kan vara anordnad att ske endast cm temperaturen i forbranningskammaren understiger nagon tillamplig temperatur, varvid suedes P1 kan forskjutas it hoger i fig. 6. Vidare ska det noteras att insprutningen av tillsatsmedel inte behover utforas precis dar det faktiskt pagar en forbranning i forbranningskammaren, utan insprutningen kan ske pa godtycklig plats i forbranningskammaren, t.ex. med bivillkoret att namnda medeltemperatur inte understiger t.ex. Tlim. According to one embodiment, suedes are injected only if the temperature exceeds the temperature, shown in Fig. 6, the suedes interval P2 constituting a "window" in which the injection of additives should take place. This "window" can also e.g. be limited in terms of maximum temperature, ie. injection can be arranged to take place only if the temperature in the combustion chamber is below any applicable temperature, whereby suedes P1 can be shifted to the right in Fig. 6. Furthermore, it should be noted that the injection of additives need not be carried out exactly where it actually burns a combustion chamber, but the injection can take place at any place in the combustion chamber, e.g. with the secondary condition that said average temperature does not fall below e.g. Tlim.

Enligt en utforingsform kan det i namnda svenska patentansokan 1350507-8 visade forfarandet aven tillampas for att innan t.ex. positionen plestimera huruvida medeltemperaturen kommer att vara tillrackligt hog for att insprutning ska kunna utforas, och am det konstateras att sa inte är fallet kan t.ex. en extra bransleinsprutning utforas baserat pa denna estimering i syfte att hoja temperaturen i forbranningskammaren for att mojliggora insprutning av tillsatsmedel. According to one embodiment, the method shown in the said Swedish patent application 1350507-8 can also be applied so that before e.g. position plestimate whether the average temperature will be sufficiently high for injection to be performed, and if it is found that this is not the case, e.g. an additional fuel injection is performed based on this estimation in order to raise the temperature in the combustion chamber to enable injection of additives.

Om denna insprutning utfors tillrackligt sent under forbranningscykeln kommer insprutningen inte att bidra till NOx-bildningen men daremot hoja temperaturen. Vid tillampning av dylik extra insprutning kan denna vara anordnad att vara av pa forhand faststalld storlek, men den kan Oven vara anordnad att faststallas t.ex. genom utnyttjande av estimering enligt det i namnda svenska patentansokan 1350507-8 visade farfarandet for att exempelvis faststalla tillamplig mangd bransle for insprutning, separat eller tillsammans med insprutningen av tillsatsmedel, far att erhalla onskad temperatur. If this injection is performed sufficiently late in the combustion cycle, the injection will not contribute to NOx formation but will raise the temperature. When applying such extra injection, this can be arranged to be of a predetermined size, but it can also be arranged to be determined e.g. by using estimation according to the procedure shown in the said Swedish patent application 1350507-8 to determine, for example, the applicable amount of fuel for injection, separately or together with the injection of additives, may obtain the desired temperature.

Enligt den hittills beskrivna utforingsformen har estimering av resulterande mangd kvaveoxider utforts under pagaende forbranningscykel, varvid ocksa en mangd tillsatsmedel baserat pa estimerad resulterande mangd kvaveoxider tillfors. According to the embodiment described so far, estimation of the resulting amount of nitrogen oxides has been performed during the current combustion cycle, whereby also an amount of additive based on the estimated resulting amount of nitrogen oxides is supplied.

Enligt en utforingsform estimeras istallet kvaveoxider under en forbranningscykel, varvid baserat pa denna estimering insprutning av tillsatsmedel utfors under en eller flera efterfoljande forbranningscykler. Detta har fordelen att estimeringen kan utforas mera sallan. According to one embodiment, instead, nitrogen oxides are estimated during a combustion cycle, in which case, based on this estimation, injection of additives is carried out during one or more subsequent combustion cycles. This has the advantage that the estimation can be performed more carefully.

Enligt en enklaste form av uppfinningen utfors ingen estimering av kvaveoxider, utan tillsatsmedel insprutas i farbranningskammaren vid tillamplig tidpunkt, dar t.ex. insprutad mangd istallet kan vara anordnad att bero av mangden bransle som tillfors forbranningen, alternativ kan en schablonmangd alltid tillampas, t.ex. sa lange som atminstone en minsta mangd bransle insprutas. Enligt en foredragen utforingsform utfors dock en estimering av resulterande kvaveoxider. According to a simplest form of the invention, no estimation of nitrogen oxides is performed, but additives are injected into the combustion chamber at the appropriate time, where e.g. injected quantity instead may be arranged to depend on the quantity of fuel supplied to the incineration, alternatively a standard quantity can always be applied, e.g. as long as at least a minimum amount of fuel is injected. According to a preferred embodiment, however, an estimation of the resulting nitrogen oxides is performed.

Vidare har foreliggande uppfinning hittills beskrivits i anknytning till ett farfarande (Jar kvaveoxidbildningen estimeras fram till den tidpunkt under forbranningscykeln dar kvaveoxiderna anses ha bildats. Enligt ovan indikeras detta med vevvinkelpositionen 91. Enligt den visade utforingsformen har styrsystemet saledes kannedom om hur tryckfarandringen har sett ut i forbranningskammaren 401 fram till positionen 91 eftersom detta har kunnat faststallas genom utnyttjande av trycksensorn 406. Nar sedan kvaveoxidbildningen anses ha 31 slutfarts kan mangden estimeras genom utnyttjande av faktisk tryckutveckling och en tillamplig mangd tillsatsmedel for insprutning under efterfoljande del av forbranningscykeln faststallas baserad pa estimerad mangd kvaveoxider NOR. Furthermore, the present invention has hitherto been described in connection with a process (Jar nitrogen oxide formation is estimated up to the time during the combustion cycle when the nitrogen oxides are considered to have formed. As above, this is indicated by the crank angle position 91. According to the illustrated embodiment, the control system thus has knowledge of pressure pressure). the combustion chamber 401 up to the position 91 as this has been determined by using the pressure sensor 406. When the nitrogen oxide formation is considered to have 31 completed, the amount can be estimated using actual pressure development and an appropriate amount of injection injection during the subsequent combustion cycle is determined based on estimated NOR.

Vidare kan enligt den visade utforingsformen radande temperatur i forbranningskammaren 401 estimeras genom utnyttjande av faktiskt detekterad tryckforandring varvid tillamplig tidpunkt for insprutning av tillsatsmedel kan bestammas sa att insprutning sker nar temperaturen i forbranningskammaren 401 ligger mom onskat temperaturintervall. Furthermore, according to the embodiment shown, radiating temperature in the combustion chamber 401 can be estimated by utilizing actually detected pressure change, whereby the appropriate time for injection of additives can be determined so that injection takes place when the temperature in the combustion chamber 401 is at the desired temperature range.

Enligt en utforingsform av uppfinningen utfors insprutningen av tillsatsmedel istallet vid ett tidigare skede under forbranningscykeln, sasom t.ex. helt eller delvis innan forbranningen paborjas eller avslutas, sasom t.ex. helt eller delvis innan bransleinsprutningen paborjas. Ett exempel pa ett dylikt forfarande askadliggors i fig.7. I fig. 7 visas trycket p i forbranningskammaren 401 som funktion av vevvinkelgrad T. I figur 7 visar heldragen linje 701 tryckforandringen i en forbranningskammare nar forbranning inte utfors, dvs. den tryckforandring forbranningskammaren genomgar pa grund av kolvens fram- och atergaende rorelse nar in- respektive utloppsventiler Or stangda. cp-rvc representerar den vevvinkelgrad dar inloppsventilerna stangs och (PEvo den vevvinkelgrad dar avgasventilerna oppnas och atmosfarstryck atm eller radande forbranningslufttryck suedes racier. m rTipc representerar kolvens byre dodpunkt. Streckad linje 702 representerar den tryckforandring som uppstar i forbranningskammaren pa grund av forbranning, dar i detta exempel forbranning paborjas vasentligen vid kolvens lyre (PTDr. Den snedstreckade ytan 703 representerar suedes dodpunkt den tryckforandring forbranningen ger upphov till. Enligt 32 ovanstaende exempel har insprutningen av tillsatsmedel utfarts under den del av forbranningscykeln som foljer efter vevvinkelpositionen TA, dvs. efter det att maximalt tryck uppnatts, vilket vasentligen motsvarar den position dar ocksa temperaturen kommer att vara maximal under forbranningscykeln. According to an embodiment of the invention, the injection of additives is carried out instead of at an earlier stage during the combustion cycle, such as e.g. in whole or in part before the combustion is started or stopped, such as e.g. in whole or in part before the industry injection is started. An example of such a procedure is shown in Fig. 7. Fig. 7 shows the pressure p in the combustion chamber 401 as a function of crank angle degree T. In Fig. 7, solid line 701 shows the pressure change in a combustion chamber when combustion is not performed, i.e. the pressure change the combustion chamber undergoes due to the reciprocating movement of the piston when the inlet and outlet valves are closed, respectively. cp-rvc represents the degree of crank angle at which the inlet valves are closed and (PEvo the degree of crank angle at which the exhaust valves are opened and atmospheric pressure atm or radiating combustion air pressure suedes racier. m rTipc represents the byre dead center of the piston. Dashed line 702 represents the fundamental change in combustion). this example combustion is substantially drilled at the lyre of the piston (PTDr. The sloping surface 703 represents suede dead center the pressure change the combustion gives rise to. According to the above 32 examples the injection of additives has been carried out during the part of the combustion cycle following the crank angle position maximum pressure has been reached, which essentially corresponds to the position where the temperature will also be maximum during the combustion cycle.

