SE1450230A1 - Exhaust gas treatment system and method for treating an exhaust gas stream - Google Patents

Exhaust gas treatment system and method for treating an exhaust gas stream Download PDF

Info

Publication number
SE1450230A1
SE1450230A1 SE1450230A SE1450230A SE1450230A1 SE 1450230 A1 SE1450230 A1 SE 1450230A1 SE 1450230 A SE1450230 A SE 1450230A SE 1450230 A SE1450230 A SE 1450230A SE 1450230 A1 SE1450230 A1 SE 1450230A1
Authority
SE
Sweden
Prior art keywords
reduction catalyst
reduction
exhaust gas
catalyst device
catalyst
Prior art date
Application number
SE1450230A
Other languages
Swedish (sv)
Other versions
SE542085C2 (en
Inventor
Magnus Nilsson
Henrik Birgersson
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1450230A priority Critical patent/SE542085C2/en
Priority to PCT/SE2015/050225 priority patent/WO2015130216A1/en
Priority to RU2016137489A priority patent/RU2667852C2/en
Priority to CN201580010939.9A priority patent/CN106062332A/en
Priority to US15/120,089 priority patent/US10273851B2/en
Priority to EP15755946.9A priority patent/EP3111071B1/en
Priority to PCT/SE2015/050222 priority patent/WO2015130213A1/en
Priority to SE1550224A priority patent/SE538728C2/en
Priority to KR1020167026603A priority patent/KR101890380B1/en
Priority to US15/314,451 priority patent/US10364724B2/en
Priority to EP15755632.5A priority patent/EP3134625B1/en
Priority to EP15755785.1A priority patent/EP3111067B1/en
Priority to PCT/SE2015/050221 priority patent/WO2015130212A1/en
Priority to BR112016017572A priority patent/BR112016017572B8/en
Priority to SE1550227A priority patent/SE543192C2/en
Priority to PCT/SE2015/050228 priority patent/WO2015130218A1/en
Priority to SE1550228A priority patent/SE539093C2/en
Priority to PCT/SE2015/050223 priority patent/WO2015130214A1/en
Priority to KR1020167026602A priority patent/KR101890840B1/en
Priority to PCT/SE2015/050220 priority patent/WO2015130211A1/en
Priority to US15/120,075 priority patent/US10267197B2/en
Priority to RU2016137488A priority patent/RU2669129C2/en
Priority to CN201580010763.7A priority patent/CN106062331A/en
Priority to BR112016017664-2A priority patent/BR112016017664B1/en
Priority to BR112016017662-6A priority patent/BR112016017662B1/en
Priority to SE1550223A priority patent/SE1550223A1/en
Priority to US15/120,101 priority patent/US10273852B2/en
Priority to SE1550226A priority patent/SE538724C2/en
Priority to EP15755634.1A priority patent/EP3111066B1/en
Priority to US15/120,081 priority patent/US10273850B2/en
Priority to EP15755231.6A priority patent/EP3134624B1/en
Priority to US15/314,441 priority patent/US10054023B2/en
Priority to BR112016017659-6A priority patent/BR112016017659B1/en
Priority to EP15755558.2A priority patent/EP3111065B1/en
Priority to KR1020167026599A priority patent/KR101890838B1/en
Priority to BR112016017582-4A priority patent/BR112016017582B1/en
Priority to KR1020167026597A priority patent/KR101858683B1/en
Priority to RU2016134217A priority patent/RU2670480C2/en
Priority to EP15755143.3A priority patent/EP3111072B1/en
Priority to US15/120,107 priority patent/US10267198B2/en
Priority to PCT/SE2015/050229 priority patent/WO2015130219A1/en
Priority to KR1020167026601A priority patent/KR101890839B1/en
Priority to PCT/SE2015/050226 priority patent/WO2015130217A1/en
Priority to KR1020167026598A priority patent/KR101858684B1/en
Priority to SE1550222A priority patent/SE540528C2/en
Priority to EP15754802.5A priority patent/EP3111064B1/en
Priority to EP15754739.9A priority patent/EP3111063A4/en
Priority to US15/120,104 priority patent/US10260392B2/en
Priority to SE1550221A priority patent/SE538726C2/en
Priority to RU2016137649A priority patent/RU2677024C2/en
Priority to BR112016017578-6A priority patent/BR112016017578B1/en
Priority to SE1550220A priority patent/SE1550220A1/en
Priority to US15/120,055 priority patent/US10260391B2/en
Priority to KR1020167026604A priority patent/KR101858685B1/en
Priority to PCT/SE2015/050224 priority patent/WO2015130215A1/en
Priority to SE1550225A priority patent/SE540144C2/en
Publication of SE1450230A1 publication Critical patent/SE1450230A1/en
Priority to US16/032,706 priority patent/US10626769B2/en
Publication of SE542085C2 publication Critical patent/SE542085C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Ett avgasbehandlingssystem anordnat för behandling av en avgasström presenteras. Enligt föreliggande uppfinning innefattar avgasbehandlingssystemet: - en första oxidationskatalysator 310 anordnad att oxidera kväve- och/eller kolväteföreningar i nämnda avgasström; - en första doseringsanordning anordnad nedströms nämnda första oxidationskatalysator och anordnad att tillföra ett första tillsatsmedel i nämnda avgasström; - en första reduktionskatalysatoranordning anordnad nedströms nämnda första doseringsanordning och anordnad för reduktion av kväveoxider i nämnda avgasström genom utnyttjande av nämnda första tillsatsmedel; - ett partikelfilter anordnat nedströms nämnda första reduktionskatalysatoranordning och anordnad att fånga upp sotpartiklar i nämnda avgasström; - en andra doseringsanordning anordnad nedströms nämnda partikelfilter och anordnad att tillföra ett andra tillsatsmedel i nämnda avgasström; och - en andra reduktionskatalysatoranordning anordnad nedströms nämnda andra doseringsanordning och anordnad för en reduktion av kväveoxider i nämnda avgasström genom utnyttjande av åtminstone ett av nämnda första och nämnda andra tillsatsmedel; och - en katalytiskt oxiderande beläggning, vilken är anordnad nedströms nämnda första reduktionskatalysatoranordning och uppströms nämnda andra reduktionskatalysatoranordning och är anordnad att oxidera sotpartiklar samt en eller flera av kväveoxid och ofullständigt oxiderade kolföreningar i nämnda avgasström.Fig. 3An exhaust gas treatment system arranged for the treatment of an exhaust gas stream is presented. According to the present invention, the exhaust gas treatment system comprises: a first oxidation catalyst 310 arranged to oxidize nitrogen and / or hydrocarbon compounds in said exhaust stream; a first dosing device arranged downstream of said first oxidation catalyst and arranged to supply a first additive in said exhaust gas stream; a first reduction catalyst device arranged downstream of said first dosing device and arranged to reduce nitrogen oxides in said exhaust gas stream by utilizing said first additive; a particulate filter arranged downstream of said first reduction catalyst device and arranged to capture soot particles in said exhaust stream; a second dosing device arranged downstream of said particle filter and arranged to supply a second additive in said exhaust gas stream; and - a second reduction catalyst device arranged downstream of said second dosing device and arranged for a reduction of nitrogen oxides in said exhaust gas stream by using at least one of said first and said second additives; and - a catalytic oxidizing coating, which is arranged downstream of said first reduction catalyst device and upstream of said second reduction catalyst device and is arranged to oxidize soot particles and one or more of nitric oxide and incompletely oxidized carbon compounds in said exhaust stream. 3

Description

1 AVGASBEHANDLINGSSYSTEM OCH FoRFARANDE FOR BEHANDLING AV EN AVGASSTRoM Tekniskt omrade FOreliggande uppfinning avser ett avgasbehandlingssystem enligt ingressen till patentkrav 1 och ett forfarande fOr avgasbehandling enligt ingressen till patentkrav 12. TECHNICAL FIELD The present invention relates to an exhaust gas treatment system according to the preamble of claim 1 and a method for exhaust gas treatment according to the preamble of claim 12.

Foreliggande uppfinning avser ocksa ett datorprogram och en datorprogramprodukt, vilka implementerar ferfarandet enligt uppfinningen. The present invention also relates to a computer program and a computer program product, which implement the method according to the invention.

Bakgrund Foljande bakgrundsbeskrivning utgor en beskrivning av bakgrunden till foreliggande uppfinning, och maste saledes inte nodvandigtvis utgora tidigare kand teknik. Background The following background description constitutes a description of the background of the present invention, and thus does not necessarily constitute prior art.

Pa grund av okade myndighetsintressen avseende fororeningar och luftkvalitet i framforallt stadsomraden har utslappsstandarder och utslappsregler for forbranningsmotorer framtagits i manga jurisdiktioner. Due to increased government interests regarding pollution and air quality, especially in urban areas, emission standards and emission rules for internal combustion engines have been developed in many jurisdictions.

Sadana utslapps- eller emissionsstandarder utgOr ofta kravuppsattningar vilka definierar acceptabla granser pa avgasutslapp fran forbranningsmotorer i exempelvis fordon. Exempelvis regleras ofta nivaer for utslapp av kvaveoxider NOR, kolvaten CRHy, kolmonoxid CO och partiklar PM for de flesta typer av fordon i dessa standarder. Fordon utrustade med fOrbranningsmotorer ger typiskt upphov till dessa emissioner i varierande grad. I detta dokument beskrivs uppfinningen huvudsakligen for dess tillampning i fordon. Dock kan uppfinningen utnyttjas i vasentligen alla tillampningar dar fOrbranningsmotorer utnyttjas, exempelvis i farkoster, sasom i fartyg eller flygplan/helikoptrar, varvid regler och/eller 2 standarder for dessa tillampningar begransar utslappen fran forbranningsmotorerna. Such emission or emission standards often constitute sets of requirements which define acceptable limits on exhaust emissions from internal combustion engines in, for example, vehicles. For example, levels for emissions of nitrogen oxides NOR, hydrocarbons CRHy, carbon monoxide CO and PM particles are often regulated for most types of vehicles in these standards. Vehicles equipped with internal combustion engines typically give rise to these emissions to varying degrees. This document describes the invention mainly for its application in vehicles. However, the invention can be used in essentially all applications where internal combustion engines are used, for example in vehicles, such as in ships or aircraft / helicopters, whereby rules and / or 2 standards for these applications limit the emissions from the internal combustion engines.

I en stravan att uppfylla sadana emissionsstandarder behandlas (renas) de avgaser som orsakas av forbranningsmotorns forbranning. In a penalty to meet such emission standards, the exhaust gases caused by the combustion engine's combustion are treated (purified).

Ett vanligt satt att behandla avgaser frdn en forbranningsmotor utgors av en s.k. katalytisk reningsprocess, varfor fordon utrustade med en forbranningsmotor vanligtvis innefattar atminstone en katalysator. Det finns olika typer av katalysatorer, dar de olika respektive typerna kan vara lampliga beroende pa exempelvis vilka forbranningskoncept, forbranningsstrategier och/eller bransletyper som utnyttjas i fordonen och/eller vilka typer av foreningar i avgasstrOmmen som ska renas. For dtminstone nitrosa gaser (kvavemonoxid, kvavedioxid), i detta dokument kallade kvaveoxider NOR, innefattar fordon ofta en katalysator dar ett tillsatsmedel tillfors den fran forbranningsmotorns forbranning resulterande avgasstrommen for att astadkomma en reduktion av kvaveoxider NO huvudsakligen till kvavgas och vattenanga. Detta beskrivs mer i detalj nedan. A common way of treating exhaust gases from an internal combustion engine consists of a so-called catalytic purification process, for which vehicles equipped with an internal combustion engine usually comprise at least one catalyst. There are different types of catalysts, where the different and different types can be suitable depending on, for example, which combustion concepts, combustion strategies and / or industry types are used in the vehicles and / or which types of compounds in the exhaust stream are to be purified. For at least nitrous gases (nitrogen monoxide, nitrogen dioxide), referred to in this document as nitrogen oxides NOR, vehicles often include a catalyst in which an additive is supplied to the exhaust stream resulting from the combustion engine combustion to achieve a reduction of nitrogen oxides NO mainly to nitrogen gas and water vapor. This is described in more detail below.

En vanligt forekommande typ av katalysator vid denna typ av reduktion, framforallt for tunga fordon, Or SCR (Selective Catalytic Reduction)- katalysatorer. SCR-katalysatorer anvander vanligtvis ammoniak NH3, eller en sammansattning ur vilken ammoniak kan genereras/bildas, som tillsatsmedel vilket utnyttjas for reduktionen av kvaveoxiderna NO i avgaserna. Tillsatsmedlet sprutas in i den fran forbranningsmotorn resulterande avgasstrommen uppstrams am katalysatorn. Det till katalysatorn tillforda tillsatsmedlet adsorberas (upplagras) i katalysatorn, i form av ammoniak NH3, varvid en redox-reaktion 3 kan ske mellan kvaveoxider NO i avgaserna och genom tillsatsmedlet tillganglig ammoniak NH3. A common type of catalyst for this type of reduction, especially for heavy vehicles, Or SCR (Selective Catalytic Reduction) catalysts. SCR catalysts usually use ammonia NH3, or a composition from which ammonia can be generated / formed, as an additive which is used for the reduction of the nitrogen oxides NO in the exhaust gases. The additive is injected into the exhaust stream resulting from the internal combustion engine and tightened on the catalyst. The additive fed to the catalyst is adsorbed (stored) in the catalyst, in the form of ammonia NH3, whereby a redox reaction 3 can take place between nitrogen oxides NO in the exhaust gases and ammonia NH3 available through the additive.

En modern forbranningsmotor utgor ett system dar det finns en samverkan och omsesidig paverkan mellan motor och avgasbehandling. Speciellt finns ett samband mellan formagan att reducera kvaveoxider NO hos avgasbehandlingssystemet och bransleeffektiviteten for forbranningsmotorn. FOr forbranningsmotorn finns vidare ett samband mellan motorns bransleeffektivitet/verkningsgrad och dess producerade kvaveoxider NOR. Detta samband anger att det for ett givet system finns en positiv koppling mellan producerade kvaveoxider NO och bransleeffektiviteten, det viii saga att en motor som tillats emittera mer kvaveoxider NO kan fas att forbruka mindre bransle genom att exempelvis insprutningstidpunkten kan valjas mera optimalt, vilket kan ge en hogre forbranningsverkningsgrad. Pa motsvarande satt finns en negativ koppling mellan en producerad partikelmassa PM och bransleeffektiviteten, det viii saga att ett okat utslapp av partikelmassa PM fran motorn kopplar till en okning av bransleforbrukningen. Dessa samband utgor bakgrunden till det utbredda anvandandet av avgasbehandlingssystem innefattande en SCR-katalysator, dar man avser att bransle- och partikeloptimera motorn mot en relativt starre mangd producerade kvaveoxider NOR. En reduktion av dessa kvaveoxider NO utfors sedan i avgasbehandlingssystemet, vilken alltsa kan innefatta en SCR katalysator. Genom ett integrerat synsatt vid motor- och avgasbehandlingssystemets design, dar motor och avgasbehandling kompletterar varandra, kan darfor en hog bransleeffektivitet uppnas tillsammans med laga emissioner av bade partiklar PM och kvaveoxider NOR. 4 Kortfattad beskrivning av uppfinningen Till en viss del kan prestandan has avgasbehandlingssystemen okas genom att oka de i avgasbehandlingssystemen ingaende substratvolymerna, vilket speciellt minskar de forluster som beror av ojamn fordelning av avgasflodet genom substraten. A modern internal combustion engine is a system where there is a collaboration and mutual impact between the engine and exhaust gas treatment. In particular, there is a link between the ability to reduce nitrogen oxides NO in the exhaust gas treatment system and the fuel efficiency of the internal combustion engine. For the internal combustion engine, there is also a connection between the engine's industry efficiency / efficiency and its produced nitrogen oxides NOR. This connection indicates that for a given system there is a positive connection between produced nitrogen oxides NO and the fuel efficiency, it viii to say that an engine that is allowed to emit more nitrogen oxides NO can be phased to consume less fuel by, for example, the injection time can be chosen more optimally. a higher combustion efficiency. Correspondingly, there is a negative connection between a produced particulate mass PM and the fuel efficiency, which means that an increased emission of particulate mass PM from the engine is linked to an increase in fuel consumption. These relationships form the background for the widespread use of exhaust gas treatment systems including an SCR catalyst, where it is intended to optimize the industry and particulate matter against a relatively larger amount of nitrogen oxides NOR produced. A reduction of these nitrogen oxides NO is then carried out in the exhaust gas treatment system, which may therefore comprise an SCR catalyst. Through an integrated approach to the design of the engine and exhaust gas treatment system, where engine and exhaust gas treatment complement each other, a high industry efficiency can therefore be achieved together with legal emissions of both PM and nitrogen oxides NOR. Brief Description of the Invention To some extent, the performance of the exhaust gas treatment systems can be increased by increasing the substrate volumes contained in the exhaust gas treatment systems, which in particular reduces the losses due to uneven distribution of the exhaust gas flow through the substrates.

Samtidigt ger en storre substratvolym ett storre mottryck, vilket till viss del kan motverka vinster i bransleeffektivitet fran den hogre omvandlingsgraden. Storre substratvolymer innebar ocksa en okad kostnad. Det ar saledes viktigt att kunna utnyttja avgasbehandlingssystemen optimalt, exempelvis genom att undvika overdimensionering och/eller genom att begransa avgasbehandlingssystemens utbredning storlek och/eller tillverkningskostnad. At the same time, a larger volume of substrate gives a greater back pressure, which to some extent can counteract gains in industry efficiency from the higher degree of conversion. Larger substrate volumes also entailed an increased cost. It is therefore important to be able to make optimal use of the exhaust gas treatment systems, for example by avoiding oversizing and / or by limiting the size and / or manufacturing cost of the exhaust gas treatment systems.

Funktionen och effektiviteten for katalysatorer i allmanhet, och for reduktionskatalysatorer i synnerhet, är starkt beroende av temperaturen Over reduktionskatalysatorn. I detta dokument innebar en temperatur Over reduktionskatalysator en temperatur i/vid/for avgasstrommen genom reduktionskatalysatorn. Substratet kommer anta denna temperatur pa grund av sin formaga till varmevaxling. Vid en lag temperatur over reduktionskatalysatorn är reduktionen av kvaveoxider NO typiskt ineffektiv. NO2/N0x-andelen i avgaserna utgor en viss mojlighet att Oka den katalytiska aktiviteten, aven vid lagre avgastemperaturer. Temperaturen Over reduktionskatalysatorn och NO2/N0x-andelen är dock generellt sett svara att styra, eftersom de till star del beror av i forvag okanda faktorer, exempelvis av hur foraren framfor fordonet. Exempelvis beror temperaturen over reduktionskatalysatorn av momentet som begars av en forare och/eller av en farthallare, av hur vagavsnittet som fordonet befinner sig pa ser ut och/eller av forarens korstil. The function and efficiency of catalysts in general, and of reduction catalysts in particular, are strongly dependent on the temperature of the reduction catalyst. In this document, a temperature Over reduction catalyst meant a temperature in / at / for the exhaust stream through the reduction catalyst. The substrate will assume this temperature due to its ability to heat exchange. At a low temperature above the reduction catalyst, the reduction of nitrogen oxides NO is typically inefficient. The NO2 / NOx content in the exhaust gases constitutes a certain possibility of increasing the catalytic activity, even at lower exhaust gas temperatures. However, the temperature above the reduction catalyst and the NO2 / NOx content are generally responsive to control, as they largely depend on factors unknown in advance, for example on how the driver drives the vehicle. For example, the temperature above the reduction catalyst depends on the torque required by a driver and / or a cruise control, on the appearance of the road section on which the vehicle is located and / or on the driver's cross style.

Tidigare kanda avgasbehandlingssystem, sasom det nedan i detalj beskrivna systemet vilket manga tillverkare har utnyttjat for att uppfylla emissionsstandarden Euro VT (harefter benamnt "EuroVI-systemet"), innefattar en fbrsta oxidationskatalysator, ett dieselpartikelfilter och en reduktionskatalysator, uppvisar problem relaterade till den stora termiska massan/trogheten hos katalysatorer/filter samt den stora termiska massan/trogheten hos resten av avgasbehandlingssystemet, innefattande exempelvis avgasrOr, ljudddmpare och diverse anslutningar. Vid till exempel kallstarter, dd bAde motor och avgasbehandlingssystem är kalla, och vid lastpadrag fran laga avgastemperaturer, da mer moment an tidigare begdrs, exempelvis cid ldtt stadskorning overgdr i landsvdgskorning eller efter tomgangs- och kraftuttagsdrift, gor framforallt dieselpartikelfiltrets stora termiska massa/troghet att temperaturen for reduktionskatalysatorn endast ldngsamt okas i sddana tidigare kdnda avgasbehandlingssystem. Hdrigenom forsdmras, vid exempelvis kallstarter och vid fordonsdrift med temperatur- och/eller flodestransienta inslag, funktionen fOr reduktionskatalysatorn, och ddrigenom alltsd reduktionen av kvdveoxider NOR. Denna forsamring kan resultera i en undermdlig avgasrening vilken riskerar att i onodan ferorena miljen. Dessutom okar genom forsdmringen av reduktionskatalysatorns funktion risken fOr att inte nd av myndigheterna uppstdllda krav pd avgasreningen. Aven brdnsleforbrukningen kan pdverkas negativt av den fOrsdmrade funktionen, eftersom brdnsleenergi dd kan behova anvdndas for att, via olika temperaturhojande Atgarder, Oka temperaturen och effektiviteten fOr reduktionskatalysatorn. Previously known exhaust gas treatment systems, such as the system described in detail below which many manufacturers have used to meet the Euro VT emission standard (hereinafter referred to as the "EuroVI system"), include a primary oxidation catalyst, a diesel particulate filter and a reduction catalyst. the mass / inertia of catalysts / filters and the large thermal mass / inertia of the rest of the exhaust gas treatment system, including for example exhaust pipes, silencers and various connections. For example, for cold starts, both engine and exhaust gas treatment systems are cold, and for load paths from low exhaust temperatures, when more torque than before is required, for example cid ldtt city corn overgring in country road corn or after idle and power take-off operation, above all the diesel particulate filter's large thermal mass / fidelity the temperature of the reduction catalyst is only slowly increased in such previously known exhaust gas treatment systems. This improves, for example in cold starts and in vehicle operation with temperature and / or river transient elements, the function of the reduction catalyst, and thereby thereby the reduction of nitrogen oxides NOR. This accumulation can result in substandard exhaust gas purification, which risks further polluting the environment. In addition, the deterioration of the function of the reduction catalyst increases the risk of non-compliance with requirements set by the authorities on exhaust gas purification. Fuel consumption can also be negatively affected by the impaired function, as fuel energy death may need to be used to, via various temperature-raising Atgarder, increase the temperature and efficiency of the reduction catalyst.

Det är ett syfte med fereliggande uppfinning att ferbdttra reningen av avgaserna i ett avgasbehandlingssystem, samtidigt 6 som farutsattningarna for att uppna en hOgre bransleeffektivitet forbattras. It is an object of the present invention to improve the purification of the exhaust gases in an exhaust gas treatment system, at the same time as the hazardous exposures for achieving a higher industry efficiency are improved.

Dessa syften uppnas genom det ovan namnda avgasbehandlingssystemet enligt den kannetecknande delen av patentkrav 1. Syftet uppnas Oven av det ovan namnda forfarandet enligt den kannetecknande delen av patentkrav 12. Syftet uppnas Oven genom det ovan namnda datorprogrammet och datorprogramprodukten. These objects are achieved by the above-mentioned exhaust gas treatment system according to the characterizing part of claim 1. The object is achieved above by the above-mentioned method according to the characterizing part of claim 12. The object is achieved above by the above-mentioned computer program and the computer program product.

Genom utnyttjande av foreliggande uppfinning erhalls en mer temperatureffektiv behandling av avgaserna genom att den uppstroms monterade forsta reduktionskatalysatoranordningen i avgasbehandlingssystemet enligt uppfinningen vid vissa driftstyper kan arbeta vid gynnsammare temperaturer an temperaturerna for den nedstroms monterade andra reduktionskatalysatoranordningen. Exempelvis nar den forsta reduktionskatalysatoranordningen vid kallstarter och padrag fran laga temperaturer har tidigare arbetstemperaturer vid vilka en effektiv reduktion av kvaveoxider NO erhalls. Alltsa utnyttjas enligt uppfinningen den tillgangliga varmen pa ett mer energieffektivt satt, vilket resulterar i en tidigare och/eller effektivare reduktion av kvaveoxider NOR, exempelvis vid kallstarter och vid padrag fran laga avgastemperaturer, an vad som har varit mojligt med de ovan beskrivna tidigare kanda avgasbehandlingssystemen. By utilizing the present invention, a more temperature-efficient treatment of the exhaust gases is obtained in that the upstream-mounted first reduction catalyst device in the exhaust gas treatment system according to the invention can operate at more favorable temperatures than the temperatures of the downstream-mounted second reduction catalyst device. For example, when the first reduction catalyst device at cold starts and path pulls from low temperatures has previous operating temperatures at which an effective reduction of nitrogen oxides NO is obtained. Thus, according to the invention, the available heat is utilized in a more energy-efficient way, which results in an earlier and / or more efficient reduction of nitrogen oxides NOR, for example at cold starts and at pathways from low exhaust temperatures, than has been possible with the previously known exhaust gas treatment systems. .

Vid vissa andra driftstyper kan pa motsvarande satt den andra nedstroms monterade reduktionskatalysatoranordningen arbeta vid gynnsammare temperaturer an temperaturerna for den forsta uppstroms monterade reduktionskatalysatoranordningen. Correspondingly, in certain other operating types, the second downstream mounted reduction catalyst device may operate at more favorable temperatures than the temperatures of the first upstream mounted reduction catalyst device.

Genom utnyttjande av uppfinningen erhalls olika termiska tragheter for den forsta och far den andra reduktionskatalysatoranordningen, vilket gor att dessa forsta 7 och andra reduktionskatalysatoranordningarna kan optimeras olika med avseende pa aktivitet och selektivitet. Darigenom kan de forsta och andra reduktionskatalysatoranordningarna optimeras ur ett systemperspektiv, det viii saga ur ett perspektiv som ser till hela avgasbehandlingssystemets funktion, och kan darfor utnyttjas for att tillsammans ge en totalt sett effektivare rening av avgaserna an vad de separat optimerade katalysatorerna skulle ha kunnat ge. Dessa optimeringar av de forsta och andra reduktionskatalysatoranordningarna enligt uppfinningen kan utnyttjas for att ge denna totalt sett effektivare rening vid exempelvis kallstart, men aven vid vasentligen all fordonsdrift, eftersom temperatur- och/eller flOdestransienta inslag ofta forekommer aven vid normal fordonsdrift. Sasom namns ovan kan uppfinningen aven utnyttjas for avgasrening i andra enheter an fordon, sasom i olika typer av farkoster, varvid en totalt sett effektivare rening av avgaserna fran enheten erhalls. By utilizing the invention, different thermal inertia is obtained for the first and the second reduction catalyst device, which means that these first 7 and the second reduction catalyst devices can be optimized differently with respect to activity and selectivity. Thereby, the first and second reduction catalyst devices can be optimized from a system perspective, the viii saga from a perspective that looks at the function of the entire exhaust gas treatment system, and can therefore be used together to provide an overall more efficient purification of the exhaust gases than the separately optimized catalysts could have provided . These optimizations of the first and second reduction catalyst devices according to the invention can be used to provide this overall more efficient purification in, for example, cold start, but also in substantially all vehicle operation, since temperature and / or flow transient elements often occur even in normal vehicle operation. As mentioned above, the invention can also be used for exhaust gas purification in other units than vehicles, such as in different types of vehicles, whereby an overall more efficient purification of the exhaust gases from the unit is obtained.

Foreliggande uppfinning utnyttjar den termiska trogheten/massan has partikelfiltret till en fordel for funktionen genom att baserat pa denna trOghet optimera funktionen for bade den forsta och den andra reduktionskatalysatoranordningen. Harigenom erhalls gendm foreliggande uppfinning en samverkan/symbios mellan den forsta reduktionskatalysatoranordningen, vilken är optimerad for den forsta termiska massan och den forsta temperaturfunktion/temperaturfarlopp som den exponeras fOr, och den andra reduktionskatalysatoranordningen, vilken är optimerad for den andra termiska massa och det andra temperaturforlopp som den exponeras for. The present invention utilizes the thermal inertia / mass having the particulate filter to an advantage of the function by, based on this inertia, optimizing the operation of both the first and second reduction catalyst devices. The present invention thereby provides an interaction / symbiosis between the first reduction catalyst device, which is optimized for the first thermal mass and the first temperature function / temperature gradient to which it is exposed, and the second reduction catalyst device, which is optimized for the second thermal mass and the second temperature course. to which it is exposed.

Dessutom ger utnyttjandet av tva oxiderande steg i avgasbehandlingssystemet enligt foreliggande uppfinning, det 8 viii saga utnyttjandet av den uppstrOms farsta reduktionskatalysatoranordningen monterade forsta oxidationskatalysatorn och av det nedstroms forsta reduktionskatalysatoranordningen monterade partikelfiltret, en okad andel kvavedioxid NO2 i avgasstrammen di avgasstrommen nar den forsta reduktionskatalysatoranordningen respektive den andra reduktionskatalysatoranordningen. Harigenom kan den andel av den totala omvandlingen av kvaveoxider NO som sker via en snabba reaktionsvag, det viii saga via snabb SCR ("fast SCR") (Jar reduktionen sker via reaktionsvagar over bide kvavemonoxid NO och kvavedioxid NO2, Okas. Den Okade andelen omvandling genom snabb SCR gor att den respons med vilken NORomvandlingen sker Okas samt att kraven pi katalysatorvolymen minskas. Snabb SCR beskrivs mer i detalj nedan. In addition, the utilization of two oxidizing steps in the exhaust gas treatment system of the present invention provides the viii saga utilization of the first oxidation catalyst mounted upstream of the upstream first reduction catalyst device and of the particulate filter mounted downstream of the downstream first reduction catalyst device, respectively. the second reduction catalyst device. As a result, the proportion of the total conversion of nitrogen oxides NO that takes place via a fast reaction wave, the viii saga via fast SCR ("solid SCR") (Jar reduction takes place via reaction waves over both nitrogen monoxide NO and nitrogen dioxide NO2, Okas. The increased proportion of conversion through fast SCR means that the response with which the NOR conversion takes place Okas and that the requirements in the catalyst volume are reduced.Speed SCR is described in more detail below.