Enligt en utforingsform tillfors tillsatsmedlet istallet innan forbranningen paborjas, dvs. under tiden fran det att inloppsventilerna stangs vid Tivc fram till dess att forbranningen paborjas, dvs. i foreliggande exempel i intervallet Tivc - (VIDc. T.ex. kan tillforseln av tillsatsmedel vara anordnad att utforas mom nagot tillampligt delintervall av intervallet (pivc(PTDc, sasom t.ex. mellan tiden TB-cpc i fig. 7. TB kan t.ex. vara satt sa att temperaturen i forbranningskammaren overstiger nagon tillamplig temperatur. According to one embodiment, the additive is added instead before the combustion is started, ie. meanwhile from the time the inlet valves are closed at Tivc until the combustion is started, ie. in the present example in the interval Tivc - (VIDc. For example, the supply of additives may be arranged to be carried out with some applicable sub-interval of the interval (pivc (PTDc, such as between the time TB-cpc in Fig for example, be set so that the temperature in the combustion chamber exceeds any applicable temperature.

Enligt det i fig. 6 visade exemplet kan NOR-halten estimeras vasentligen nar forbranningen har slutforts, varvid uppmatt tryck kan anvandas vid berakningsmodellen enligt ovan fOr berakning av genererade kvaveoxider NOR. I det fall tillsatsmedlet tillfors innan forbranningen pabOrjas kan inte ett faktiskt tryckspar 701 anvandas fram till den position (sasom t.ex. TA i fig. 7) dar kvaveoxiderna kan anses ha bildats for att ocksa estimera kvaveoxidforekomsten efter forbranningen eftersom denna forbranning annu inte har skett. Samtidigt är det onskvart att en mangd tillsatsmedel tillfors som är anpassad till den mangd kvaveoxider som senare bildas under forbranningscykeln. Tillamplig mangd tillsatsmedel kan bestammas pa flera olika satt. Enligt en utforingsform estimeras genererade kvaveoxider NO enligt ovan under en forbranningscykel, varvid tillsatsmedlet tillfors fOrst under en efterfoljande forbranningscykel. Detta forfarande kan t.ex. tillampas nar forhallandena for flera pa varandra fOljande forbranningscykler är vasentligen desamma. 33 Enligt en utfaringsform utfors dock en estimering av de kvaveoxider NO som bildas under den efterfoljande delen av farbrdnningscykeln, varvid tillsatsmedel tillfars innan forbranningen faktiskt har skett och baserat pa en estimerad utkomst av forbrOnningen. Mdngden genererade kvdveoxider kan estimeras enligt ovanstaende ekvationer men ddr alltsa kdnnedom om kommande tryckfordndring i fOrbrdnningskammaren erfordras eftersom kannedom am denna saknas. TryckfOrdndringen i fOrbrdnningskammaren kan t.ex. estimeras enligt den ovan refererade svenska patentansokan 1350511-0, ddr ett forfarande beskrivs for att estimera mdngden genererade kvdveoxider varvid sedan forbrdnningen kan regleras baserat pa forvdntad mdngd kvdveoxider. According to the example shown in Fig. 6, the NOR content can be estimated substantially when the combustion has been completed, whereby measured pressure can be used in the calculation model according to the above for calculation of generated nitrogen oxides NOR. In the case where the additive is supplied before the combustion is started, an actual pressure pair 701 cannot be used up to the position (such as TA in Fig. 7) where the nitrogen oxides can be considered to have formed to also estimate the nitrogen oxide presence after the combustion because this combustion has not yet happened. At the same time, it is unfortunate that a large amount of additives are supplied which is adapted to the large number of nitrogen oxides which are later formed during the combustion cycle. The applicable amount of additives can be determined in several different ways. According to one embodiment, generated nitrogen oxides NO are estimated as above during a combustion cycle, the additive being supplied first during a subsequent combustion cycle. This procedure can e.g. applied when the ratios for several consecutive combustion cycles are essentially the same. 33 According to one embodiment, however, an estimation of the nitrogen oxides NO formed during the subsequent part of the combustion cycle is performed, whereby additives are added before the combustion has actually taken place and based on an estimated outcome of the combustion. The amount of nitrogen oxides generated can be estimated according to the above equations, but knowledge of the upcoming pressure change in the combustion chamber is therefore required because there is no knowledge of this. The pressure change in the combustion chamber can e.g. is estimated according to the above-referenced Swedish patent application 1350511-0, where a procedure is described for estimating the amount of generated nitrogen oxides, whereby the combustion can then be regulated based on the expected amount of nitrogen oxides.

Enligt foreliggande uppfinning kan det i ndmnda ansokan exemplifierade forfarandet nyttjas for att estimera mOngden genererade kvdveoxider, ddr det ndmnda ansokan exemplifieras hur tryckfordndringen under kommande del av forbrOnningscykeln kan estimeras, varvid detta estimerade tryck kan anvandas vid de ovan beskrivna berdkningarna. Sasom beskrivs i ndmnda ansokan erfordras vid berdkningen kannedom am den branslemdngd som kommer att insprutas under forbrdnningscykeln och ndr insprutning sker. Detta utgbr dock vanligtvis kand data sasom ocksa har beskrivits ovan i anknytning till berdkning av varmefrigorelsen pa grund av forbranningen, vilken alltsa beskrivs mer i detalj i den svenska ansokan 1350510-2, ddr ocksa prediktering medelst estimering av vdrmefrigorelsen for kommande del av farbranningscykeln, vilket saledes utfOrs ndr berakningarna utfors genom ett estimerat tryck, beskrivs utfOrligt. According to the present invention, the method exemplified in the said application can be used to estimate the amount of nitrogen oxides generated, where the said application exemplifies how the pressure change during the next part of the combustion cycle can be estimated, this estimated pressure can be used in the calculations described above. As described in the aforementioned application, knowledge of the industry load that will be injected during the combustion cycle and other injection takes place is required in the calculation. However, this usually consists of data as also described above in connection with calculating the heat release due to the combustion, which is thus described in more detail in the Swedish application 1350510-2, which also predicts by estimating the heat release for the next part of the combustion cycle, which thus performed when the calculations are performed by an estimated pressure, is described in detail.

Genom utnyttjande av det i den svenska patentansokan 1350511-0 visade forfarandet kan saledes den forvdntade mdngden bildade kvdveoxider NO estimeras innan tiden TB i fig. 7, varvid Oven 34 en tillamplig mangd tillsatsmedel for insprutning kan faststallas innan/vid positionen TB i fig. 7, varvid denna mangd sedan kan insprutas i farbranningskammaren, exempelvis under intervallet TB_Tc. Mangden tillsatsmedel for tillforsel kan t.ex. utgaras av stokiometrisk eller annan tillamplig mangd. T.ex. kan det vara onskvart att tillfora en storre mangd tillsatsmedel an vad som idealt atgar for att reducera den forvantade kvaveoxidmangden da tillsatsmedel kan komma att "ferbrannas" under forbranningen och clamed reducera verkningsgraden for NOx-reduceringen. Thus, by using the method shown in Swedish patent application 1350511-0, the expected amount of formed nitrogen oxides NO can be estimated before the time TB in Fig. 7, whereby A suitable amount of additive for injection can be determined before / at the position TB in Fig. 7. , wherein this amount can then be injected into the combustion chamber, for example during the interval TB_Tc. The amount of additive for supply can e.g. issued by stochiometric or other applicable quantity. For example. it may be unwise to add a larger amount of additive than is ideally required to reduce the expected amount of nitric oxide as additives may be "burnt" during combustion and clamed to reduce the efficiency of the NOx reduction.