Den uppstroms forsta reduktionskatalysatoranordningen monterade forsta oxidationskatalysatorn kan aven utnyttjas for att skapa varme i avgasbehandlingssystemet enligt fOreliggande uppfinning. Den forsta oxidationskatalysatorn kan skapa denna varme eftersom den är inrattad bland annat for att oxidera kolvateforeningar i avgasstrommen, vilket skapar varme. Denna skapade varme kan enligt en utforingsform utnyttjas vid regenerering av nagon avgasbehandlingskomponent, sasom exempelvis av en reduktionskatalysatoranordning eller av partikelfiltret i avgasbehandlingssystemet, varigenom en robust regenerering kan istadkommas genom utnyttjande av foreliggande uppfinning. The first oxidation catalyst mounted upstream of the upstream first reduction catalyst device can also be used to create heat in the exhaust gas treatment system of the present invention. The first oxidation catalyst can create this heat because it is designed, among other things, to oxidize hydrocarbon compounds in the exhaust stream, which creates heat. This generated heat can, according to one embodiment, be used in regenerating any exhaust gas treatment component, such as for example by a reduction catalyst device or by the particulate filter in the exhaust gas treatment system, whereby a robust regeneration can be effected by utilizing the present invention.

Den forsta reduktionskatalysatoranordningen och/eller den andra reduktionskatalysatoranordningen kan alltsd optimeras baserat pi egenskaper, exempelvis katalytiska egenskaper, for den andra reduktionskatalysatoranordningen och/eller den forsta reduktionskatalysatoranordningen. Exempelvis kan har den andra reduktionskatalysatoranordningen konstrueras/valjas 9 si att dess katalytiska egenskaper vid laga temperaturer blir mindre effektiva, vilket mojliggor att dess katalytiska egenskaper vid hoga temperaturer kan optimeras. Om hansyn tas till dessa katalytiska egenskaper hos den andra reduktionskatalysatoranordningen, sa kan den farsta reduktionskatalysatoranordningens katalytiska egenskaper sedan optimeras pi si satt att den inte behaver vara lika effektiv vid hoga temperaturer. The first reduction catalyst device and / or the second reduction catalyst device can thus be optimized based on properties, for example catalytic properties, for the second reduction catalyst device and / or the first reduction catalyst device. For example, the second reduction catalyst device can be designed / selected so that its catalytic properties at low temperatures become less efficient, which enables its catalytic properties at high temperatures to be optimized. If these catalytic properties of the second reduction catalyst device are taken into account, then the catalytic properties of the first reduction catalyst device can then be optimized in that it need not be as efficient at high temperatures.

Dessa mojligheter till optimering av den forsta reduktionskatalysatoranordningen och/eller den andra reduktionskatalysatoranordningen gor att foreliggande uppfinning tillhandahaller en avgasrening vilken är lampad for emissioner vilka uppstAr vid vasentligen alla typer av kaftan, speciellt for starkt transient drift vilken ger en varierande temperatur- och/eller flodesprofil. Transient drift kan exempelvis innefatta relativt minga starter och inbromsningar for fordonet eller relativt minga upp- och nedforsbackar. Eftersom relativt minga fordon, sisom exempelvis bussar som ofta stannar vid hillplatser och/eller fordon vilka framfors i stadstrafik eller backig topografi, upplever sidan transient drift, tillhandahaller foreliggande uppfinning en viktig och mycket anvandbar avgasrening, vilken totalt sett sanker emissionen fran fordonen i vilka den implementeras. These possibilities for optimizing the first reduction catalyst device and / or the second reduction catalyst device mean that the present invention provides an exhaust purifier which is lamped for emissions which occur in essentially all types of caftan, especially for highly transient operation which gives a varying temperature and / or river profile. . Transient operation may, for example, include relatively few starts and decelerations for the vehicle or relatively few uphill and downhill slopes. Since relatively few vehicles, such as buses that often stop at hillside locations and / or vehicles that drive in city traffic or hilly topography, experience transient operation, the present invention provides an important and very useful exhaust gas purification, which overall reduces emissions from the vehicles in which it implemented.

Foreliggande uppfinning utnyttjar alltsd den tidigare problematiska termiska massan och virmevaxlingen has i forsta hand partikelfiltret i EuroVI-systemet som en positiv egenskap. Avgasbehandlingssystemet enligt foreliggande uppfinning kan, pi motsvarande satt som EuroVI-systemet, bidra med varme till avgasstrommen och den nedstroms monterade reduktionskatalysatoranordningen under kortare perioder av slapning eller annan lagtemperaturdrift am denna 10 lagtemperaturdrift har foregatts av drift med hOgre arbetstemperaturer. Partikelfiltret är di, pa grund av dess termiska troghet, varmare an avgasstrammen, varfor avgasstrbmmen kan varmas upp av partikelfiltret. The present invention therefore utilizes the previously problematic thermal mass and the wire exchange has primarily the particle filter in the EuroVI system as a positive property. The exhaust gas treatment system of the present invention can, in a manner similar to the EuroVI system, contribute heat to the exhaust stream and the downstream mounted catalytic converter device for shorter periods of slack or other bed temperature operation if this bed temperature operation has been carried out by operation with higher operating temperatures. Due to its thermal inertia, the particulate filter is hotter than the exhaust stream, so the exhaust stream can be heated by the particulate filter.

Dessutom kompletteras alltsa denna goda egenskap med att den uppstrOms placerade fOrsta reduktionskatalysatoranordningen, speciellt vid transient drift, kan utnyttja den hogre temperaturen som uppstar vid padrag. Alltsa upplever den forsta reduktionskatalysatoranordningen en hogre temperatur efter padraget an den andra reduktionskatalysatoranordningen upplever. Denna hogre temperatur for den forsta reduktionskatalysatoranordningen utnyttjas av foreliggande uppfinning for att forbattra NOx-reduktionen fOr den fOrsta reduktionskatalysatoranordningen. Fbreliggande uppfinning, vilken utnyttjar tva stycken reduktionskatalysatoranordningar, kan utnyttja bada dessa positiva egenskaper genom att tillfbra en mbjlighet till NOx-reduktion med en liten termisk trbghet, det vill saga att avgasbehandlingssystemet enligt uppfinningen innefattar bade en NOx-omvandling uppstroms en star termisk trbghet och en NOx-omvandling nedstrbms en star termisk traghet. Avgasbehandlingssystemet enligt fareliggande uppfinning kan di pa ett energieffektivt satt utnyttja tillganglig varme maximalt. In addition, this good property is supplemented by the fact that the first reduction catalyst device located upstream, especially in transient operation, can utilize the higher temperature which arises at path. Thus, the first reduction catalyst device experiences a higher temperature after the path than the second reduction catalyst device experiences. This higher temperature of the first reduction catalyst device is utilized by the present invention to improve the NOx reduction of the first reduction catalyst device. The present invention, which utilizes two reduction catalyst devices, can utilize both of these positive properties by providing an opportunity for NOx reduction with a small thermal inertia, i.e. the exhaust gas treatment system according to the invention comprises both an NOx conversion upstream of a star thermal inertia and a NOx conversion downstream of a star thermal inertia. The exhaust gas treatment system according to the present invention can, in an energy-efficient manner, make maximum use of available heat.

Den fbrsta oxidationskatalysatorn skapar Oven varme vid oxidationen av bland annat kolvatefbreningar. Genom fbreliggande uppfinning kan Oven denna varme utnyttjas for att forbattra NOx-reduktionen fbr den forsta reduktionskatalysatoranordningen. Alltsa kan enligt foreliggande uppfinning avgasbehandlingssystemets olika komponenter och deras produkter fran avgasreningen utnyttjas for att tillhandahalla ett totalt sett effektivt avgasbehandlingssystem. 11 Avgasbehandlingssystemet enligt fareliggande uppfinning har potential att uppfylla utslapps/emissions-kraven i emissionsstandarden Euro VI. Dessutom har avgasbehandlingssystemet enligt fbreliggande uppfinning potential att uppfylla utslapps/emissions-kraven i flera andra existerande och/eller kommande emissionsstandarder. The first oxidation catalyst creates Oven heat during the oxidation of, among other things, hydrocarbon burns. By means of the present invention, this heat can also be used to improve the NOx reduction of the first reduction catalyst device. Thus, according to the present invention, the various components of the exhaust gas treatment system and their products from the exhaust gas purification can be used to provide an overall efficient exhaust gas treatment system. The exhaust gas treatment system according to the present invention has the potential to meet the emission / emission requirements of the Euro VI emission standard. In addition, the exhaust gas treatment system of the present invention has the potential to meet the emission / emission requirements of several other existing and / or future emission standards.

Avgasbehandlingssystemet enligt fbreliggande uppfinning kan goras kompakt da de ingaende enheterna, exempelvis reduktionskatalysatoranordningarna, inte behbver vara stora till sin volym. Da storleken pa dessa enheter halls nere av fbreliggande uppfinning kan aven avgasmottrycket begransas, vilket ger lagre bransleforbrukning for fordonet. Katalytisk prestanda per substratvolymenhet kan utvaxlas mot en mindre substratvolym for att erhalla en viss katalytisk rening. For en avgasreningsanordning med en fbrutbestamd storlek och/eller en fbrutbestamd yttre geometri, vilket ofta är fallet i fordon med begransat utrymme for avgasbehandlingssystemet, gor en mindre substratvolym att en stbrre volym mom den fbr avgasreningsanordningen fbrutbestamda storleken kan utnyttjas for fOrdelning, blandning och vandningar av avgasstrommen mom avgasreningsanordningen. Detta gbr att avgasmottrycket kan minskas for en avgasreningsanordning med en fbrutbestamd storlek och/eller en faruthestamd yttre geometri cm prestandan per substratvolymenhet bkas. Alltsa kan totalvolymen for avgasbehandlingssystemet enligt uppfinningen minskas jamfort med atminstone vissa tidigare kanda system. Alternativt kan avgasmottrycket minskas genom utnyttjande av fareliggande uppfinning. The exhaust gas treatment system according to the present invention can be made compact as the input units, for example the reduction catalyst devices, do not have to be large in volume. As the size of these units is reduced by the present invention, the exhaust back pressure can also be limited, which results in lower fuel consumption for the vehicle. Catalytic performance per unit volume of substrate can be exchanged for a smaller volume of substrate to obtain some catalytic purification. For an exhaust gas cleaning device with a predetermined size and / or a predetermined external geometry, which is often the case in vehicles with limited space for the exhaust gas treatment system, a smaller volume of a larger volume than the exhaust gas purification device for the predetermined size can be used for distribution and distribution. the exhaust gas stream with the exhaust gas purification device. This means that the exhaust back pressure can be reduced for an exhaust gas cleaning device with a predetermined size and / or a danger-driven external geometry if the performance per substrate volume unit is increased. Thus, the total volume of the exhaust gas treatment system of the invention can be reduced as compared with at least some prior art systems. Alternatively, the exhaust back pressure can be reduced by utilizing the present invention.

Vid utnyttjande av foreliggande uppfinning kan aven behovet av ett avgasaterledningssystem (Exhaust Gas Recirculation; EGR) minskas eller helt elimineras. Att minska behovet av utnyttjande av avgasaterledningssystem har bland andra 12 fardelar relaterade till robusthet, gasvaxlingskomplexitet och effektuttag. By utilizing the present invention, the need for an Exhaust Gas Recirculation (EGR) system can also be reduced or completely eliminated. Reducing the need for utilization of exhaust gas pipeline systems has, among other things, 12 components related to robustness, gas exchange complexity and power output.

For att uppna en tillracklig kvavedioxidbaserad (NO2-baserad) sotoxidation kommer motorns forhallande mellan kvaveoxider och sot (NOdsot-forhallande), samt styrningen av reduktionsmedelsdoseringen medelst den forsta uppstroms monterade doseringsanordningen i avgasbehandlingssystemet enligt uppfinningen, behova uppfylla vissa kriterier. In order to achieve a sufficient nitrogen dioxide-based (NO2-based) soot oxidation, the engine ratio between nitrogen oxides and soot (NOdsot ratio), as well as the control of the reducing agent dosing by means of the first upstream mounted dosing device in the exhaust gas treatment system according to the invention, must meet certain criteria.

Den oxiderande belaggning, exempelvis innefattande adelmetall, som i EuroVI-system sitter i oxidationskatalysatorn DOC kan enligt en utforingsform av uppfinningen atminstone delvis implementeras exempelvis i dieselpartikelfiltret DPF, varvid forutsattningar for en tillracklig NO2-baserad sotoxidation kan erhallas. Genom utnyttjande av ett dieselpartikelfilter DPF med oxidationskatalysatoregenskaper kan aven en okad forutsagbarhet for bildandet av kvavedioxider NO2 erhallas. Detta beror pa att deaktivering av de katalytiskt aktiva satena, sasom exempelvis deaktivering orsakad av fosfor, ofta uppvisar en axiell koncentrationsgradient. Detta gor att katalysatorer med relativt kort fysisk langd kan vara kansligare for dessa forgiftningar an katalysatorer med storre fysisk langd. Da exempelvis adelmetall, sasom exempelvis Platina, laggs pa det fysiskt langa dieselpartikelfiltret DPF, istallet for pa den fysiskt kortare forsta oxidationskatalysatorn DOC], kan stabilare nivaer for kvavedioxid NO2 potentiellt erhallas over tid. The oxidizing coating, for example comprising noble metal, which in EuroVI systems is in the oxidation catalyst DOC can according to an embodiment of the invention be at least partially implemented for example in the diesel particulate filter DPF, whereby conditions for a sufficient NO2-based sotoxidation can be obtained. By using a diesel particulate filter DPF with oxidation catalyst properties, an increased predictability for the formation of nitrogen dioxides NO2 can also be obtained. This is because deactivation of the catalytically active states, such as, for example, deactivation caused by phosphorus, often has an axial concentration gradient. This means that catalysts of relatively short physical length may be more susceptible to these poisonings than catalysts of greater physical length. Since, for example, noble metal, such as Platinum, is deposited on the physically long diesel particulate filter DPF, instead of on the physically shorter first oxidation catalyst DOC], more stable levels of nitrogen dioxide NO2 can potentially be obtained over time.

Enligt en utforingsform av foreliggande uppfinning styrs tillforsel av det forsta tillsatsmedlet genom utnyttjande av den forsta doseringsanordningen baserat pa en fOrdelning av kvoten mellan kvavedioxid och kvaveoxider NO2/NO x i den farsta reduktionskatalysatoranordningen. Detta har en fordel i att 13 doseringen av det forsta tillsatsmedlet medelst den forsta doseringsanordningen cid kan styras sa att avgasstrommen alltid innehaller en andel kvavedioxid NO2 nar den nar partikelfiltret. Harigenom mojliggors en god kvavedioxidbaserad (NO2-baserad) sotoxidation i partikelfiltret samt en effektiv reduktion av kvaveoxider NO i den forsta reduktionskatalysatoranordningen via sa kallad "snabb SCR", sasom beskrivs mer i detalj ovan/nedan. According to an embodiment of the present invention, the supply of the first additive is controlled by using the first dosing device based on a distribution of the ratio between nitrogen dioxide and nitrogen oxides NO2 / NO x in the first reduction catalyst device. This has an advantage in that the dosing of the first additive by means of the first dosing device cid can be controlled so that the exhaust gas stream always contains a proportion of nitrogen dioxide NO2 when it reaches the particle filter. This enables a good nitrogen dioxide-based (NO2-based) sotoxidation in the particle filter and an effective reduction of nitrogen oxides NO in the first reduction catalyst device via so-called "rapid SCR", as described in more detail above / below.