Vidare kommer en insprutning av tillsatsmedel innan forbrOnning sker att paverka sjalva forbrOnningsforloppet. Detta beror, sasom inses, bland annat pa att ytterligare substans tillfors forbranningskammaren. Dessutom Or tillsatsmedlet vanligtvis en vatska, dar vatskan till forhallandevis star del kan innehalla t.ex. vatten. Den tillforda vatskan kommer helt eller till star del att forangas, dar energi atgar vid forangningen med foljd att temperaturen i forbranningskammaren kommer att reduceras. Furthermore, an injection of additives before combustion takes place will affect the actual combustion process. This is due, as will be appreciated, partly to the addition of additional substance to the combustion chamber. In addition, the additive is usually a liquid, where the liquid to a relatively large extent may contain e.g. water. The supplied liquid will evaporate completely or to a large extent, where energy evaporates during the evaporation, with the result that the temperature in the combustion chamber will be reduced.

Dessutom uppstar en dissociationseffekt nOr vattenmolekyler i gasform delas upp i vatgas respektive syre, dar energi atgar for molekyldelningen. Detta kommer i sin tur att paverka farbranningen, dar en reducerad temperatur kan medfora att en mindre mangd kvaveoxider genereras, med foljd att en mindre mangd tillsatsmedel erfordras enkom pa grund av detta forhallande. In addition, a dissociation effect occurs when water molecules in gaseous form are divided into hydrogen and oxygen, respectively, where energy is used for the molecular division. This in turn will affect the combustion, where a reduced temperature may result in a smaller amount of nitrogen oxides being generated, with the result that a smaller amount of additive is required solely because of this condition.

Saledes bor berakningen av forvantad bildning av kvOveoxider NO ta hOnsyn till den tillforda mangden tillsatsmedel, varfor tillsatsmedlet ocksa bor vara med i berakningen. Detta kan i sin tur erfordra att itereringar erfordras for att hitta en tillsatsmedelmangd for tillforsel som motsvarar den mangd kvaveoxider som kommer att genereras vid en forbranning som sker efter det att tillsatsmedel har tillfors. Thus, the calculation of the expected formation of nitrogen oxides NO should take into account the required amount of additives, so the additive should also be included in the calculation. This in turn may require that iterations be required to find an amount of additive for supply which corresponds to the amount of nitrogen oxides which will be generated in a combustion which takes place after the additive has been supplied.

Betraffande berakningarna kommer tillsatsmedlet att paverka specifik varmekapacitet i forbranningskammaren och darmed paverka gamma y i ekvationerna ovan. Mer specifikt kan inverkan av forandringen i specifik varmekapacitet erhallas genom att berakna specifik varmekapacitet vid konstant tryck Cp respektive vid konstant volym Cry, dar i nedanstaende berakning aven avgasaterforing, EGR, behandlas. Regarding the calculations, the additive will affect specific heat capacity in the combustion chamber and thus affect gamma y in the equations above. More specifically, the effect of the change in specific heat capacity can be obtained by calculating specific heat capacity at constant pressure Cp and at constant volume Cry, respectively, where in the calculation below exhaust gas liner, EGR, is treated.

Vdrmekapaciteter finns tabellerade for olika kemikaliska amnen och grundamnen i tabeller utfardade av NASA, och Or interpolerade som funktion av temperatur, dar fOrbranningskammarens medeltemperatur nyttjas. Denna temperatur kan t.ex. estimeras enligt vad som beskrivs i den svenska patentansOkan 1350507-8, dar det utfOrligt beskrivs hur medeltemperaturen i en forbranningskammare kan estimeras genom utnyttjande av bland annat trycket i forbranningskammaren, vilket kan estimeras enligt ovan. Allmant Or den specifika varmekapaciteten vid konstant tryck Cp tabellerad pa formen: c(T) = a1T-2 + a2T-1 + a3 + a4T + aT2 + a6T3 + a7T4() Den specifika varmekapaciteten for konstant volym, Cs,, kan sedan beraknas som Cv=Cp—R, varvid saledes gamma y kan beraknas. NO.r gamma y har beraknats kan genererad mangd kvaveoxider estimeras enligt ovan. Tillsatsmedlets inverkan pa gamma y beskrivs nedan. Heat capacities are tabulated for different chemical substances and basic substances in tables issued by NASA, and interpolated as a function of temperature, where the average temperature of the combustion chamber is used. This temperature can e.g. is estimated according to what is described in the Swedish patent application 1350507-8, where it is described in detail how the average temperature in a combustion chamber can be estimated by using, among other things, the pressure in the combustion chamber, which can be estimated as above. General Or the specific heat capacity at constant pressure Cp tabulated in the form: c (T) = a1T-2 + a2T-1 + a3 + a4T + aT2 + a6T3 + a7T4 () The specific heat capacity for constant volume, Cs ,, can then be calculated as Cv = Cp — R, whereby thus gamma y can be calculated. NO.r gamma y has been calculated, the amount of nitrogen oxides generated can be estimated as above. The effect of the additive on gamma y is described below.

Sasom namnts kan det vid berakning av gamma y Oven vara ferdelaktigt att ta hansyn tas till det fall dar EGRAterforing utfors, dvs. nar en del av avgaserna fran 36 farbranningen aterleds till farbranningsmotorns inloppssida, vilket paverkar den kemiska sammansattningen i farbranningskammaren. Reglering av EGR-Aterforingen utgor normalt en egen reglering, men sasom beskrivs nedan kan det vara fardelaktigt att anpassa EGR-Aterforingen baserat pa den mangd tillsatsmedel som tillfors. Ndr EGR-aterforing tillampas kan t.ex. foljande samband tilldmpas for att estimera specifik vdrmekapacitet vid konstant tryck for EGR-aterfOrd gas, dar a och b är antalet kolatomer respektive vdteatomer i det bransle som anvdnds for framdrivning av fordonet, dvs. Cyb, och ddr utgor lambda-vardet: acPco22CPif20+(a)aA9/-1)Cp 02+3.773 gi CpN2) C EGR = b a-F-2+(4.773/19i —1)(a+) Motsvarande berdkning av specifik varmekapacitet vid konstant volym for ren luft utgors av: 1 C A = —4.773 0.773c (T)+ c,r) (T)) p IRp,. 2-2 I syfte att erhalla ett korrekt gammavarde viktas respektive vdrmekapacitet enligt ekv. (8), ddr EGR% utgor EGR-halten: Cp = CpAIR * (1— EGR%)+ CpEGR * EGR%(8) EGR-halten kan t.ex. faststdllas som en vid en foregaende forbranningscykel faststalld EGR-halt. Alternativt kan EGR- halten faststdllas via t.ex. emissionsberakningar, ddr t.ex. koldioxidberakningar kan anvandas for att faststalla hur star del av forbranningsluften som utgors av aterfOrda avgaser. T.ex. kan detta utforas genom att mata koldioxidhalten vid inloppet till forbramningskammaren respektive vid forbranningskammarens utlopp eller langre nedstroms i efterbehandlingssystemet, varvid EGR-halten kan beraknas pa 37 ett for fackmannen 'cant satt. EGR-Aterforingen utgar saledes en variabel som ej beraknas specifikt for varje farbranningscykel, utan som normalt finns tillganglig i fordonets styrsystem, dar denna beraknas med tillampliga intervall. Allmant (Jailer att regleringen av EGR-Aterfaringen Or mycket langsammare an regleringen enligt foreliggande uppfinning. As mentioned, when calculating gamma y Oven, it may be advantageous to take his view into the case where EGRAterforing is performed, ie. when a part of the exhaust gases from the combustion is returned to the inlet side of the combustion engine, which affects the chemical composition of the combustion chamber. Regulation of the EGR Feedback normally constitutes a separate regulation, but as described below, it can be advantageous to adapt the EGR Feedback based on the amount of additives that are added. When EGR feedback is applied, e.g. the following relationship is applied to estimate specific heat capacity at constant pressure for EGR recycled gas, where a and b are the number of carbon atoms and water atoms in the industry used to propel the vehicle, ie. Cyb, and ddr constitute the lambda value: acPco22CPif20 + (a) aA9 / -1) Cp 02 + 3,773 gi CpN2) C EGR = b aF-2 + (4.773 / 19i —1) (a +) Corresponding calculation of specific heat capacity at constant volume of clean air consists of: 1 CA = —4,773 0.773c (T) + c, r) (T)) p IRp ,. 2-2 In order to obtain a correct gamma value, the respective heat capacity according to Eq. (8), where EGR% constitutes the EGR content: Cp = CpAIR * (1— EGR%) + CpEGR * EGR% (8) The EGR content can e.g. is determined as an EGR content determined during a previous combustion cycle. Alternatively, the EGR content can be determined via e.g. emission calculations, ddr e.g. Carbon dioxide calculations can be used to determine the proportion of combustion air that is made up of recycled exhaust gases. For example. this can be done by feeding the carbon dioxide content at the inlet to the combustion chamber or at the outlet of the combustion chamber or further downstream in the after-treatment system, whereby the EGR content can be calculated in a manner known to those skilled in the art. The EGR return thus emits a variable which is not calculated specifically for each combustion cycle, but which is normally available in the vehicle's control system, where this is calculated at applicable intervals. In general, the regulation of the EGR experience is much slower than the regulation of the present invention.

Betraffande tillsatsmedlets inverkan pa specifik varmekapacitet, och darmed gamma y kan denna bestammas genom foljande berakning: Cp m tillsmedel (T) = c, (T)* (1 — tillsmedelandel) + Cp Ullsmedel (T) * tillsmedelandel (9) , dar c - p tillsmedel (T) kan vara kand och finnas tabellerad. Alternativt kan cptimmedeAT) faststallas pi motsvarande satt som har beskrivits forEGR ovan genom kannedom am tillsatsmedlets sammansattning. Gamma y kan sedan faststallas som: Y = Cp med tillsmedel Cv med tillsmedel(10) , dar: Cv med talsmedel = Cp med tillsmedelR Genom utnyttjande av framraknat y som har kompenserats for insprutning av tillsatsmedel innan forbranning kan suedes forvantade genererade kvaveoxider vid forbranningen estimeras enligt ovan, varvid det kan konstateras att en mindre mangd tillsatsmedel erfordras, varvid ny berakning for mindre mangd tillsatsmedel kan utforas etc. etc. Tillamplig mangd tillsatsmedel for insprutning innan forbranningen kan suedes 38 itereras fram till dess att onskad mangd tillsatsmedel i forhallande till forvantad mangd bildade kvaveoxider erhalls vid berakningarna. Regarding the effect of the additive on specific heat capacity, and thus gamma y, this can be determined by the following calculation: Cp m additive (T) = c, (T) * (1 - additive part) + Cp Wool agent (T) * additive part (9), where c - p additive (T) can be bachelor's and is tabulated. Alternatively, cptimedeAT) can be determined in the same manner as described forEGR above by knowledge of the composition of the additive. Gamma y can then be determined as: Y = Cp with additive Cv with additive (10), where: Cv with adjuvant = Cp with additive R By using advanced y which has been compensated for injection of additives before combustion, suede's expected generated nitrogen oxides during combustion can be estimated. as above, whereby it can be stated that a smaller amount of additive is required, whereby a new calculation for a smaller amount of additive can be performed, etc. etc. Applicable amount of additive for injection before combustion can be sued 38 until the desired amount of additive in relation to related amount formed nitrogen oxides are obtained in the calculations.

Vid tillforsel av tillsatsmedel till forbranningen enligt foreliggande nppfinning finns Oven ytterligare aspekter som bor beaktas. T.ex. tillampas enligt ovan normalt en EGRaterforing av en del av de avgaser som bildas under forbranningen. EGR-aterforingen har allmant en positiv (minskande) inverkan pa NOx-bildningen. Tillforseln av tillsatsmedel kommer att medfora en forandrad avgasstromsammansattning jamfort med fallet nar tillsatsmedel inte tillfors. T.ex. kan tillsatsmedlet enligt ovan delvis utgoras av vatten, varvid sannolikt ocksa en storre andel vatten an normalt kommer att forekomma i den resulterande avgasstrommen. Detta betyder att en reglering av EGR- aterforingen baserat pa tillforseln av tillsatsmedel kan erfordras. T.ex. kan det erfordras att EGR-aterforingen reduceras pa grund av ett forhallandevis hogre vatteninnehall I avgasstrommen, vilket ger en battre effekt med avseende pa NO reduktionen, men med risk for att oonskat hogt vatteninnehall kan erhalls i forbranningskammaren am EGRaterforingen blir alltfor hog i forhallande till vatteninnehall. When adding additives to the combustion according to the present invention, there are also additional aspects that should be considered. For example. According to the above, an EGR feed of some of the exhaust gases formed during combustion is normally applied. EGR feedback generally has a positive (decreasing) effect on NOx formation. The supply of additives will result in a changed exhaust gas composition compared to the case when additives are not supplied. For example. For example, the additive as above may consist in part of water, whereby it is also likely that a larger proportion of water will normally be present in the resulting exhaust stream. This means that a regulation of the EGR feedback based on the supply of additives may be required. For example. it may be required that the EGR feed is reduced due to a relatively higher water content in the exhaust stream, which gives a better effect with respect to the NO reduction, but with the risk that undesirably high water content can be obtained in the combustion chamber if the EGR feed becomes too high in relation to water content .

Regleringen av EGR-aterforingen kan utforas pa godtyckligt tillampligt satt, dar t.ex. EGR-aterforingens inverkan pa den specifika varmekapaciteten enligt ovan kan tas i beaktande och varvid EGR-aterforingen t.ex. kan regleras utifran dessa berakningar. Allmant galler att reglering av EGR-aterforingen Or langsam (storleksordningen sekunder) jamfort med den reglering som ntfors enligt foreliggande uppfinning dar berakningar utfors under pagaende forbranningscykel och dar 39 berakning kan utfaras pi t.ex. en hundradels sekund, tusendels sekund eller an kortare tid. The regulation of the EGR feedback can be performed in any suitable way, where e.g. The impact of the EGR feedback on the specific heat capacity as above can be taken into account and whereby the EGR feedback e.g. can be regulated based on these calculations. It is generally the case that regulation of the EGR feed is slow (of the order of seconds) compared with the regulation carried out according to the present invention where calculations are performed during the current combustion cycle and where 39 calculations can be performed in e.g. one hundredth of a second, one thousandth of a second or a shorter time.

Vidare finns vid tillforsel av tillsatsmedel till forbranningskammaren ytterligare aspekter som bor beaktas. Furthermore, when supplying additives to the combustion chamber, there are additional aspects that should be taken into account.

Trycket i en forbranningskammare kan uppga till fOrhallandevis hoga tryck, sasom maximala tryck i storleksordningen 200-300 bar. Normalt utfors bransleinsprutning med vasentligt hOgre tryck an forbranningskammartrycket, sasom t.ex. 1500-2500 bar, varvid forandringar i forbranningskammarens tryck blir vasentligen forsumbara i forhallande till det hoga bransleinsprutningstrycket. Detta betyder att insprutad mangd bransle kan faststallas med god noggrannhet. Anvandning av hoga tryck är dock vanligtvis forenade med hoga kostnader, varfor det kan vara onskvart att utfora insprutningen av tillsatsmedel vid vasentligt lagre tryck, sasom t.ex. tryck i samma storleksordning som radande forbranningskammartryck. Detta betyder i sin tur att for en viss oppningstid hos insprutningsmunstycket for insprutning av tillsatsmedel kan, pa grund av forbranningskammarens mottryck, olika mangder tillforas for en och samma oppningstid beroende pa radande farbranningskammartryck. Saledes kan tillsatsmedlets insprutningstid vara anordnad att styras baserat pa radande farbranningskammartryck dar detta t.ex. kan bestammas genom utnyttjande av trycksensorn 406. The pressure in a combustion chamber can amount to relatively high pressures, such as maximum pressures in the order of 200-300 bar. Normally, fuel injection is performed with significantly higher pressure than the combustion chamber pressure, such as e.g. 1500-2500 bar, whereby changes in the combustion chamber pressure become substantially negligible in relation to the high fuel injection pressure. This means that the injected amount of fuel can be determined with good accuracy. However, the use of high pressures is usually associated with high costs, for which reason it may be undesirable to carry out the injection of additives at substantially lower pressures, such as e.g. pressure in the same order of magnitude as radiating combustion chamber pressure. This in turn means that for a certain opening time of the injection nozzle for injecting additives, due to the back pressure of the combustion chamber, different amounts can be supplied for one and the same opening time depending on the prevailing combustion chamber pressure. Thus, the injection time of the additive can be arranged to be controlled based on radiating combustion chamber pressure where this e.g. can be determined by using the pressure sensor 406.

Saledes kan vid hogre radande forbranningskammartryck en langre oppningstid nyttjas jamfort med om radande forbranningskammartryck är lagre, dar, sasom inses, radande forbranningskammartryck kommer att bero av den vevvinkelposition vid vilken insprutning av tillsatsmedel sker. Thus, at higher radiating combustion chamber pressures, a longer opening time can be used compared to if radiating combustion chamber pressures are lower, where, as will be appreciated, radiating combustion chamber pressures will depend on the crank angle position at which the injection of additive takes place.