Foreliggande uppfinning har aven en fordel i att tva doseringsanordningar samverkande utnyttjas i kombination for dosering av reduktionsmedlet, exempelvis urea, uppstroms de forsta och andra reduktionskatalysatoranordningarna, vilket avlastar och underlattar blandning och eventuell forangning av reduktionsmedlet, eftersom insprutningen av reduktionsmedlet fordelas mellan tva fysiskt atskilda positioner. Harigenom minskar risken for att reduktionsmedlet lokalt kyler ned avgasbehandlingssystemet, vilket potentiellt kan bilda avlagringar vid de positioner dar reduktionsmedlet sprutas in, eller nedstroms dessa positioner. The present invention also has an advantage in that two dosing devices cooperating are used in combination for dosing the reducing agent, for example urea, upstream of the first and second reduction catalyst devices, which relieves and facilitates mixing and possible evaporation of the reducing agent, since the injection of the reducing agent is distributed between two positions. . This reduces the risk of the reducing agent locally cooling down the exhaust gas treatment system, which can potentially form deposits at the positions where the reducing agent is injected, or downstream of these positions.

Avlastningen av forangningen av reduktionsmedlet gor att avgasmottrycket potentiellt kan minskas eftersom kravet pa NOxomvandling per reduktionssteg minskas, varvid Oven den mangd reduktionsmedel som maste forangas minskas di insprutningen av reduktionsmedlet fordelas mellan tva positioner, jamfOrt med den tidigare enda doseringspositionen. Det Or Oven mojligt att med foreliggande uppfinning stanga av dosering i ena doseringspositionen for att sedan varma bort eventuella utfallningar som kan uppsta. Harigenom kan exempelvis en storre dosermangd (en rikligare dosering) i den forsta doseringspositionen for den forsta reduktionskatalysatoranordningen tillatas, eftersom eventuella utfallningar kan varmas bort samtidigt som emissionskraven 14 uppfylls av den andra reduktionskatalysatoranordningen under tiden. Denna storre/rikligare dosering kan ses som en mer aggressiv dosering, vilken ger doseringsmangder narmare/over ett doseringsgransvarde vid vilket en risk for utfallningar/kristallisering av tillsatsmedel uppstar. Sam ett icke-begransande exempel kan namnas att am den enda doseringsanordningen i EuroVI-systemet hade optimerats for att tillhandahalla en forangning och fordelning av reduktionsmedlet vilket ger 98% NOR-omvandling, sa kan NOR- omvandlingen for de tva respektive reduktionskatalysatoranordningarna i avgasbehandlingssystemet enligt foreliggande uppfinning sankas, till exempelvis 60% respektive 95%. De mangder reduktionsmedel som dl maste forangas i de respektive tva positionerna blir lagre, och ferdelningarna av reduktionsmedlet behever heller inte vara lika optimerade i systemet enligt uppfinningen som i EuroVIsystemet. En optimal och homogen ferdelning av reduktionsmedlet, sasom kravs av EuroVI-systemet, ger ofta ett hegt avgasmottryck eftersom en avancerad ferangning/mixning maste utnyttjas nar reduktionsmedlet ska blandas med avgaserna, det vill saga med kvaveoxiderna NOR. Eftersom inte lika hoga krav pa optimal och homogen fordelning av reduktionsmedlet stalls pa systemet enligt foreliggande uppfinning finns en mojlighet till att sanka avgasmottrycket dl fareliggande uppfinning utnyttjas. The relief of the evaporation of the reducing agent means that the exhaust back pressure can potentially be reduced as the requirement for NOx conversion per reduction step is reduced, whereby the amount of reducing agent that must be evaporated is reduced by injecting the reducing agent between two positions, compared to the previous single dosing position. It is also possible with the present invention to switch off dosing in one dosing position in order to then heat away any precipitates which may occur. Thereby, for example, a larger dosage amount (a more abundant dosage) in the first dosing position of the first reduction catalyst device can be allowed, since any precipitates can be heated away at the same time as the emission requirements 14 are met by the second reduction catalyst device in the meantime. This larger / more abundant dosage can be seen as a more aggressive dosage, which gives dosage amounts closer / above a dosage limit value at which a risk of precipitation / crystallization of additives arises. As a non-limiting example, if the only dosing device in the EuroVI system had been optimized to provide an evaporation and distribution of the reducing agent which gives 98% NOR conversion, then the NOR conversion for the two respective reduction catalyst devices in the exhaust gas treatment system according to the present invention is collected, for example to 60% and 95%, respectively. The amounts of reducing agent that must be evaporated in the respective two positions become lower, and the distributions of the reducing agent also do not need to be as optimized in the system according to the invention as in the EuroVI system. An optimal and homogeneous distribution of the reducing agent, as required by the EuroVI system, often gives a high exhaust back pressure because an advanced fermentation / mixing must be used when the reducing agent is to be mixed with the exhaust gases, ie with the nitrogen oxides NOR. Since less high demands on optimal and homogeneous distribution of the reducing agent are placed on the system according to the present invention, there is a possibility of lowering the exhaust back pressure according to the present invention.

De tva doserpositionerna som utnyttjas i foreliggande uppfinning majliggar alltsa att totalt sett mer tillsatsmedel kan tillforas avgasstrommen an am endast en doserposition hade utnyttjats i systemet. Detta gar att en farbattrad prestanda kan tillhandahallas. The two dosing positions used in the present invention thus mean that in total more additives can be supplied to the exhaust stream than if only one dosing position had been used in the system. This means that a improved performance can be provided.

Foreliggande uppfinning ger alltsa en avlastning av blandningen och den eventuella forangningen. Dels gor de dubbla doseringspositionerna att reduktionsmedlet blandas och eventuellt forangas i tva positioner istallet for i en position som i EuroVI-systemet och dels gar de dubbla doseringspositionerna att lagre omvandlingsgrader, och clamed dosering med mindre ofardelaktig utvaxling, kan utnyttjas. The present invention thus provides a relief of the mixture and the possible evaporation. On the one hand, the double dosing positions allow the reducing agent to be mixed and possibly evaporated in two positions instead of in a position as in the EuroVI system, and on the other hand, the double dosing positions allow lower conversion rates, and clamed dosing with less adverse exchange can be used.

Inflytandet av omvandlingsgradernas storlek och doseringens utvaxling beskrivs mer i detalj nedan. The influence of the size of the conversion rates and the dosage variation is described in more detail below.

For utforingsformer vilka utnyttjar tillsatsmedel i vatskeform forbattras dessutom forangningen da systemet enligt uppfinningen utnyttjas. Det beror dels pa att den totala mangden tillsatsmedel som ska tillforas avgasstrommen delas upp pa tva fysiskt atskilda doserpositioner och dels pa att systemet kan belastas hardare an system med endast en doserposition. Systemet kan belastas hardare eftersom doseringen i den position dar rester av tillsatsmedel eventuellt uppstar vid behov kan minskas/stangas med systemet enligt uppfinningen, samtidigt som kriterier pa de totala utslappen kan uppfyllas. For embodiments which use additives in liquid form, the evaporation is also improved when the system according to the invention is used. This is partly due to the fact that the total amount of additives to be supplied to the exhaust gas stream is divided into two physically separate dosing positions and partly because the system can be loaded harder than systems with only one dosing position. The system can be loaded harder because the dosage in the position where residues of additives may arise if necessary can be reduced / shut down with the system according to the invention, at the same time as criteria for the total emissions can be met.

Avgasbehandlingssystemet enligt foreliggande uppfinning ger Oven en robusthet mot fel i doserad mangd reduktionsmedel. The exhaust gas treatment system of the present invention provides the oven with robustness against failure of a metered amount of reducing agent.

Enligt en utforingsform av foreliggande uppfinning Or en NOxsensor placerad mellan de tva doseringsanordningarna i avgasbehandlingssystemet. Detta gor det mojligt att korrigera ett eventuellt doserfel vid den forsta doseringsanordningen vid doseringen med den andra doseringsanordningen. According to an embodiment of the present invention, a NOx sensor is placed between the two dosing devices in the exhaust gas treatment system. This makes it possible to correct a possible dosing error in the first dosing device during dosing with the second dosing device.

Tabell 1 nedan visar ett icke-begransande exempel pa vilka omvandlingsgrader och utslapp som blir resultatet av 10% doseringsfel far reduktionsmedlet for ett fall med 10 g/kWh NOR. I systemet med ett reduktionssteg begars enligt exemplet 98% NOx-omvandling. Far att ge 98% NOx-omvandling i avgasbehandlingssystemet med tva reduktionssteg, begars 60% 16 NOx-omvandling for den farsta reduktionskatalysatoranordningen och 95% NOx-omvandling for den andra reduktionskatalysatoranordningen. Sasom framgar av tabellen ger ett system med ett reduktionssteg, sasom exempelvis i Euro-VI-systemet, emissionen 1.18 g/kWh. Tv a reduktionssteg, sasom i ett system enligt foreliggande uppfinning, per istallet enligt exemplet emissionen 0.67 g/kWh. Denna avsevart lagre resulterade emission for systemet enligt fbreliggande uppfinning blir det matematiska resultatet av utnyttjandet av de tva doserpunkterna/reduktionsstegen, sasom framgar av tabell 1. NOx-sensorn placerad mellan de tva doseringsanordningarna per denna mbjlighet att korrigera for doserfelet vid den forsta doseringsanordningen nar doseringen med den andra doseringsanordningen gars. Table 1 below shows a non-limiting example of which conversion rates and emissions are the result of a 10% dosing error for the reducing agent for a case of 10 g / kWh NOR. In the system with a reduction step, 98% NOx conversion is requested according to the example. To provide 98% NOx conversion in the two-stage exhaust gas treatment system, 60% NOx conversion is required for the first reduction catalyst device and 95% NOx conversion for the second reduction catalyst device. As shown in the table, a system with a reduction step, as for example in the Euro-VI system, gives the emission 1.18 g / kWh. Two reduction steps, as in a system according to the present invention, per figure according to the example emission 0.67 g / kWh. This considerably lower resulting emission for the system of the present invention is the mathematical result of utilizing the two dosing points / reduction steps, as shown in Table 1. The NOx sensor placed between the two dosing devices per this possibility to correct for the dosing error at the first dosing device when dosing with the second dosing device gars.

Begard omvandlingsgrad Uppnadd omv. grad med 10% doserfel Uppnadd Emission [g/kWh] Ett red. Steg 98% 88,2% 1,18 Tva red. Steg I98% Steg 1 - 60% 54,0% 4,60 Steg 2 - 95% 85,5% I. Required conversion rate Achieved conversion. degree with 10% dose error Achieved Emission [g / kWh] One red. Step 98% 88.2% 1.18 Two red. Step I98% Step 1 - 60% 54.0% 4.60 Step 2 - 95% 85.5% I.

Tabell 1 Denna utfbringsform kan implementeras med ett lagt tillskott i komplexitet, eftersom en NOx-sensor som redan finns i dagens EuroVI-system kan utnyttjas vid korrigeringen. NOx-sensorn sitter normalt i ljuddamparinloppet. Eftersom den fbrsta reduktionskatalysatoranordningen och dess forsta dosering i fbreliggande uppfinning inte nbdvandigtvis maste ta bort alla kvaveoxider NO ur avgasstrommen kan den forsta reduktionskatalysatoranordningen och dess forsta dosering eventuellt klara sip utan uppmatt information om kvaveoxider NO uppstrbms den fbrsta reduktionskatalysatoranordningen. 17 Korrekt information, det viii saga information med relativt hog noggrannhet, om kvaveoxider NO uppstroms den andra reduktionskatalysatoranordningen är dock viktig att erhalla, eftersom emissionen i den andra reduktionskatalysatoranordningen ska reduceras till laga nivaer, ofta till nivaer nara noll. Denna position, det viii saga positionen vid eller uppstroms om den andra reduktionskatalysatoranordningen bor darfor enligt en utfOringsform av uppfinningen lampligen ferses med en NOR- sensor. Denna NOR-sensor kan alltsa, enligt utforingsformen av uppfinningen, placeras nedstrems partikelfiltret, vilket Oven Or en mindre aggressiv miljo ur ett kemiskt fergiftningsperspektiv, jamfort med miljon uppstroms partikelfiltret. Table 1 This embodiment can be implemented with an added addition in complexity, since a NOx sensor that already exists in the current EuroVI system can be used for the correction. The NOx sensor is normally located in the muffler inlet. Since the first reduction catalyst device and its first dosage in the present invention do not necessarily have to remove all nitrogen oxides NO from the exhaust stream, the first reduction catalyst device and its first dosage may optionally clear sip without measured information on nitrogen oxides NO the first reduction catalyst catalyst is generated. 17 Correct information, the viii saga information with relatively high accuracy, about nitrogen oxides NO upstream of the second reduction catalyst device is important to obtain, however, since the emission in the second reduction catalyst device is to be reduced to low levels, often to near zero levels. This position, that is to say the position at or upstream of the second reduction catalyst device, therefore, according to an embodiment of the invention, should suitably be equipped with a NOR sensor. This NOR sensor can thus, according to the embodiment of the invention, be placed downstream of the particulate filter, which Oven Or a less aggressive environment from a chemical poisoning perspective, compared to one million upstream of the particulate filter.

Dessutom kan en adaption/kalibrering av flera NOR-sensorer i avgasbehandlingssystemet enkelt utforas i systemet enligt foreliggande uppfinning, eftersom sensorerna kan utsattas for samma NOx-niva samtidigt som emissionsnivaerna kan hallas pa rimliga nivaer under adaptionen/kalibreringen. For exempelvis EuroVI-systemet har adaptionen/kalibreringen ofta medfort att emissionerna blivit alltfar hag-a under, och aven delvis efter, sjalva adaptionen/kalibreringen. In addition, an adaptation / calibration of several NOR sensors in the exhaust gas treatment system can easily be performed in the system according to the present invention, since the sensors can be exposed to the same NOx level while the emission levels can be kept at reasonable levels during the adaptation / calibration. For the EuroVI system, for example, the adaptation / calibration has often meant that the emissions have become increasingly favorable during, and even partly after, the actual adaptation / calibration.