Vidare innefattar foreliggande uppfinning en lasning dar vatska sasom en vatska delvis innehallande vatten tillfors farbranningsmotorns farbranningskammare. Denna vatsketillforsel kan erfordra att vissa skyddsaspekter/Atgarder kan behoya beaktas. Enligt oyan har, i fallet med insprutning av tillsatsmedel efter forbrOnningen, en nedre temperaturgrans exemplifierats for att Onskad omvandling skall ske. Det kan Oven finnas begransningar med avseende pa ridr under forbranningscykeln insprutningen ay tillsatsmedel bor ske av andra anledningar. T.ex. kan det vara Onskvart att kolven maximalt far befinna sig ett visst antal vevvinkelgrader frail ovre dodpunkt nar insprutning sker for att inte alltfer star del av cylindervaggen skall vara blottlagd vid insprutningen med risk for vaggtraff med bortspolning av oljefilm som feljd och clamed associerad risk for oonskat slitage. Furthermore, the present invention comprises a welding in which liquid such as a liquid partially containing water is supplied to the combustion chamber of the combustion engine. This water supply may require that certain protection aspects / Atgarder may need to be considered. According to oyan, in the case of injection of additives after combustion, a lower temperature limit has been exemplified in order for the desired conversion to take place. There may also be restrictions on riding during the combustion cycle. Injection of additives should be done for other reasons. For example. it may be unreasonable for the piston to be at a certain number of crank angle degrees from the upper dead center when injection takes place so that not too much of the cylinder wall is exposed during the injection with risk of rock hit with flushing of oil film as fault and clamed associated risk of unwanted wear .

Vidare kan tillforseln av tillsatsmedel t.ex. vara anordnad att stangas av am fordonets hastighet understiger nagon yiss hastighet, eller am fordonet blir stillastaende, eller am av annan anledning risk foreligger for att forbranningsmotorn inom kart kommer att stangas ay. Vid dyklika situationer kan det vara onskvart att t.ex. yattenforekomsten i farbranningsmotorsystemet hinner reduceras innan forbranningsmotorn stangs av for att undvika vattenassocierade skador. Enligt en utfaringsform av uppfinningen kan tillforseln av tillsatsmedel vara anordnad att stangas av am fordonets hastighet understiger nagon tillamplig hastighet och fordonets omgivningstemperatur understiger t.ex. non grader Celsius i syfte att undvika att yatten kyarstar i systemet efter det att forbranningsmotorn har stangts av med frysrisk som feljd. 41 Vidare kan de ovanstaende utfaringsformerna kombineras med ett forfarande som anpassar forbranningen allteftersom farbranningen fortskrider, dar forbranningen regleras baserat pa nagot tillampligt kriterium. I t.ex. den svenska patentansakan 1350511-0 beskrivs ett farfarande dar forbranningen under en forbranningscykel regleras baserat pa en forvantad och under pagaende farbranningscykel estimerad mangd resulterande kvaveoxider. Enligt en utfOringsform kan det uppfinningsenliga forfarandet kombineras med det i namnda ansokan visade forfarandet, varvid mangden resulterande kvaveoxider NO innan tillforsel av tillsatsmedel kan vara anordnad att regleras genom reglering av forbranningen. Vidare kan mangden tillsatsmedel for tillforsel till forbranningskammaren vara anordnad att faststallas baserat pa en estimering av resulterande kvaveoxider enligt vad som beskrivs i namnda svenska patentansokan 1350511-0. Furthermore, the supply of additives can e.g. be arranged to be stalled if the speed of the vehicle is less than the speed of any yis, or if the vehicle becomes stationary, or if for some reason there is a risk that the internal combustion engine within the map will be stalled ay. In dive-like situations, it can be unfortunate that e.g. the yatten incidence in the internal combustion engine system has time to be reduced before the internal combustion engine is switched off to avoid water-associated damage. According to an embodiment of the invention, the supply of additives may be arranged to be stopped by the speed of the vehicle below any applicable speed and the ambient temperature of the vehicle below e.g. non degrees Celsius in order to prevent the yacht from cooling in the system after the internal combustion engine has been switched off with the risk of freezing as a result. Furthermore, the above embodiments can be combined with a method which adapts the combustion as the combustion progresses, where the combustion is regulated based on some applicable criterion. In e.g. Swedish patent application 1350511-0 describes a process in which the combustion during a combustion cycle is regulated based on a predicted and during the current combustion cycle the amount of resulting nitrogen oxides estimated. According to one embodiment, the process according to the invention can be combined with the process shown in the said application, wherein the amount of resulting nitrogen oxides NO before the supply of additives can be arranged to be regulated by regulating the combustion. Furthermore, the amount of additive for supply to the combustion chamber can be arranged to be determined based on an estimation of the resulting nitrogen oxides as described in the said Swedish patent application 1350511-0.

Vidare kan forfarandet vara anordnat att avbrytas nar temperaturen i forbranningskammaren har uppnatt maximal temperatur under forbranningen, eftersom vasentligen all kvaveoxidgenerering sannolikt kommer att ha uppstatt innan denna tidpunkt, varfor efterfaljande reglering istallet t.ex. kan utforas helt enligt valt insprutningsschema, alternativt utfOras baserat pa nagot annat tillampligt kriterium. Furthermore, the process can be arranged to be interrupted when the temperature in the combustion chamber has reached the maximum temperature during the combustion, since essentially all nitrogen oxide generation is likely to have occurred before this time, for which subsequent regulation instead e.g. can be carried out completely according to the selected injection schedule, or alternatively carried out based on some other applicable criterion.

Uppfinningen har ovan exemplifierats pa ett satt dar en trycksensor 406 anvands for att faststalla ett tryck i forbranningskammaren, och med hjalp av vilket temperatur och kvaveoxidgenerering enligt ovan kan estimeras. Ett alternativ till att anvanda trycksensorer kan istallet utgoras av nyttjande av en (eller flera) andra sensorer, sasom t.ex. hogupplosta jonstromsensorer, knacksensorer eller tojningsgivare, varvid trycket i forbranningskammaren kan modelleras genom utnyttjande av sensorsignaler fran dylika 42 sensorer. Det är aven mojligt att kombinera olika typer av sensorer, t.ex. for att erhalla en sakrare estimering av trycket i forbranningskammaren, och/eller anvanda andra tillampliga sensorer, dar sensorsignalerna omraknas till motsvarande tryck for anvandning vid reglering enligt ovan. The invention has been exemplified above in a manner in which a pressure sensor 406 is used to determine a pressure in the combustion chamber, and by means of which temperature and nitrogen oxide generation as above can be estimated. An alternative to using pressure sensors can instead be the use of one (or more) other sensors, such as e.g. high-resolution ion current sensors, knock sensors or strain gauges, whereby the pressure in the combustion chamber can be modeled by utilizing sensor signals from such 42 sensors. It is also possible to combine different types of sensors, e.g. to obtain a more accurate estimation of the pressure in the combustion chamber, and / or to use other applicable sensors, where the sensor signals are converted to the corresponding pressure for use in control as above.

Det uppfinningsenliga forfarandet for reglering av forbranningsmotorn kan aven kombineras med sensorsignaler fran andra sensorsystem dar upplosning pa vevvinkelniva inte är tillganglig, sasom t.ex. annan tryckgivare, NOx-sensorer, NE13- sensorer, PM-sensorer, syresensorer och/eller temperaturgivare etc., vilka insignaler t.ex. kan anvandas som inparametrar vid estimering av t.ex. forvantat tryck/temperatur genom utnyttjande av datadrivna modeller helt eller delvis istallet for modeller av ovan beskrivna typ. T.ex. kan signaler fran en nedstroms forbranningsmotorn anordnad NOx-sensor anvandas vid bestamning av tillamplig mangd tillsatsmedel for tillforsel till forbranningskammaren. I detta fall kan t.ex. en av NONsensorn indikerad obnskat hog NOx-halt medfora en hojning av mangden tillfort reduktionsmedel. The method according to the invention for regulating the internal combustion engine can also be combined with sensor signals from other sensor systems where resolution at the crank angle level is not available, such as e.g. other pressure sensors, NOx sensors, NE13 sensors, PM sensors, oxygen sensors and / or temperature sensors etc., which input signals e.g. can be used as input parameters when estimating e.g. expected pressure / temperature by utilizing data-driven models in whole or in part instead of models of the type described above. For example. For example, signals from a NOx sensor arranged downstream of the combustion engine can be used in determining the applicable amount of additive for supply to the combustion chamber. In this case, e.g. an undesired high NOx content indicated by the NON sensor causes an increase in the amount of reducing agent added.

Vidare har foreliggande uppfinning ovan exemplifierats i anknytning till fordon. Uppfinningen är dock aven tillamplig vid godtyckliga farkoster/processer dar kvaveoxidreglering enligt ovan är tillamplig, sasom t.ex. vatten- eller luftfarkoster med forbranningsprocesser enligt ovan. Furthermore, the present invention has been exemplified above in connection with vehicles. However, the invention is also applicable to arbitrary vessels / processes where nitrogen oxide control as above is applicable, such as e.g. water or aircraft with combustion processes as above.