Sasom namns ovan kan de forsta och andra reduktionskatalysatoranordningarna optimeras individuellt, och med hansyn tagen till hela avgasbehandlingssystemets funktion, vilket kan ge en totalt sett mycket effektiv rening av avgaserna. Denna individuella optimering kan Oven utnyttjas till att minska en eller flera av volymerna upptagna av de forsta och andra reduktionskatalysatoranordningarna, varigenom ett kompakt avgasreningssystem erhalls. 18 For det ovan namnda icke-begransande exemplet, dar NORomvandlingen motsvarande de tva respektive doseringsanordningarna i avgasbehandlingssystemet enligt foreliggande uppfinning kan utgoras av 60% respektive 95%. kraver avgasbehandlingssystemet enligt uppfinningen teoretiskt en lika star total volym for de forsta och andra reduktionskatalysatoranordningarna som reduktionskatalysatoranordningen i EuroVI-systemet kraver for att tillhandahalla en NOx-omvandling motsvarande 98% med endast en reduktionskatalysator. As mentioned above, the first and second reduction catalyst devices can be optimized individually, and taking into account the operation of the entire exhaust gas treatment system, which can provide an overall very efficient purification of the exhaust gases. This individual optimization can also be used to reduce one or more of the volumes occupied by the first and second reduction catalyst devices, whereby a compact exhaust gas purification system is obtained. For the above-mentioned non-limiting example, where the NOR conversion corresponding to the two respective dosing devices in the exhaust gas treatment system according to the present invention can be constituted by 60% and 95%, respectively. The exhaust gas treatment system according to the invention theoretically requires an equally strong total volume for the first and second reduction catalyst devices as the reduction catalyst device in the EuroVI system requires to provide a NOx conversion corresponding to 98% with only one reduction catalyst.

I praktiken kommer dock EuroVI-systemets krav pa den hoga omvandlingsgraden 98% gora att en storre katalysatorvolym kravs an katalysatorvolymerna motsvarande summan av de lagre omvandlingsgraderna 60% respektive 95% enligt foreliggande uppfinningen kraver. Detta beror pa en joke linjar relation mellan volym och omvandlingsgrad. Vid hoga omvandlingsgrader, sasom exempelvis 98%, paverkar imperfektioner i fordelningen av avgaser och/eller reduktionsmedel kravet pa katalysatorvolym i storre utstrackning. Hoga omvandlingsgrader kraver vidare en storre katalysatorvolym dl de hoga omvandlingsgraderna resulterar i en starre inlagrings/tackningsgrad av reduktionsmedel pa katalysatorytan. Detta inlagrade reduktionsmedel riskerar sedan att desorbera vid vissa avgasforhallanden, det viii saga att det kan uppsta ett sa kallat ammoniak-slip. Ett exempel pa effekten av fordelning av reduktionsmedlet och effekten av okande NH3-slip visas i figur 6. I figuren framgar att utvaxlingen, det viii saga lutningen/derivatan, for omvandlingsgraden (y-axel till vanster) minskar i forhallande till stakiometri (x-axel) vid hoga omvandlingsgrader, det vill saga att kurvan for omvandlingsgraden planar ut fer hega omvandlingsgrader, vilket bland annat beror av imperfektioner i fordelning av avgaser 19 och/eller reduktionsmedel. I figuren framgar aven att en okning av NH3-slip (y-axeln till hoger) uppstar vid hogre omvandlingsgrader. Vid hogre varden an ett (1) for stokiometrin tillsatts mer reduktionsmedel an vad som teoretiskt behavs, vilket ocksa okar risken for NH3-slip. In practice, however, the EuroVI system's requirement of the 98% high conversion rate will require a larger catalyst volume than the catalyst volumes corresponding to the sum of the lower conversion rates of 60% and 95%, respectively, according to the present invention. This is due to a joke lines relationship between volume and conversion rate. At high conversion rates, such as 98%, imperfections in the distribution of exhaust gases and / or reducing agents affect the requirement for catalyst volume to a greater extent. High conversion rates further require a larger catalyst volume as the high conversion rates result in a higher degree of storage / filling of reducing agent on the catalyst surface. This stored reducing agent then risks desorbing in certain exhaust gas conditions, it is said that a so-called ammonia slip can occur. An example of the effect of distribution of the reducing agent and the effect of increasing NH3 slip is shown in Figure 6. The figure shows that the gear ratio, the viii saga slope / derivative, for the degree of conversion (y-axis to left) decreases in relation to stachiometry (x- axis) at high conversion rates, i.e. the curve for the conversion rate flattens out for high conversion rates, which is due, among other things, to imperfections in the distribution of exhaust gases 19 and / or reducing agents. The figure also shows that an increase in NH3 slip (y-axis to the right) occurs at higher conversion rates. At higher values than one (1) for stoichiometry, more reducing agents are added than what is theoretically behaved, which also increases the risk of NH3 slip.

Foreliggande uppfinning mojliggor enligt en utforingsform Oven en styrning av ett forhallande NO2/NOR mellan mangden kvavedioxid NO2 och mangden kvaveoxider NO for det andra reduktionssteget, vilket gor att systemet kan undvika fOr hoga varden pa detta forhallande, exempelvis undvika NO2/NOR > 50%, samt att systemet, genom att Oka doseringen, kan Oka vardet for forhallandet NO2/NOR nar vardet Or for lagt, exempelvis am NO2/NOR < 50%. Vardet for forhallandet NO2/NOR kan har, exempelvis genom utnyttjande av en utforingsform av foreliggande uppfinning, okas genom att minska nivan for kvaveoxider NOR. According to an embodiment, the present invention also enables a control of a NO2 / NOR ratio between the amount of nitrogen dioxide NO2 and the amount of nitrogen oxides NO for the second reduction step, which enables the system to avoid too high a value of this ratio, for example to avoid NO2 / NOR> 50%. and that the system, by increasing the dosage, can increase the value for the ratio NO2 / NOR when the value Or is set, for example am NO2 / NOR <50%. The value of the NO2 / NOR ratio can be increased, for example by using an embodiment of the present invention, by reducing the level of nitrogen oxides NOR.

Dessutom kan genom utnyttjande av foreliggande uppfinning Oven vardet for forhallandet NO2/NOR for det forsta reduktionssteget styras genom att nivan for kvaveoxiderna NO vid det fOrsta oxidationssteget styrs genom motoratgarder. In addition, by utilizing the present invention, the above value of the NO2 / NOR ratio for the first reduction stage can be controlled by controlling the level of the nitrogen oxides NO at the first oxidation stage by motor guards.

Forhallandet NO2/NOR kan anta lagre varden exempelvis efter att systemet har aldrats en tid. Fareliggande uppfinning ger alltsa en mojlighet att motverka den med tiden forsamrade, och far systemet negativa egenskapen, vilken ger far laga varden for forhallandet NO2/NOR. Genom utnyttjande av foreliggande uppfinning kan alltsa halten kvavedioxid NO2 aktivt styras, vilket mojliggors av att NOR-nivan kan justeras uppstrOms den katalytiskt oxiderande belaggningen, exempelvis innefattande adelmetall, i partikelfiltret 320. Denna styrning av forhallandet NO2/NOR kan, utaver fordelar i katalytisk prestanda, aven ge mojlighet till att minska utslappen av kvavedioxid NO2, vilken ger en mycket giftig och starkt illaluktande emission. Detta kan ge fordelar vid ett eventuellt framtida inforande av ett separat lagkrav ph kvavedioxid NO2, samt mojlighet till att minska harmfulla utslapp av kvavedioxid NO2. Detta kan jamforas med exempelvis EuroVI-systemet, i vilket den vid avgasreningen tillhandahallna andelen kvavedioxid NO2 inte är paverkbar i sjalva avgasbehandlingssystemet. The NO2 / NOR ratio can assume the storage value, for example after the system has aged for some time. The present invention thus provides an opportunity to counteract the time accumulated, and gives the system a negative property, which gives the father the right value for the NO2 / NOR ratio. Thus, by utilizing the present invention, the content of nitrogen dioxide NO2 can be actively controlled, which is made possible by the NOR level being adjusted upstream of the catalytically oxidizing coating, for example including noble metal, in the particulate filter 320. This control of the NO2 / NOR ratio can, in addition to advantages in catalytic performance , also provide an opportunity to reduce the emission of nitrogen dioxide NO2, which produces a very toxic and strongly foul-smelling emission. This can provide benefits in the event of a future introduction of a separate legal requirement for nitrogen dioxide NO2, as well as the opportunity to reduce harmful emissions of nitrogen dioxide NO2. This can be compared with, for example, the EuroVI system, in which the proportion of nitrogen dioxide NO2 provided during exhaust gas purification is not affectable in the exhaust gas treatment system itself.

Med andra ord mojliggors den aktiva styrningen av halten kvavedioxid NO2 vid utnyttjande av foreliggande uppfinning, dar den aktiva styrningen kan utnyttjas for att Oka halten kvavedioxid NO2 vid de kaftan for vilka det Or nodvandigt. Harigenom kan ett avgasbehandlingssystem valjas/specificeras vilket till exempel kraver mindre adelmetall och darmed Oven Or billigare att tillverka. In other words, the active control of the content of nitrogen dioxide NO2 is made possible by utilizing the present invention, where the active control can be used to increase the content of nitrogen dioxide NO2 at the caftans for which it is necessary. As a result, an exhaust gas treatment system can be selected / specified, which, for example, requires less precious metal and thus Oven Or cheaper to manufacture.

Om den andel av den totala omvandlingen av kvaveoxider NO som sker via en snabb reaktionsvag, det vill saga via snabb SCR ("fast SCR") dar reduktionen sker via reaktionsvagar Over bade kvaveoxid NO och kvavedioxid NO2, kan okas genom den aktiva styrningen av halten kvavedioxid NO2 sa kan sasom beskrivs ovan Oven kraven pa katalysatorvolymen minskas. If the proportion of the total conversion of nitrogen oxides NO that takes place via a fast reaction wave, ie via fast SCR ("solid SCR") where the reduction takes place via reaction waves Over both nitrogen oxide NO and nitrogen dioxide NO2, can be increased by the active control of the content nitrogen dioxide NO2 as described above The requirements for catalyst volume are also reduced.

Enligt en utforingsform av foreliggande uppfinning Or den forsta reduktionskatalysatoranordningen i avgasbehandlingssystemet aktiv vid ett lagre reduktionstemperaturintervall 'red On det oxidationstemperaturintervall Tox, som kravs for den kvavedioxidbaserade sotoxidationen i partikelfiltret cDPF. Som ett exempel kan namnas att den kvavedioxidbaserade sotoxidationen i partikelfiltret DPF kan ske vid temperaturer overstigande 27°C. Harigenom konkurrerar reduktionen av kvaveoxider NO i den forsta reduktionskatalysatoranordningen 21 inte signifikant med sotoxidationen i partikelfiltret DPF eftersom de är aktiva mom atminstone delvis olika temperaturintervall Txxxj 0 T. Exempelvis kan namnas att en val vald och optimerad forsta reduktionskatalysatoranordning kan ge en signifikant omvandling av kvaveoxider NO aven yid cirka 200 °C, vilket gor att denna forsta reduktionskatalysatoranordning inte behover konkurrera med partikelfiltrets sotoxidationsprestanda. According to one embodiment of the present invention, the first reduction catalyst device in the exhaust gas treatment system is active at a lower reduction temperature range, including the oxidation temperature range Tox required for the nitrogen dioxide-based sotoxidation in the cDPF particulate filter. As an example, it can be mentioned that the nitrogen dioxide-based sotoxidation in the particle filter DPF can take place at temperatures exceeding 27 ° C. As a result, the reduction of nitrogen oxides NO in the first reduction catalyst device 21 does not compete significantly with the sotoxidation in the particulate filter DPF because they are active at least partially different temperature ranges Txxxj 0 T. For example, a selected and optimized first reduction catalyst device can give NO significant oxides. even about 200 ° C, which means that this first reduction catalyst device does not have to compete with the sotoxidation performance of the particulate filter.

Genom utnyttjande av foreliggande uppfinning kan aven sekundara emissioner sasom utslapp av ammoniak NH3 och/eller dikvaveoxid (lustgas) N20 minskas i relation till en given omvandlingsgrad och/eller en given NOx-niva. En katalysator, exempelvis en ASC (Ammonia Slip Catalyst), vilken kan vara innefattad i det andra reduktionssteget om emissionerna for vissa jurisdiktioner ska reduceras till mycket laga nivaer, kan ha en viss selektivitet mot exempelvis dikvaveoxid N20, vilket gor att sankningen av NOx-nivan genom utnyttjandet av det ytterligare reduktionssteget enligt foreliggande uppfinning aven vaxlar ner de resulterande nivaerna for dikvaveoxid N20. De resulterande nivaerna for ammoniak NH3 kan vaxlas ner pa motsvarande satt di foreliggande uppfinning utnyttj as. By utilizing the present invention, secondary emissions such as emissions of ammonia NH3 and / or nitrous oxide (nitrous oxide) N2O can also be reduced in relation to a given degree of conversion and / or a given NOx level. A catalyst, for example an ASC (Ammonia Slip Catalyst), which may be included in the second reduction step if the emissions for certain jurisdictions are to be reduced to very low levels, may have some selectivity towards, for example, nitrous oxide N20, which causes the NOx level to decrease by utilizing the additional reduction step of the present invention, the resulting levels of nitrous oxide N2 are also reduced. The resulting levels of ammonia NH 3 can be lowered in the corresponding manner in which the present invention is utilized.

Kortfattad figurforteckning Uppfinningen kommer att belysas narmare nedan med ledning av de bifogade ritningarna, dar lika hanvisningsbeteckningar anvands for lika delar, och van: Figur 1 visar ett exempelfordon vilket kan innefatta foreliggande uppfinning, Figur 2 visar ett traditionellt avgasbehandlingssystem, 22 Figur 3 visar ett avgasbehandlingssystem enligt foreliggande uppfinning, Figur 4 visar ett flodesschema for forfarandet for avgasbehandling enligt foreliggande uppfinning, Figur 5 visar en styrenhet enligt foreliggande uppfinning, Figur 6 visar bland annat ett forhdllande mellan NOx-omvandling och NH3-slip. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further elucidated below with reference to the accompanying drawings, in which like reference numerals are used for like parts, and in: Figure 1 shows an exemplary vehicle which may include the present invention, Figure 2 shows a traditional exhaust gas treatment system, Figure 3 shows an exhaust gas treatment system. according to the present invention, Figure 4 shows a flow chart of the exhaust gas treatment process of the present invention, Figure 5 shows a control unit according to the present invention, Figure 6 shows, inter alia, a relationship between NOx conversion and NH3 grinding.

Beskrivning av foredragna utforingsformer Figur 1 visar schematiskt ett exempelfordon 100 innefattande ett avgasbehandlingssystem 150, vilket kan vara ett avgasbehandlingssystem 150 enligt en utforingsform av fareliggande uppfinning. Drivlinan innefattar en forbrOnningsmotor 101, vilken ph ett sedvanligt shtt, via en ph forbrOnningsmotorn 101 utghende axel 102, vanligtvis via ett svOnghjul, är forbunden med en vhxellhda 103 via en koppling 106. Description of Preferred Embodiments Figure 1 schematically shows an exemplary vehicle 100 comprising an exhaust gas treatment system 150, which may be an exhaust gas treatment system 150 according to an embodiment of the present invention. The driveline comprises an internal combustion engine 101, which is connected to a shaft 103 via a shaft 102, usually via a flywheel motor, usually via a flywheel, via a flywheel 103.

ForbrOnningsmotorn 101 styrs av fordonets styrsystem via en styrenhet 115. Likash kan kopplingen 106 och vOxellhdan 103 styras av fordonets styrsystem med hjOlp av en eller flera tillOmpliga styrenheter (ej visade). Naturligtvis kan fordonets drivlina Oven vara av annan typ, shsom av en typ med konventionell automatvOxellhda, av en typ med hybriddrivlina, etc. The internal combustion engine 101 is controlled by the control system of the vehicle via a control unit 115. Like the clutch 106 and the gear unit 103, the control system of the vehicle can be controlled by means of one or more applicable control units (not shown). Of course, the vehicle's driveline can also be of another type, such as of a type with conventional automatic transmission, of a type with a hybrid driveline, etc.

En frhn vOxellhdan 103 utghende axel 107 driver drivhjulen 113, 114 via en slutvOxel 108, shsom t.ex. en sedvanlig differential, och drivaxlar 104, 105 forbundna med nOmnda slutvOxel 108. 23 Fordonet 100 innefattar vidare ett avgasbehandlingssystem/avgasreningssystem 150 for behandling/rening av avgasutslapp resulterande fran forbranning i forbranningsmotorns 101 forbranningskammare, vilka kan utgaras av cylindrar. A shaft 107 extending from the shaft shaft 103 drives the drive wheels 113, 114 via an end shaft 108, which e.g. a conventional differential, and drive shafts 104, 105 connected to said final shaft 108. The vehicle 100 further comprises an exhaust gas treatment system / exhaust purification system 150 for treating / purifying exhaust emissions resulting from combustion in the combustion chamber of the combustion engine 101, which may be discharged from cylinders.

I figur 2 visas ett tidigare kant avgasbehandlingssystem 250, vilket kan illustrera ovan namnda EuroVI-system, och vilket med en avgasledning 202 Or anslutet till en forbranningsmotor 201, dar de vid forbranningen genererade avgaserna, det vill saga avgasstrommen 203, indikeras med pilar. Avgasstrommen 203 leds till ett dieselpartikelfilter (Diesel Particulate Filter, DPF) 220 via en dieseloxidationskatalysator (Diesel Oxidation Catalyst, DOC) 210. Vid forbranning i forbranningsmotorn bildas sotpartiklar, och partikelfiltret DPF 220 anvands for att fanga upp dessa sotpartiklar. Avgasstrommen 203 leds har genom en filterstruktur dar sotpartiklar fangas upp fran den passerande avgasstrommen 203 och upplagras i partikelfiltret 220. Figure 2 shows a previous edge of the exhaust gas treatment system 250, which may illustrate the above-mentioned EuroVI system, and which is indicated by an exhaust line 202 or connected to an internal combustion engine 201, where the exhaust gases generated during combustion, i.e. the exhaust stream 203, are indicated by arrows. The exhaust stream 203 is led to a Diesel Particulate Filter (DPF) 220 via a Diesel Oxidation Catalyst (DOC) 210. During combustion in the internal combustion engine, soot particles are formed, and the DPF 220 particulate filter is used to capture these soot particles. The exhaust stream 203 is passed through a filter structure where soot particles are captured from the passing exhaust stream 203 and stored in the particulate filter 220.

Oxidationskatalysatorn DOC 210 har flera funktioner och anvands normalt primart for att vid avgasbehandlingen oxidera kvarvarande kolvaten CHy (Oven benamnt HC) och kolmonoxid CO avgasstrommen 203 till koldioxid CO2 och vatten H20. Oxidationskatalysatorn DOC 210 kan Oven oxidera en stor andel av de i avgasstrommen forekommande kvavemonoxiderna NO till kvavedioxid NO2. Oxideringen av kvavemonoxid NO till kvavedioxid NO2 Or viktig for den kvavedioxidbaserade sotoxidationen i filtret och Or vidare fordelaktig vid en eventuell efterfoljande reduktion av kvaveoxider NOR. I detta avseende innefattar avgasbehandlingssystemet 250 vidare en nedstroms am partikelfiltret DPF 220 anordnad SCR (Selective Catalytic Reduction) -katalysator 230. SCR-katalysatorer anvander ammoniak NH3, eller en sammansattning ur vilken 24 ammoniak kan genereras/bildas, sasom t.ex. urea, som tillsatsmedel for reduktion av mangden kvaveoxider NOx avgasstrommen. Reaktionshastigheten far denna redukticn paverkas dock av forhallandet mellan kvavemonoxid NO och kvavedioxid NO2 i avgasstrommen, varfar reduktionens reaktion paverkas i positiv riktning av foregaende oxidation av NO till NO2 i oxidationskatalysatorn DOC. Detta (Jailer upp till ett varde motsvarande ungefar 50% for molforhallandet NO2/NO. For hegre andelar for molferhallandet NO2/NO, det vill saga far varden overstigande 50%, paverkas reaktionshastigheten kraftigt negativt. The oxidation catalyst DOC 210 has several functions and is normally used primarily to oxidize the remaining hydrocarbons CHy (also called HC) and carbon monoxide CO the exhaust gas stream 203 to carbon dioxide CO2 and water H 2 O during the exhaust gas treatment. The oxidation catalyst DOC 210 can also oxidize a large proportion of the nitrogen monoxides NO present in the exhaust stream to nitrogen dioxide NO2. The oxidation of nitrogen monoxide NO to nitrogen dioxide NO2 Or is important for the nitrogen dioxide-based sotoxidation in the filter and Or further advantageous in the event of a subsequent reduction of nitrogen oxides NOR. In this regard, the exhaust gas treatment system 250 further comprises a SCR (Selective Catalytic Reduction) catalyst 230 arranged downstream of the particulate filter DPF 220. SCR catalysts use ammonia NH 3, or a composition from which 24 ammonia can be generated / formed, such as e.g. urea, as an additive to reduce the amount of nitrogen oxides NOx the exhaust gas stream. However, the reaction rate of this reduction is affected by the ratio of nitrogen monoxide NO to nitrogen dioxide NO2 in the exhaust stream, whereupon the reaction of the reduction is positively affected by the previous oxidation of NO to NO2 in the oxidation catalyst DOC. This (Jailer up to a value corresponding to approximately 50% for the molar ratio NO2 / NO. For higher proportions for the molar ratio NO2 / NO, ie if the value exceeds 50%, the reaction rate is strongly negatively affected.

Sasom namnts ovan erfordrar SCR-katalysatorn 230 tillsatsmedel for att minska koncentrationen av en forening sasom exempelvis kvaveoxider NO i avgasstrommen 203. Detta tillsatsmedel sprutas in i avgasstrommen uppstroms SCR-katalysatorn 230 (ej visat i figur 2). Detta tillsatsmedel Or ofta ammoniakoch/eller ureabaserat, eller utgors av ett amne ur vilket ammoniak kan utvinnas eller frigoras, och kan till exempel best a av AdBlue, vilket i princip utgor urea utblandat med vatten. Urea bildar ammoniak dels vid uppvarmning (termolys) och dels vid heterogen katalys pa en oxiderande yta (hydrolys), vilken exempelvis kan utgoras av titandioxid Ti02, mom SCR-katalysatorn. Avgasbehandlingssystemet kan aven innefatta en separat hydrolyskatalysator. As mentioned above, the SCR catalyst 230 requires additives to reduce the concentration of a compound such as nitrogen oxides NO in the exhaust stream 203. This additive is injected into the exhaust stream upstream of the SCR catalyst 230 (not shown in Figure 2). This additive is often ammonia and / or urea based, or consists of a substance from which ammonia can be extracted or released, and may for example consist of AdBlue, which in principle consists of urea mixed with water. Urea forms ammonia partly by heating (thermolysis) and partly by heterogeneous catalysis on an oxidizing surface (hydrolysis), which can be formed, for example, of titanium dioxide TiO 2, including the SCR catalyst. The exhaust gas treatment system may also include a separate hydrolysis catalyst.

Avgasbehandlingssystemet 250 Or aven forsett med en slip- katalysator (Ammonia Slip Catalyst; ASC) vilken Or anordnad att oxidera ett overskott av ammoniak som kan kvarsta efter SCR-katalysatorn 230 och/eller att bista SCR-katalysatorn med ytterligare NOx-reduktion. Darigenom kan slipkatalysatorn ASC ge mojlighet till att forbattra systemets totala NOx- omvandling/reduktion. The exhaust gas treatment system 250 Or is also provided with an slip catalyst (Ammonia Slip Catalyst; ASC) which Or arranged to oxidize an excess of ammonia which may remain after the SCR catalyst 230 and / or to assist the SCR catalyst with further NOx reduction. As a result, the grinding catalyst ASC can provide an opportunity to improve the system's overall NOx conversion / reduction.

Avgasbehandlingssystemet 250 är dven farsett med en eller flera sensorer, sdsom en eller flera NOR- och/eller temperatursensorer 261, 262, 263, 264 for bestdmning av kvdveoxider och/eller temperaturer i avgasbehandlingssystemet. The exhaust gas treatment system 250 is also equipped with one or more sensors, such as one or more NOR and / or temperature sensors 261, 262, 263, 264 for determining nitrogen oxides and / or temperatures in the exhaust gas treatment system.

Det tidigare kanda avgasbehandlingssystemet visat i figur 2, det viii saga EuroVI-systemet, har ett problem i att katalysatorer är effektiva vdrmevaxlare, vilka tillsammans med resten av avgassystemet, innefattande exempelvis avgasledningen 202 samt material och utrymme for ljuddampning och diverse anslutningar, har en stor termisk massa/troghet. The previously known exhaust gas treatment system shown in Figure 2, the viii saga EuroVI system, has a problem in that catalysts are efficient heat exchangers, which together with the rest of the exhaust system, including for example the exhaust line 202 and materials and space for sound evaporation and various connections, have a large thermal mass / inertia.

Vid starter dd katalysatortemperaturen är under dess optimala arbetstemperatur, vilken exempelvis kan vara cirka 300 °C, samt vid pddrag frdn ldga avgastemperaturer, vilka exempelvis kan forekomma nar latt stadskorning overgdr i landsvagskorning eller efter tomgangs- och kraftuttagsdrift, filtreras avgastemperaturen av denna stora termiska massa. Hdrigenom pdverkas funktionen, och darigenom effektiviteten fOr reduktionen av exempelvis kvaveoxider NO hos SCR-katalysatorn 230, vilket kan gora att en undermdlig avgasrening tillhandahdlls av systemet visat i figur 2. Detta gor att en mindre mangd utslappta kvaveoxider NO kan tillatas att slappas ut frdn motorn 101 an om avgasreningen hade varit effektiv, vilket kan leda till krav pa en mer komplex motor och/eller en ldgre brdnsleeffektivitet. At start-up when the catalyst temperature is below its optimum working temperature, which can be around 300 ° C, for example, and at start-up from low exhaust gas temperatures, which can occur when light city driving passes during highway driving or after idle and power take-off operation, the exhaust temperature is filtered by this large thermal mass . This affects the function, and thereby the efficiency for the reduction of, for example, nitrogen oxides NO of the SCR catalyst 230, which may mean that an inferior exhaust gas purification is provided by the system shown in Figure 2. This means that a smaller amount of nitrogen oxides NO released can be allowed out of the engine. 101 if the exhaust gas purification had been efficient, which could lead to requirements for a more complex engine and / or a lower fuel efficiency.

I det tidigare kanda avgasbehandlingssystemet finns dven en risk for att det relativt kalla reduktionsmedlet lokalt kyler ned avgasrorsdelarna och darmed kan ge upphov till utfallningar. Denna risk for utfdllningar nedstroms insprutningen okar om den insprutade mangden reduktionsmedel mdste vara stor. 26 Bland annat for att kompensera for den begransade tillgangen pa varme/temperatur vid exempelvis kallstarter och drift med lag last kan sa kallad snabb SCR ("fast SCR") utnyttjas, vid vilken reduktionen styrs till att i sa star utstrackning som majligt ske via reaktionsvagar over bade kvaveoxid NO och kvavedioxid NO2. Reaktionen nyttjar vid snabb SCR lika delar kvavemonoxid NO och kvavedioxid NO2, vilket gar att ett optimalt varde pa molforhallandet NO2/NO x ligger nara 50%. In the previously known exhaust gas treatment system, there is also a risk that the relatively cold reducing agent locally cools down the exhaust pipe parts and thus can give rise to precipitations. This risk of discharges downstream of the injection increases if the amount of reducing agent injected must be large. 26 Among other things, to compensate for the limited supply of heat / temperature in, for example, cold starts and operation with low loads, so-called fast SCR ("fixed SCR") can be used, in which the reduction is controlled to the same extent as possible via reaction waves over both nitrogen oxide NO and nitrogen dioxide NO2. In rapid SCR, the reaction uses equal parts nitrogen monoxide NO and nitrogen dioxide NO2, which means that an optimal value of the molar ratio NO2 / NO x is close to 50%.

For vissa forhallanden for katalysatortemperatur och ft:3de, det vill saga for en viss uppehAllstid i katalysatorn ("Space Velocity"), finns en risk att en icke-fordelaktig andel kvavedioxider NO2 erhalls. Speciellt finns en risk att forhallandet NO2/NO x overstiger 50%, vilket kan utgara ett reellt problem for avgasreningen. En optimering av forhallandet NO2/NO x fbr de ovan namnda kritiska lagtemperaturdriftsfallen riskerar alltsa att ge en alltfor hog andel kvavedioxider NO2 i andra driftfall vid exempelvis hogre temperaturer. Denna hogre andel kvavedioxider NO2 resulterar i storre volymansprak for SCR-katalysatorn och/eller i en begransning av den fran motorn utslappta mangden kvaveoxider och darmed i en samre bransleeffektivitet for fordonet. Dessutom finns det en risk att den hogre andelen kvavedioxider NO2 aven resulterar i emissioner av lustgas N20. Dessa risker for att en icke-fordelaktig andel kvavedioxid NO2 uppstar existerar aven pa grund av Aldring av systemet. For certain catalyst temperature and ft: 3rd conditions, i.e. for a certain residence time in the catalyst ("Space Velocity"), there is a risk that a non-advantageous proportion of nitrogen dioxides NO2 is obtained. In particular, there is a risk that the NO2 / NO x ratio exceeds 50%, which can be a real problem for exhaust gas purification. An optimization of the NO2 / NO x ratio for the above-mentioned critical low-temperature operating cases thus risks giving an excessively high proportion of nitrogen dioxide NO2 in other operating cases at, for example, higher temperatures. This higher proportion of nitrogen dioxides NO2 results in greater volume performance for the SCR catalyst and / or in a limitation of the amount of nitrogen oxides emitted from the engine and thus in a lower fuel efficiency for the vehicle. In addition, there is a risk that the higher proportion of nitrogen dioxide NO2 also results in emissions of nitrous oxide N20. These risks that a non-beneficial proportion of nitrogen dioxide NO2 arises also exist due to Aging of the system.

Exempelvis kan forhallandet NO2/NO x anta lagre varden nar systemet har Aldrats, vilket kan gara att en katalysatorspecifikation som i oaldrat tillstand ger alltfor haga andelar av NO2/NO x mAste utnyttjas for att ta hajd for, och kunna kompensera for, aldrandet. For example, the NO2 / NO x ratio can assume lower values when the system has Aged, which may mean that a catalyst specification which in an unaged state gives too high proportions of NO2 / NO x must be used to stop, and be able to compensate for, aging.

Aven en bristande reglerrobusthet mot doseringsfel for mangden reduktionsmedel och/eller en bristande reglerrobusthet mot en 27 sensorfelvisning kan vid hag-a NOx-omvandlingsgrader utgOra ett problem for avgasbehandlingssystemet. Also a lack of control robustness against dosing errors for the amount of reducing agent and / or a lack of control robustness against a sensor error display can at hag-a NOx conversion rates constitute a problem for the exhaust gas treatment system.