Det skall ocksa noteras att systemet kan modifieras enligt olika utforingsformer av forfarandet enligt uppfinningen (och vice versa) och att foreliggande uppfinning inte pa nagot vis är begransad till de ovan beskrivna utforingsformerna av forfarandet enligt uppfinningen, utan avser och innefattar alla utforingsformer mom de bifogade sjalvstandiga kravens skyddsomfang. T.ex. är uppfinningen tillamplig for insprutning av godtyckligt tillsatsmedel i forbranningsmotorns 43 farbranningskammare, dar detta tillsatsmedel kan vara avsett for reduktion av kvaveoxider, eller en eller flera andra fareningar. It should also be noted that the system can be modified according to various embodiments of the method according to the invention (and vice versa) and that the present invention is not in any way limited to the above-described embodiments of the method according to the invention, but relates to and includes all embodiments of the appended independent the scope of protection of the requirements. For example. For example, the invention is applicable to the injection of any additive into the combustion chamber of the internal combustion engine 43, where this additive may be intended for the reduction of nitrogen oxides, or one or more other compounds.

Claims (42)

44 Patentkrav 1. Forfarande for reglering av en forbranningsmotor (101), varvid namnda forbranningsmotor (101) innefattar atminstone en forbranningskammare (201) och organ (202) for tillforsel av bransle till namnda forbranningskammare (201), varvid forbranning i namnda forbranningskammare (201) sker i forbranningscykler, varvid forfarandet Or lannetecknat av att:A method of controlling an internal combustion engine (101), said combustion engine (101) comprising at least one combustion chamber (201) and means (202) for supplying fuel to said combustion chamber (201), wherein combustion in said combustion chamber (201) ) takes place in combustion cycles, the process Or being characterized by: 1. under en forsta forbranningscykel och genom utnyttjande av forsta sensororgan (406), faststalla ett forsta parametervarde representerande en storhet avseende namnda forbranningskammare (201), 2. genom utnyttjande av namnda forsta parametervarde, faststalla en forsta mangd tillsatsmedel fbr tillfbrsel till namnda forbranningskammare, och 3. till namnda forbranningskammare (201) tillfora namnda forsta mangd tillsatsmedel.During a first combustion cycle and by using first sensor means (406), determining a first parameter value representing a quantity with respect to said combustion chamber (201); and 3. supplying to said combustion chamber (201) said first amount of additive. 2. Forfarande enligt krav 1, varvid namnda forsta parametervarde representerande en storhet avseende namnda forbranningskammare (201) utgar en storhet avseende forbranningen i namnda forbranningskammare (201).The method of claim 1, wherein said first parameter representing a quantity relating to said combustion chamber (201) outputs a quantity relating to the combustion in said combustion chamber (201). 3. Forfarande enligt krav 1 eller 2, varvid namnda tillsatsmedel utger ett tillsatsmedel for reduktion av atminstone en forsta substans (NO) resulterande vid ferbranning i namnda forbranningskammare (201).A method according to claim 1 or 2, wherein said additive is an additive for reducing at least one first substance (NO) resulting in ferrous combustion in said combustion chamber (201). 4. Forfarande enligt nagot av kraven 1-3, vidare innefattande att: 1. genom utnyttjande av namnda forsta parametervarde estimera ett forsta matt pa atminstone en forsta substans (NO) resulterande vid forbranning under namnda fbrsta farbrdnningscykel, och 2. baserat pi namnda forsta mitt, faststalla nimnda forsta mdngd tillsatsmedel for tillfarsel till ndmnda forbrinningskammare.A method according to any one of claims 1-3, further comprising: 1. using said first parameter, estimating a first mat on at least one first substance (NO) resulting from combustion during said first combustion cycle, and 2. based on said first middle, determine the said first amount of additive for supply to the said combustion chamber. 5. Forfarande enligt krav 4, vidare innefattande att estimera ndmnda fOrsta matt under ndmnda fOrsta forbrdnningscykel.The method of claim 4, further comprising estimating said first mat during said first combustion cycle. 6. FOrfarande enligt krav 4 eller 5, vidare innefattande: 1. att estimera ndmnda fOrsta mitt pi itminstone en fOrsta substans (NO) resulterande vid forbrdnning under en fOrsta del av en fOrsta forbrdnningscykel, och 2. baserat pi ndmnda fOrsta mitt tillfOra ndmnda tillsatsmedel till ndmnda forbrdnningskammare under en pifOljande del av ndmnda fOrsta fOrbrdnningscykel.The method of claim 4 or 5, further comprising: 1. estimating said first center on at least one first substance (NO) resulting from combustion during a first portion of a first combustion cycle, and 2. based on said first center adding said additive. to the said combustion chamber during a subsequent part of the said first combustion cycle. 7. Forfarande enligt krav 4 eller 5, vidare innefattande: 1. att estimera ndmnda fOrsta mitt pi itminstone en fOrsta substans (NO) resulterande vid forbrdnning under en fOrsta del av en fOrsta forbrdnningscykel, och 2. baserat pi ndmnda fOrsta mitt tillfera ndmnda tillsatsmedel till ndmnda forbrdnningskammare itminstone delvis innan forbrdnning paberjas under ndmnda fOrsta forbrdnningscykel.The method of claim 4 or 5, further comprising: 1. estimating said first center on at least one first substance (NO) resulting from combustion during a first portion of a first combustion cycle, and 2. based on said first center administering said additives. to the said combustion chamber at least in part before combustion is introduced during the said first combustion cycle. 8. Forfarande enligt krav 4 eller 5, vidare innefattande: 1. att estimera ndmnda fOrsta mitt pi itminstone en fOrsta substans (NO) resulterande vid forbrdnning under en fOrsta del av en fOrsta forbrdnningscykel, och 2. baserat pi ndmnda fOrsta mitt tillfora ndmnda tillsatsmedel till ndmnda forbrdnningskammare dtminstone delvis innan forbrinning avslutas under ndmnda fOrsta forbrdnningscykel. 46The method of claim 4 or 5, further comprising: 1. estimating said first center on at least one first substance (NO) resulting from combustion during a first portion of a first combustion cycle, and 2. based on said first center adding said additives. to the said combustion chamber at least in part before combustion is terminated during the said first combustion cycle. 46 9. FOrfarande enligt nAgot av kraven 6-8, vidare innefattande: 1. vid nAmnda estimering av namnda forsta mitt pi Atminstone en forsta substans (NO) resulterande vid farbranning under namnda forsta del av namnda forsta forbranningscykel, estimera inverkan av tillforsel av tillsatsmedel innan namnda farbranning pi namnda forsta mitt.A method according to any one of claims 6-8, further comprising: 1. in said estimating said first center at least one first substance (NO) resulting in combustion during said first part of said first combustion cycle, estimating the effect of supply of additives before namnda farbranning pi namnda forsta mitt. 10. Forfarande enligt nagot av kraven 6-9, vidare innefattande: 1. faststalla en forsta mangd tillsatsmedel far tillforsel till namnda forbranningskammare, 2. estimera ett andra mitt pi itminstone en forsta substans (NO) resulterande vid forbranning under namnda forsta forbranningscykel vid tillforsel av namnda forsta mangd tillsatsmedel innan namnda forbranning, och 3. korrigera namnda forsta mangd tillsatsmedel for tillforsel till namnda forbranningskammare baserat pi namnd andra mitt.A method according to any one of claims 6-9, further comprising: 1. determining a first amount of additive to be supplied to said combustion chamber, 2. estimating a second center of at least one first substance (NO) resulting from combustion during said first combustion cycle upon supply of said first amount of additive before said combustion, and 3. correct said first amount of additive for supply to said combustion chamber based on said second center. 11. Forfarande enligt krav 10, vidare innefattande: 1. iterativt estimera mitt pi Atminstone en farsta substans (NO) resulterande vid forbranning under namnda forsta forbranningscykel, och 2. iterativt korrigera namnda forsta mangd tillsatsmedel baserat pi namnda bestamda mitt till dess att ett mitt pa atminstone en forsta substans (NO) resulterande vid forbranning under namnda forsta forbranningscykel uppfyller ett forsta villkor.The method of claim 10, further comprising: 1. iteratively estimating the center of at least one first substance (NO) resulting from combustion during said first combustion cycle, and 2. iteratively correcting said first amount of additive based on said determined center until a center at least one first substance (NO) resulting from combustion during said first combustion cycle fulfills a first condition. 12. FOrfarande enligt nagot av kraven 4-11, varvid namnda estimerade forsta mitt utgor en estimeradhalt for namnda 47 atminstone en forsta substans (NO) for de vid forbranningen resulterande avgaserna.A method according to any one of claims 4-11, wherein said estimated first medium constitutes an estimated content of said 47 at least one first substance (NO) for the exhaust gases resulting from the combustion. 13. Forfarande enligt nagot av kraven 4-12, varvid namnda estimerade fOrsta mitt utgor en estimerad resulterande mangd av atminstone en fOrsta substans (NO) for Atminstone en del av namnda fOrsta forbranningscykel.A method according to any one of claims 4-12, wherein said estimated first center constitutes an estimated resulting amount of at least one first substance (NO) for at least a portion of said first combustion cycle. 14. Forfarande enligt nAgot av kraven 4-13, vidare innefattande att tillfora namnda tillsatsmedel till en efter namnda fOrsta forbranningscykel pafoljande fOrbranningscykel baserat p3 namnda fOrsta mitt.A method according to any one of claims 4-13, further comprising supplying said additive to a combustion cycle following said first combustion cycle based on said first center. 15. FOrfarande enligt nagot av kraven 1-14, varvid namnda fOrsta parametervarde representerar ett i namnda ferbranningskammare (201) rAdande tryck.A method according to any one of claims 1-14, wherein said first parameter value represents a pressure present in said combustion chamber (201). 16. Forfarande enligt nAgot av kraven 4-14, vidare innefattande att: - estimera resulterande mangden av atminstone en fOrsta substans (NO) Atminstone delvis baserat pa en estimerad forbranningstemperatur.A method according to any one of claims 4-14, further comprising: - estimating the resulting amount of at least one first substance (NO) At least in part based on an estimated combustion temperature. 17. Forfarande enligt krav 16, varvid namnda fOrbranningstemperatur estimeras atminstone delvis genom estimering av en varmefrigorelse under namnda forbranning.The method of claim 16, wherein said combustion temperature is estimated at least in part by estimating a heat release during said combustion. 18. Forfarande enligt krav 17, vidare innefattande att estimera namnda varmefrigorelse genom utnyttjande av kannedom am en branslemangd avsedd fer tillforsel till namnda forbranning. 48The method of claim 17, further comprising estimating said heat release by utilizing knowledge of an industry quantity intended for supply to said combustion. 48 19. FOrfarande enligt nagot av kraven 16-18, vidare innefattande att estimera mangden tillganglig kvavgas (N2) respektive mangden tillganglig syrgas (02) atminstone delvis genom utnyttjande av kannedom am en branslemangd avsedd for tillfarsel till namnda forbranning, varvid mangden av atminstone en forsta substans (NU estimeras atminstone delvis baserat pa namnda tillgangliga mangder kvavgas respektive syrgas.A method according to any one of claims 16-18, further comprising estimating the amount of available nitrogen gas (N2) and the amount of available oxygen gas (02) at least in part by utilizing knowledge of an industry quantity intended for supply to said combustion, wherein the amount of at least one first substance (NOW is estimated at least in part based on the said available amounts of nitrogen gas and oxygen, respectively. 