I den tidigare kanda losningen beskriven i 1JS2005/0069476 foreslas att avgassystemet skall besta av en narkopplad SCR- katalysator (ccSCR), vilken skall vara ansluten nara, mindre an 1 meter, fran motorns eller turbons avgasutlopp, nedstroms foljd av ett SCRT-system. SCRT-systemet är av fOrfattarna till US2005/0069476 definierat som ett tidigare kant system i avgasstrommens riktning vilket innefattar en DOC-katalysator, ett DPF-filter, en ureadoseringsanordning, och en SCR- katalysator. Alltsa bestar avgasbehandlingssystemet beskrivet i US2005/0069476 i tur och ordning i avgasstrommens flodesriktning av foljande separata komponenter: den narkopplade ccSCR-katalysatorn, DOC-katalysatorn, DPF-filtret, och SCR-katalysatorn; ccSCR-DOC-DPF-SCR. In the previous solution described in 1JS2005 / 0069476 it is proposed that the exhaust system should consist of an anesthetized SCR catalyst (ccSCR), which should be connected close, less than 1 meter, from the engine or turbo exhaust outlet, downstream followed by an SCRT system. The SCRT system is defined by the authors of US2005 / 0069476 as a previous edge system in the direction of the exhaust stream which includes a DOC catalyst, a DPF filter, a urea dosing device, and an SCR catalyst. Thus, the exhaust gas treatment system described in US2005 / 0069476 in turn consists in the flow direction of the exhaust stream of the following separate components: the anesthetized ccSCR catalyst, the DOC catalyst, the DPF filter, and the SCR catalyst; ccSCR-DOC-DPF-SCR.

Enligt losningen i US2005/0069476 maste den narkopplade ccSCRkatalysatorn vara monterad nara motorn och/eller turbon for att inverkan av den termiska massan/trogheten has avgasroret och/eller hos avgasbehandlingssystemet ska minimeras, eftersom denna termiska massa/troghet forsamrar avgasbehandlingssystemets avgasrenande egenskaper. Trots detta finns det en risk att losningen beskriven i US2005/0069476 far prestandaproblem eftersom varken den narkopplade ccSCRkatalysatorn eller den efterfoljande SCR-katalysatorn är optimerade for samverkande avgasrening. Den efterfoljande SCR- katalysatorn är i US2005/0069476 samma katalysator som tidigare har anvants i SCRT-systemet, vilket gor att denna efterfoljande SCR-katalysator dels kan bli onodigt dyr och dels inte är optimerad for med ccSCR samverkande avgasrening. According to the solution in US2005 / 0069476, the anesthetized ccSCR catalyst must be mounted close to the engine and / or turbo in order to minimize the impact of the thermal mass / inertia on the exhaust pipe and / or on the exhaust gas treatment system, as this thermal mass / inertia impairs the exhaust gas treatment properties. Nevertheless, there is a risk that the solution described in US2005 / 0069476 will have performance problems because neither the uncoupled ccSCR catalyst nor the subsequent SCR catalyst are optimized for cooperating exhaust gas purification. The subsequent SCR catalyst is in US2005 / 0069476 the same catalyst that has previously been used in the SCRT system, which means that this subsequent SCR catalyst can be both unnecessarily expensive and not optimized for exhaust gas purification with ccSCR.

I US2005/0069476 laggs den narkopplade ccSCR-katalysatorn till i avgasbehandlingssystemet for att ta hand om problem 28 relaterade till kallstarten, vilket ger en kostsam lOsning riktad endast mot kallstarter. In US2005 / 0069476 the anesthetized ccSCR catalyst is added to the exhaust gas treatment system to deal with problems 28 related to the cold start, providing a costly solution aimed only at cold starts.

Dessa problem for systemet beskrivet i US2005/0069476 lOses atminstone delvis av foreliggande uppfinning. These problems for the system described in US2005 / 0069476 are at least partially solved by the present invention.

Figur 3 visar schematiskt ett avgasbehandlingssystem 3 enligt fOreliggande uppfinning vilket med en avgasledning 302 Or anslutet till en forbranningsmotor 301. Avgaser som genereras vid forbranningen i motorn 301 och avgasstrOmmen 303 (indikerad med pilar) leds till en forsta oxidationskatalysator DOC1 310, vilken Or anordnad att oxidera kvaveforeningar, kolforeningar och/eller kolvatefOreningar i avgasstrommen 303 i avgasbehandlingssystemet 350. Partikelfiltret 320 beskrivs nedan. Vid oxidationen i den forsta oxidationskatalysatorn DOC1 310 oxideras en del av kvavemonoxiderna NO i avgasstrommen 303 till kvavedioxid NO2. Figure 3 schematically shows an exhaust gas treatment system 3 according to the present invention which with an exhaust line 302 Or connected to an internal combustion engine 301. Exhaust gases generated during the combustion in the engine 301 and the exhaust stream 303 (indicated by arrows) are led to a first oxidation catalyst DOC1 310, which Or. oxidize nitrogen compounds, carbon compounds and / or hydrocarbon compounds in the exhaust stream 303 of the exhaust gas treatment system 350. The particulate filter 320 is described below. During the oxidation in the first oxidation catalyst DOC1 310, a part of the nitrogen monoxides NO in the exhaust stream 303 is oxidized to nitrogen dioxide NO2.

En forsta doseringsanordning 371, vilken Or anordnad nedstroms den forsta oxidationskatalysatorn DOC1 310 och är anordnad att tillfora ett forsta tillsatsmedel i avgasstrommen 303. En forsta reduktionskatalysatoranordning 331 Or anordnad nedstroms den forsta doseringsanordningen 371. Den forsta reduktionskatalysatoranordningen 331 Or anordnad att reducera kvaveoxider NO i avgasstrommen 303 genom utnyttjande av det forsta tillsatsmedlet som tillforts avgasstrommen av den forsta doseringsanordningen 371. Mer i detalj anvander den forsta reduktionskatalysatoranordningen 371 ett tillsatsmedel, exempelvis ammoniak NH3 eller urea, ur vilket ammoniak kan genereras/bildas/frigoras, vid reduktionen av kvaveoxiderna NO i avgasstrommen 303. Detta tillsatsmedel kan till exempel besta av ovan namnda AdBlue. A first metering device 371, which Or is arranged downstream of the first oxidation catalyst DOC1 310 and is arranged to supply a first additive in the exhaust stream 303. A first reduction catalyst device 331 Or is arranged downstream of the first metering device 371. The first reduction catalyst is arranged below the NO. 303 by utilizing the first additive supplied to the exhaust gas stream by the first metering device 371. In more detail, the first reduction catalyst device 371 uses an additive, for example ammonia NH3 or urea, from which ammonia can be generated / formed / released, in the reduction of nitrogen oxides NO in exhaust gas 303. This additive may, for example, consist of the above-mentioned AdBlue.

Enligt en utforingsform av uppfinningen kan en forsta hydrolyskatalysator, vilken kan utgoras av vasentligen vilken 29 lamplig hydrolysbelaggning som heist, och/eller en fOrsta mixer vara anordnad i anslutning till den forsta doseringsanordningen 371. Den forsta hydrolyskatalysatorn och/eller den forsta mixern utnyttjas di for att Oka hastigheten ph nedbrytningen av urea till ammoniak och/eller for att blanda tillsatsmedlet med emissionerna och/eller for att faranga tillsatsmedlet. According to an embodiment of the invention, a first hydrolysis catalyst, which may consist essentially of any suitable hydrolysis coating, and / or a first mixer may be arranged in connection with the first dosing device 371. The first hydrolysis catalyst and / or the first mixer is used for to increase the rate of degradation of urea to ammonia and / or to mix the additive with the emissions and / or to purge the additive.

Den okade andelen kvavedioxider NO2 i avgasstrommen 303, vilken erhills genom utnyttjandet av den uppstroms forsta reduktionskatalysatoranordningen placerade forsta oxidationskatalysator DOC1 310 gor att en storre andel av den totala omvandlingen av kvaveoxider NO sker via den snabba reaktionsvagen, det vill saga via snabb SCR dar reduktionen sker via reaktionsvagar Over bide kvaveoxid NO och kvavedioxid NO2. The increased proportion of nitrogen dioxides NO2 in the exhaust stream 303, which is obtained by utilizing the first oxidation catalyst DOC1 310 placed upstream of the upstream, means that a larger proportion of the total conversion of nitrogen oxides NO takes place via the fast reaction path, i.e. reduction via fast SCR via reaction scales Over bide nitric oxide NO and nitrogen dioxide NO2.

Den uppstroms forsta reduktionskatalysatoranordningen monterade forsta oxidationskatalysatorn skapar aven varme vid oxidation av eventuella kolvateforeningar i avgasstrommen, vilket gor att denna varme kan utnyttjas for exempelvis optimering av NOx-reduktionen. The first oxidation catalyst mounted upstream of the upstream first reduction catalyst device also creates heat during oxidation of any hydrocarbon compounds in the exhaust gas stream, which means that this heat can be used for, for example, optimization of the NOx reduction.

Foreliggande uppfinning mojliggor enligt en utfOringsform en styrning av ett forhallande NO2/NO x mellan mangden kvavedioxid NO2 och mangden kvaveoxider NO for det forsta reduktionssteget, genom att medelst motor- och/eller forbranningsatgarder anpassa/justera nivin/mangden for kvaveoxiderna NO som nar den forsta oxidationskatalysatorn. Med andra ord utfors har vid behov en anpassning av ett forhillande NO2 SCR1/NOx SCR1 mellan den fOrsta mangden kvavedioxid NO2scR1 och den forsta mangden kvaveoxider NOxscR1 som air den forsta reduktionskatalysatoranordningen 331. According to one embodiment, the present invention enables a control of a ratio of NO2 / NO x between the amount of nitrogen dioxide NO2 and the amount of nitrogen oxides NO for the first reduction step, by adjusting / adjusting the level / amount of the nitrogen oxides NO which reach the first by means of engine and / or combustion devices. the oxidation catalyst. In other words, if necessary, an adaptation of a precipitating NO2 SCR1 / NOx SCR1 between the first amount of nitrogen dioxide NO2scR1 and the first amount of nitrogen oxides NOxscR1 as air has the first reduction catalyst device 331.

Anpassningen hstadkoms genom en aktiv styrning medelst motor- och/eller forbranningsatgarder av en mangd kvaveoxider NOx DOC1 som avges frAn motorn och darefter nAr den forsta oxidationskatalysatorn 310. Indirekt erhAlls darigenom en aktiv styrning aven av den forsta mangden kvaveoxider NOxscpa som nar den farsta reduktionskatalysatoranordningen 331, eftersom nivAn for den forsta mangden kvaveoxider NOxscill beror av mangden kvaveoxider NO. DOC1 som avges fran motorn. The adaptation is effected by an active control by means of engine and / or combustion actuators of a quantity of nitrogen oxides NOx DOC1 which are emitted from the engine and thereafter when the first oxidation catalyst 310. Indirectly an active control is thereby obtained of the first quantity of nitrogen oxides. , since the level of the first amount of nitrogen oxides NOxscill depends on the amount of nitrogen oxides NO. DOC1 emitted from the engine.

Foreliggande uppfinning mojliggor enligt en utfOringsform Oven en styrning av ett forhAllande NO2/NO x mellan mangden kvavedioxid NO2 och mangden kvaveoxider NO for det andra reduktionssteget, genom att anpassa doseringen av tillsatsmedel vid den forsta reduktionskatalysatoranordningen. The present invention makes it possible, according to one embodiment, to control a NO2 / NO x ratio between the amount of nitrogen dioxide NO2 and the amount of nitrogen oxides NO for the second reduction step, by adjusting the dosage of additives in the first reduction catalyst device.

Avgasbehandlingssystemet 350 enligt fOreliggande uppfinning innefattar nedstroms den forsta reduktionskatalysatoranordningen 331 ett partikelfilter 320. Partikelfiltret 320 kan innefatta en katalytiskt oxiderande belaggning. Partikelfiltret 320 Or anordnat for att fAnga upp sotpartiklar. Den oxiderande belaggningen Or anordnad fOr att oxidera sotpartiklar samt en eller flera av kvaveoxid NO och ofullstandigt oxiderade kolforeningar i avgasstrommen 303. I detta dokument beskrivs avgasbehandlingssystemet av pedagogiska skal huvudsakligen enligt utforingsformen day. partikelfiltret 320 Atminstone delvis innefattar den katalytiskt oxiderande belaggningen. Dock kan, enligt olika nedan mer i detalj beskrivna utforingsformer, den katalytiskt oxiderande belaggningen aven vara placerad i andra komponenter i avgasbehandlingssystemet 350, forutsatt att den katalytiskt oxiderande belaggningen är anordnad mellan den forsta och den andra reduktionskatalysatoranordningen. 31 Avgasstrommen 303 leds har genom partikelfiltrets filterstruktur, vilket enligt en utforingsform atminstone till en del är belagt med ett katalytiskt oxiderande material. Sotpartiklar fangas upp i filterstrukturen fran den passerande avgasstrommen 303 samt upplagras och oxideras i partikelfiltret. The exhaust gas treatment system 350 of the present invention includes downstream of the first reduction catalyst device 331 a particulate filter 320. The particulate filter 320 may comprise a catalytic oxidizing coating. The particulate filter 320 Or arranged to capture soot particles. The oxidizing coating Or arranged to oxidize soot particles as well as one or more of nitric oxide NO and incompletely oxidized carbon compounds in the exhaust stream 303. This document describes the exhaust gas treatment system of pedagogical shells mainly according to the embodiment day. the particulate filter 320 At least in part comprises the catalytically oxidizing coating. However, according to various embodiments described in more detail below, the catalytic oxidizing coating may also be located in other components of the exhaust gas treatment system 350, provided that the catalytic oxidizing coating is disposed between the first and second reduction catalyst devices. The exhaust stream 303 is passed through the filter structure of the particulate filter, which according to one embodiment is at least partially coated with a catalytic oxidizing material. Soot particles are captured in the filter structure from the passing exhaust stream 303 and stored and oxidized in the particulate filter.

Enligt en utforingsform av uppfinningen är partikelfiltret 320 anordnat sa att partikelfiltret 320 är den forsta avgasbehandlingssystemskomponent som avgasstrOmmen 303 nar efter att ha passerat den forsta reduktionskatalysatoranordningen 331. Med andra ord är partikelfiltret 320 enligt utforingsformen anslutet nedstroms reduktionskatalysatoranordningen 331 utan mellanliggande avgasbehandlingssystemskomponenter, forutom eventuella roranslutningar mellan reduktionskatalysatoranordningen 331 och partikelfiltret 320. According to one embodiment of the invention, the particulate filter 320 is arranged so that the particulate filter 320 is the first exhaust gas treatment system component that the exhaust gas stream 303 passes through the first reduction catalyst device 331. In other words, the particulate filter 320 according to the embodiment is connected downstream. the reduction catalyst device 331 and the particulate filter 320.