20. Forfarande enligt nagot av kraven 16-19, varvid namnda forbranningstemperatur estimeras atminstone delvis baserat pa ett tryck i namnda forbranningskammare (201).A method according to any one of claims 16-19, wherein said combustion temperature is estimated at least in part based on a pressure in said combustion chamber (201). 21. FOrfarande enligt nagot av kraven 16-20, vidare innefattande att estimera namnda forbranningstemperatur som en summa av en estimering av en av forbranning orsakad temperaturokning i forhallande till en forsta temperatur, och en estimering av namnda fOrsta temperatur, dar namnda forsta temperatur utgor en estimerad temperatur for oforbrand gas i namnda forbranningskammare.A method according to any of claims 16-20, further comprising estimating said combustion temperature as a sum of an estimation of a temperature increase caused by combustion in relation to a first temperature, and an estimation of said first temperature, wherein said first temperature is a estimated temperature for unburned gas in the said combustion chamber. 22. Forfarande enligt nagot av kraven 4-21, vidare innefattande att estimera den genererade mangden av namnda atminstone en forsta substans (NU atminstone delvis genom utnyttjande av en Zeldovich-mekanism.The method of any of claims 4-21, further comprising estimating the generated amount of said at least one first substance (NO at least in part using a Zeldovich mechanism. 23. Forfarande enligt nagot av kraven 4-22, vidare innefattande att, nar namnda forsta matt pa namnda forsta substans (N0x) estimeras for namnda forbranning: - avbryta estimering nar estimering har utforts tram till en punkt dar en maximal temperatur under fOrbranningen forvantas. 49A method according to any one of claims 4-22, further comprising, when said first mat on said first substance (NOx) is estimated for said combustion: - interrupt estimation when estimation has been performed tram to a point where a maximum temperature during combustion is expected. 49 24. FOrfarande enligt nagot av faregaende krav, vidare innefattande att: 1. faststalla huruvida temperaturen vid namnda forbranning under namnda forbranningscykel har uppnatt maximal temperatur under namnda farbranningscykel, och 2. faststalla mangd tillsatsmedel for tillforsel till namnda farbranningskammare nar maximal temperatur har uppnatts.The method of any of the hazardous claims, further comprising: 1. determining whether the temperature of said combustion during said combustion cycle has reached maximum temperature during said combustion cycle, and 2. determining the amount of additive for supply to said combustion chamber when maximum temperature has been reached. 25. Forfarande enligt nagot av foregaende krav, vidare innefattande att faststalla en mangd tillsatsmedel for tillforsel till namnda forbranningskammare atminstone delvis baserat pa en eller flera ur gruppen: kemiska samband vid reaktionen mellan tillsatsmedel och kvaveoxider, forbranningskammarens temperatur, signaler fran en nedstroms forbranningsmotorn anordnad NOR-sensor.A method according to any one of the preceding claims, further comprising determining a plurality of additives for supply to said combustion chamber at least in part based on one or more of the group: chemical relationships in the reaction between additives and nitrogen oxides, combustion chamber temperature, signals from a downstream internal combustion engine -sensor. 26. Forfarande enligt nagot av foregaende krav, varvid avgaser resulterande fran forbranning i namnda forbranningskammare passerar en SCR-katalysator, vidare innefattande att inspruta ytterligare tillsatsmedel nedstroms namnda forbranningsmotor men uppstroms namnda SCR-katalysator.A method according to any preceding claim, wherein exhaust gases resulting from combustion in said combustion chamber pass an SCR catalyst, further comprising injecting additional additives downstream of said combustion engine but upstream of said SCR catalyst. 27. Forfarande enligt nagot av foregaende krav, varvid avgaser resulterande fran forbranning i namnda forbranningskammare passerar en SCR-katalysator, vidare innefattande att inspruta tillsatsmedel i namnda forbranningskammare for anvandning atminstone delvis for reduktion i namnda SCR-katalysator.A method according to any preceding claim, wherein exhaust gases resulting from combustion in said combustion chamber pass an SCR catalyst, further comprising injecting additives into said combustion chamber for use at least in part for reduction in said SCR catalyst. 28. Forfarande enligt nagot av foregaende krav, varvid insprutning av tillsatsmedel till namnda forbranningskammare endast utfors om forbranningskammarens temperatur overstiger en forsta temperatur.A method according to any one of the preceding claims, wherein injection of additives into said combustion chamber is performed only if the temperature of the combustion chamber exceeds a first temperature. 29. FOrfarande enligt nagot av faregaende krav, vidare innefattande att, nar forbranningskammarens temperatur understiger en farsta temperatur, utfOrs en extra bransleinsprutning for att hoja temperaturen i namnda farbranningskammare infor eller samtidigt med namnda tillforsel av tillsatsmedel.A method according to any one of the hazardous claims, further comprising, when the temperature of the combustion chamber is below a first temperature, an additional fuel injection is performed to raise the temperature in said combustion chamber before or simultaneously with said supply of additives. 30. Forfarande enligt nagot av foregaende krav, vidare innefattande att faststalla mangden tillsatsmedel for tillforsel till namnda forbranningskammare atminstone delvis baserat pa den mangd bransle som tillfars namnda forbranningskammare.A method according to any one of the preceding claims, further comprising determining the amount of additives for supply to said combustion chamber at least in part based on the amount of fuel supplied to said combustion chamber. 31. Forfarande enligt nagot av foregaende krav, vidare innefattande att faststalla mangden tillsatsmedel for insprutning individuellt for varje cylinder.A method according to any one of the preceding claims, further comprising determining the amount of additive for injection individually for each cylinder. 32. Forfarande enligt nag-at av foregaende krav, varvid namnda reglering utfors for ett flertal pa varandra fOljande forbranningscykler.32. A method according to any one of the preceding claims, wherein said control is performed for a plurality of consecutive combustion cycles. 33. FOrfarande enligt nag-at av fOregaende krav, varvid namnda tillsatsmedel utgor ett tillsatsmedel for reduktion av kvaveoxider (NO) resulterande vid fOrbranning i namnda forbranningskammare (201).A method according to any one of the preceding claims, wherein said additive is an additive for reducing nitrogen oxides (NO) resulting from combustion in said combustion chamber (201). 34. Forfarande enligt nagot av foregaende krav, varvid namnda farsta matt pa kvaveoxider (NO) resulterande vid forbranning under namnda forsta forbranningscykel utgors av ett matt pa resulterande kvavemonoxid (NO) och/eller kvavedioxid (NO2).A method according to any one of the preceding claims, wherein said first mat of nitrogen oxides (NO) resulting from combustion during said first combustion cycle consists of a mat of resulting nitrogen monoxide (NO) and / or nitrogen dioxide (NO2). 35. Forfarande enligt nagot av foregaende krav, varvid namnda tillsatsmedel utgors av ett fran namnda bransle skiljt tillsatsmedel. 51A method according to any one of the preceding claims, wherein said additive consists of an additive separate from said industry. 51 36. FOrfarande enligt ndgot av faregdende krav, varvid ndmnda tillsatsmedel utgors av ett urea- och/eller ammoniakinnehdllande tillsatsmedel.A method according to any one of the preceding claims, wherein said additive is a urea and / or ammonia-containing additive. 37. Datorprogram innefattande programkod, vilket ndr ndmnda programkod exekveras i en dator Astadkommer att ndmnda dator utfor forfarandet enligt ndgot av patentkrav 1-36.A computer program comprising program code, wherein said program code is executed in a computer. Provides said computer performing the method of any of claims 1-36. 38. Datorprogramprodukt innefattande ett datorldsbart medium och ett datorprogram enligt patentkrav 37, varvid ndmnda datorprogram är innefattat i ndmnda datorldsbara medium.A computer program product comprising a computer-curable medium and a computer program according to claim 37, wherein said computer program is included in said computer-curable medium. 39. System for styrning av en forbrdnningsmotor (101), varvid ndmnda ferbrdnningsmotor (101) innefattar Atminstone en forbrdnningskammare (201) och organ (202) for tillforsel av brdnsle till ndmnda ferbrdnningskammare (201), varvid forbrdnning i ndmnda forbrdnningskammare (201) sker i farbrdnningscykler, varvid farfarandet är kdrinetecknat av att systemet innefattar: 1. organ (115) anordnade att under en forsta forbrdnningscykel och genom utnyttjande av forsta sensororgan (406), faststdlla ett forsta parametervdrde representerande en storhet avseende ndmnda ferbrdnningskammare (201), 2. organ (115) anordnade att genom utnyttjande av ndmnda fersta parametervdrde, faststdlla en forsta mdngd tillsatsmedel for tillforsel till ndmnda ferbrdnningskammare, och 3. organ (115, 410) anordnade att till ndmnda ferbrdnningskammare (201) tillfora ndmnda forsta mdngd tillsatsmedel. 52A system for controlling an internal combustion engine (101), said combustion engine (101) comprising at least one combustion chamber (201) and means (202) for supplying fuel to said combustion chamber (201), wherein combustion in said combustion chamber (201) comprises combustion (201). in combustion cycles, the process being characterized in that the system comprises: 1. means (115) arranged to, during a first combustion cycle and by using first sensor means (406), determine a first parameter value representing a quantity with respect to said combustion chamber (201). means (115) arranged to determine, by utilizing said first parameter value, a first amount of additive for supply to said combustion chamber, and 3. means (115, 410) arranged to supply to said said combustion chamber (201) said first additive. 52 40. System enligt krav 39, kannetecknat av att namnda fbrbranningsmotor innefattar organ fbr tillfbrsel av tillsatsmedel till namnda forbranningskammare.A system according to claim 39, characterized in that said internal combustion engine comprises means for supplying additives to said combustion chamber. 41. System enligt krav 39 eller 40, kalinetecknat av att namnda forbranningsmotor utgbrs av nagon ur gruppen: fordonsmotor, marinmotor, industrimotor.A system according to claim 39 or 40, characterized in that said internal combustion engine is constituted by one of the group: vehicle engine, marine engine, industrial engine. 42. Fordon (100), kannetecknat av att det innefattar ett system enligt nagot av kraven 39-41. FIG. 'IA 100 1- 13 .---104 103 ? ,----108 107 101 ? 106 200 .---- 1 2/7Vehicle (100), characterized in that it comprises a system according to any one of claims 39-41. FIG. 'IA 100 1- 13 .--- 104 103? , ---- 108 107 101? 106 200 .---- 1 2/7
SE1450254A 2013-08-29 2014-03-06 Procedure and system for regulating an internal combustion engine SE1450254A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SE1450254A SE1450254A1 (en) 2013-08-29 2014-03-06 Procedure and system for regulating an internal combustion engine
DE112014003463.0T DE112014003463T5 (en) 2013-08-29 2014-08-27 Method and system for controlling an internal combustion engine
SE1450994A SE1450994A1 (en) 2013-08-29 2014-08-27 Procedure and system for regulating an internal combustion engine
PCT/SE2014/050982 WO2015030661A1 (en) 2013-08-29 2014-08-27 Method and system for control of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1350993A SE539587C2 (en) 2013-08-29 2013-08-29 Procedure and system for controlling an internal combustion engine
SE1450254A SE1450254A1 (en) 2013-08-29 2014-03-06 Procedure and system for regulating an internal combustion engine

Publications (1)

Publication Number Publication Date
SE1450254A1 true SE1450254A1 (en) 2015-03-01

Family

ID=52587051

Family Applications (2)

Application Number Title Priority Date Filing Date
SE1450254A SE1450254A1 (en) 2013-08-29 2014-03-06 Procedure and system for regulating an internal combustion engine
SE1450994A SE1450994A1 (en) 2013-08-29 2014-08-27 Procedure and system for regulating an internal combustion engine

Family Applications After (1)

Application Number Title Priority Date Filing Date
SE1450994A SE1450994A1 (en) 2013-08-29 2014-08-27 Procedure and system for regulating an internal combustion engine

Country Status (3)

Country Link
DE (1) DE112014003463T5 (en)
SE (2) SE1450254A1 (en)
WO (1) WO2015030661A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423003C2 (en) * 1993-07-06 1999-01-21 Ford Werke Ag Method and device for reducing NO¶x¶ in exhaust gases from automotive internal combustion engines
US6443104B1 (en) * 2000-12-15 2002-09-03 Southwest Research Institute Engine and method for controlling homogenous charge compression ignition combustion in a diesel engine
US6679200B2 (en) * 2002-06-11 2004-01-20 Delphi Technologies, Inc. Direct in-cylinder reductant injection system and a method of implementing same

Also Published As

Publication number Publication date
WO2015030661A1 (en) 2015-03-05
SE1450994A1 (en) 2015-03-01
DE112014003463T5 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
CN101994592B (en) Dosing control system and method
US20090107119A1 (en) Method and system of thermal management in an exhaust system
SE539093C2 (en) Process and exhaust treatment system for treating an exhaust stream
US20150308321A1 (en) Exhaust emission prediction system and method
US20140260190A1 (en) Exhaust Aftertreatment Control System And Method For Maximizing Fuel Efficiency While Reducing Emissions
SE539133C2 (en) Exhaust gas treatment system and method for treating an exhaust gas stream
CN102037230A (en) NOx sensor abnormality diagnosing apparatus and abnormality diagnosing method
CN102235217B (en) Control system and method for preventing hydrocarbon slip during particulate matter filter regeneration
US9810672B2 (en) Method of operating an engine
CN103061854B (en) For the method controlling the reducing agent of release ammonia is supplied to the injection apparatus of the emission control system of explosive motor
CN105587411A (en) Method and system for EGR control
SE1251469A1 (en) Process and system for reducing a coating in a finishing system
US9228460B2 (en) Systems and methods for thermal management of aftertreatment system components
SE1351154A1 (en) Regulation of a concentration / fraction of constituents in a single exhaust stream
US10954838B2 (en) System and methods of integrated control of combustion and SCR systems
SE537308C2 (en) Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle
SE1351158A1 (en) Regulation of a concentration / fraction of constituents in a single exhaust stream
SE1350507A1 (en) Process and system for controlling an internal combustion engine II
SE1350993A1 (en) Procedure and system for regulating an internal combustion engine
SE1450254A1 (en) Procedure and system for regulating an internal combustion engine
US20200049047A1 (en) Method and system for control of at least one of a dosage device and an engine
JP2015161236A (en) Exhaust emission control system
SE1450253A1 (en) Procedure and system for regulating an internal combustion engine
SE1050890A1 (en) Exhaust purification procedure and system II
SE1151141A1 (en) Method and system for adapting at least one injector to an internal combustion engine

Legal Events

Date Code Title Description
NAV Patent application has lapsed