Sasom beskrivs mer i detalj nedan kan enligt en utfOringsform den forsta reduktionskatalysatoranordningen 331 innefatta en forsta selektiv katalytisk reduktionskatalysator SCR', eller en forsta selektiv katalytisk reduktionskatalysator SCR' nedstroms foljd av en forsta slip-katalysator ASCIAMOX1. Da partikelfiltret 320 är den forsta avgasbehandlingssystemskomponent som avgasstrOmmen 303 nar efter att ha passerat den forsta reduktionskatalysatoranordningen 331 sker for denna utforingsform vasentligen ingen oxidation av kvaveoxid NO och/eller ofullstandigt oxiderade kolforeningar mellan den forsta reduktionskatalysatoranordningen 331 och partikelfiltret 320. As described in more detail below, according to one embodiment, the first reduction catalyst device 331 may comprise a first selective catalytic reduction catalyst SCR ', or a first selective catalytic reduction catalyst SCR' downstream followed by a first slip catalyst ASCIAMOX1. Since the particulate filter 320 is the first exhaust gas treatment system component that the exhaust gas stream 303 passes through the first reduction catalyst device 331 for this embodiment, essentially no oxidation of nitrogen oxide NO and / or incompletely oxidized carbon compounds occurs between the first reduction catalyst particle device 33.

En fordel med att ansluta partikelfiltret 320 nedstroms reduktionskatalysatoranordningen 331 utan mellanliggande 32 avgasbehandlingssystemskomponenter, bortsett fran eventuella roranslutningar, är att antalet substrat i avgasbehandlingssystemet 350 blir farre an om till exempel en andra oxidationskatalysator DOC2 skulle ha varit anordnad mellan partikelfiltret 320 och reduktionskatalysatoranordningen 331. Farre substrat ger majlighet till ett mer kompakt avgasbehandlingssystem 350 med lagre mottryck, vilket är enklare och billigare att tillverka och/eller montera. An advantage of connecting the particulate filter 320 downstream of the reduction catalyst device 331 without intermediate 32 exhaust gas treatment system components, apart from any rudder connections, is that the number of substrates in the exhaust gas treatment system 350 becomes smaller if, for example, a second oxidation catalyst DOC2 were arranged between the particulate filter filter and the substrate reduction filter. provides the possibility of a more compact exhaust gas treatment system 350 with lower back pressure, which is easier and cheaper to manufacture and / or assemble.

Enligt en utforingsform innefattar avgasbehandlingssystemet 350 aven en andra oxidationskatalysator DOC2, vilken är anordnad mellan den forsta reduktionskatalysatoranordningen 331 och partikelfiltret 320. Med andra ord är den andra oxidationskatalysatorn DOC2 anordnad nedstroms den forsta reduktionskatalysatoranordningen 331 och uppstrOms partikelfiltret 320. For denna utforingsform finns alltsa den katalytiskt oxiderande belaggningen atminstone delvis i den andra oxidationskatalysatorn DOC2, dar denna oxiderande belaggning kan innefatta atminstone en adelmetall. According to one embodiment, the exhaust gas treatment system 350 also includes a second oxidation catalyst DOC2, which is disposed between the first reduction catalyst device 331 and the particulate filter 320. In other words, the second oxidation catalyst DOC2 is disposed downstream of the first reduction catalyst device 331. the oxidizing coating at least partially in the second oxidation catalyst DOC2, where this oxidizing coating may comprise at least one noble metal.

Den katalytiskt oxiderande belaggningen kan, enligt en utforingsform dá avgasbehandlingssystemet 350 innefattar den andra oxidationskatalysatorn DOC2, vara anordnad endast i den andra oxidationskatalysatorn DOC2, varvid det nedstroms foljande partikelfiltret DPF 320 saknar katalytiskt oxiderande belaggning. The catalytic oxidizing coating may, according to one embodiment where the exhaust gas treatment system 350 comprises the second oxidation catalyst DOC2, be arranged only in the second oxidation catalyst DOC2, the downstream particulate filter DPF 320 lacking catalytic oxidizing coating.

Den katalytiskt oxiderande belaggningen kan, enligt en annan utforingsform dá avgasbehandlingssystemet 350 innefattar den andra oxidationskatalysatorn DOC2, vara anordnad bade till viss del i den andra oxidationskatalysatorn DOC2 och till viss del i det nedstrams foljande partikelfiltret cDPF. 33 Den katalytiskt oxiderande belaggningen kan, enligt en utforingsform som huvudsakligen beskrivs i detta dokument, ocksa vara anordnad endast i partikelfiltret cDPF. The catalytic oxidizing coating may, according to another embodiment where the exhaust gas treatment system 350 comprises the second oxidation catalyst DOC2, be arranged both to some extent in the second oxidation catalyst DOC2 and to some extent in the downstream particle filter cDPF. The catalytic oxidizing coating, according to an embodiment mainly described in this document, can also be arranged only in the particle filter cDPF.

Da partikelfiltret cDPF 320, atminstone delvis ar belagt med en katalytiskt oxiderande belaggning, kan denna oxiderande belaggning innefatta atminstone en adelmetall. Det viii saga att partikelfiltret 320 atminstone delvis kan vara belagt med en eller flera adelmetaller, exempelvis platina. Partikelfiltret cDPF 320 innefattande den oxiderande belaggningen har flera fordelar jamfort med ett klassiskt partikelfilter DPF utan oxiderande belaggning. Since the particle filter cDPF 320 is at least partially coated with a catalytic oxidizing coating, this oxidizing coating may comprise at least one noble metal. It will be appreciated that the particulate filter 320 may be at least partially coated with one or more noble metals, for example platinum. The particle filter cDPF 320 comprising the oxidizing coating has several advantages over a classic particle filter DPF without oxidizing coating.

Partikelfiltret cDPF 320 innefattande den oxiderande belaggningen ger en forbattrad NO2-baserad regenerering av filtret, det viii saga en forbattrad NO2-baserad sotoxidation, vilken aven kan benamnas passiv regenerering av filtret. Ett avgasbehandlingssystem innefattande ett partikelfilter DPF, det viii saga utan oxiderande belaggning, och som inte har en andra oxidationskatalysator DOC2 mellan reduktionskatalysatorn och det klassiska partikelfiltret DPF, tillhandahaller en mycket begransad NO2-baserad oxidation av sot i filtret. The particle filter cDPF 320 comprising the oxidizing coating gives an improved NO2-based regeneration of the filter, that is to say an improved NO2-based sotoxidation, which can also be called passive regeneration of the filter. An exhaust gas treatment system comprising a particle filter DPF, the viii saga without oxidizing coating, and which does not have a second oxidation catalyst DOC2 between the reduction catalyst and the classic particle filter DPF, provides a very limited NO2-based oxidation of soot in the filter.

Systemet enligt utforingsformen av foreliggande uppfinning avser, genom utnyttjandet av den katalytiskt oxiderande belaggningen, att rena filtret fran sot genom den NO2-baserade oxidationen. Dock kan foreliggande uppfinning aven med fordel utnyttjas vid aktiv regenerering/oxidationen av filtret, exempelvis genom utnyttjande av en injektor, vilken tillfOr bransle uppstroms filtret. Vid aktiv regenerering har avgasbehandlingssystemet enligt uppfinningen en fordel i att den forsta reduktionskatalysatoranordningen sjalv kan klara en viss NO2-omvandling under tiden den nedstroms filtret anordnade andra reduktionskatalysatoranordningen, pa grund av 34 regenereringen, upplever en sa hog temperatur att den har svdrt att ná en hog omvandlingsgrad. The system according to the embodiment of the present invention, by utilizing the catalytically oxidizing coating, intends to purify the filter from soot by the NO 2 -based oxidation. However, the present invention can also be used to advantage in active regeneration / oxidation of the filter, for example by using an injector, which supplies fuel upstream of the filter. In the case of active regeneration, the exhaust gas treatment system according to the invention has the advantage that the first reduction catalyst device itself can handle a certain NO2 conversion while the second reduction catalyst device arranged downstream of the filter, due to the regeneration, experiences such a high temperature that it has difficulty reaching a high degree of conversion.

Vid utnyttjande av motorns insprutningssystem vid en regenerering av partikelfiltret cDPF, eller av en annan avgasbehandlingskomponent, sasom exempelvis den fOrsta reduktionskatalysatoranordningen, kommer den fOrsta oxidationskatalysatoranordningen kunna anvdndas for skapande av nodvandig varme. When using the engine injection system in a regeneration of the particle filter cDPF, or of another exhaust gas treatment component, such as for example the first reduction catalyst device, the first oxidation catalyst device can be used to create the necessary heat.

Partikelfiltret cDPF 320 vilket innefattar den oxiderande beldggningen ger Oven mer stabila forhdllanden for kvdvedioxidnivdn NO2 vid den andra reduktionskatalysatoranordningen 332. The particle filter cDPF 320 which includes the oxidizing coating gives Oven more stable conditions for the nitrogen dioxide level NO2 at the second reduction catalyst device 332.

Dessutom gor utnyttjandet av partikelfiltret cDPF 320 innefattande den oxiderande beldggningen och/eller av den andra oxidationskatalysatorn DOC2 att vdrdet fOr kvoten NO2/NO, det viii saga halten NO2, kan styras. In addition, the use of the particle filter cDPF 320 comprising the oxidizing precipitate and / or of the second oxidation catalyst DOC2 allows the value of the NO2 / NO ratio, the said NO2 content, to be controlled.

Nedstroms partikelfiltret 320 Or avgasbehandlingssystemet 3 fOrsett med en andra doseringsanordning 372, vilken är anordnad att tillfora ett andra tillsatsmedel i avgasstrommen 303, ddr detta andra tillsatsmedel innefattar ammoniak NH3, eller ett dmne, exempelvis AdBlue, ur vilket ammoniak kan genereras/bildas/frigOras, sasom beskrivs ovan. Det andra tillsatsmedlet kan hdr utgoras av samma tillsatsmedel som det ovan ndmnda fOrsta tillsatsmedlet, det viii saga att det fOrsta och andra tillsatsmedlet är av samma typ och kan mOjligtvis dven komma fran samma tank. Det fOrsta och andra tillsatsmedlet kan dven vara av olika typ och kan komma frdn olika tankar. Downstream particle filter 320 Or the exhaust gas treatment system 3 provided with a second metering device 372, which is arranged to supply a second additive in the exhaust stream 303, where this second additive comprises ammonia NH3, or a substance, for example AdBlue, from which ammonia can be generated / formed / released. as described above. The second additive may here consist of the same additive as the above-mentioned first additive, it being said that the first and second additives are of the same type and may possibly also come from the same tank. The first and second additives may also be of different types and may come from different thoughts.

Enligt en utforingsform av uppfinningen kan dessutom en andra hydrolyskatalysator och/eller en andra mixer vara anordnad i anslutning till den andra doseringsanordningen 372. Funktionen och utforandet av den andra hydrolyskatalysatorn och/eller den andra mixern motsvarar de som beskrivs ovan for den forsta hydrolyskatalysatorn och den forsta mixern. According to an embodiment of the invention, in addition, a second hydrolysis catalyst and / or a second mixer may be arranged in connection with the second dosing device 372. The function and design of the second hydrolysis catalyst and / or the second mixer correspond to those described above for the first hydrolysis catalyst and the understand the mixer.

Avgasbehandlingssystemet 350 innefattar aven en andra reduktionskatalysatoranordning 332, vilken ar anordnad nedstroms den andra doseringsanordningen 372. Den andra reduktionskatalysatoranordningen 332 är anordnad att reducera kvaveoxider NO i avgasstrommen 303 genom utnyttjande av det andra tillsatsmedlet och, am det forsta tillsatsmedlet finns kvar i avgasstrommen 303 nar denna ndr den andra reduktionskatalysatoranordningen 332, aven genom utnyttjande av det forsta tillsatsmedlet. The exhaust gas treatment system 350 also includes a second reduction catalyst device 332, which is located downstream of the second metering device 372. The second reduction catalyst device 332 is arranged to reduce nitrogen oxides NO in the exhaust stream 303 by utilizing the second additive and, if the first additive is present, ndr the second reduction catalyst device 332, also by utilizing the first additive.

Avgasbehandlingssystemet 350 kan aven vara forsett med en eller flera sensorer, sdsom en eller flera NOx-sensorer 361, 363, 364 och/eller en eller flera temperatursensorer 362, 363, vilka är anordnade for bestamning av NOx-koncentrationer respektive av temperaturer i avgasbehandlingssystemet 350. En robusthet mot fel i doserad mangd reduktionsmedel kan Lstadkommas genom en utforingsform av uppfinningen, dar en NOR- sensor 363 är placerad mellan de tvd doseringsanordningarna 372, och foretradesvis mellan partikelfiltret 320 och den andra doseringsanordningen 372, i avgasbehandlingssystemet 350. Detta gor det mojligt att medelst den andra doseringsanordningen 372 korrigera ett eventuellt doseringsfel som skapat oforutsedda emissionsnivaer nedstroms den forsta reduktionsanordningen 371 och/eller partikelfiltret 320. The exhaust gas treatment system 350 may also be provided with one or more sensors, such as one or more NOx sensors 361, 363, 364 and / or one or more temperature sensors 362, 363, which are arranged for determining NOx concentrations and of temperatures in the exhaust gas treatment system 350, respectively. A robustness against errors in metered amount of reducing agent can be achieved by an embodiment of the invention, where a NOR sensor 363 is placed between the two dosing devices 372, and preferably between the particle filter 320 and the second dosing device 372, in the exhaust gas treatment system 350. This makes it possible correcting by means of the second dosing device 372 a possible dosing error which has created unforeseen emission levels downstream of the first reducing device 371 and / or the particulate filter 320.

Denna placering av NOx-sensorn 363 mellan de tva doseringsanordningarna 371, 372, och foretradesvis mellan partikelfiltret cDPF 320 och den andra doseringsanordningen gor det aven mojligt att korrigera mangden tillsatsmedel 36 som doseras av den andra doseringsanordningen 372 for kvaveoxider NO vilka kan skapas over partikelfiltret cDPF 320 av overskjutande rester av tillsatsmedlet fran den doseringen utford av den forsta doseringsanordningen 371. This placement of the NOx sensor 363 between the two dosing devices 371, 372, and preferably between the particle filter cDPF 320 and the second dosing device also makes it possible to correct the amount of additive 36 dosed by the second dosing device 372 for nitrogen oxides NO which can be created over the particle filter cDPF. 320 of excess residues of the additive from the dosing challenge of the first dosing device 371.

NOx-sensorn 364 nedstroms den andra reduktionskatalysatoranordningen 332 kan utnyttjas vid aterkoppling av dosering av tillsatsmedlet. The NOx sensor 364 downstream of the second reduction catalyst device 332 can be used in feedback of dosing of the additive.

Genom utnyttjande av avgasbehandlingssystemet 350 visat figur 3 kan bade den forsta reduktionskatalysatoranordningen 331 och den andra reduktionskatalysatoranordningen 332 optimeras med avseende pa ett val av katalysatorkarakteristik far reduktion av kvaveoxider NO och/eller med avseende pd volymer for den forsta 331 respektive andra 332 reduktionskatalysatoranordningen. Genom foreliggande uppfinning utnyttjas partikelfiltret 320 till en fordel for funktionen genom att ta hansyn till hur dess termiska massa paverkar temperaturen for den andra reduktionskatalysatorn 332 och hur den katalytiska belaggningen paverkar NOx/NOx-andelen uppstroms den andra reduktionskatalysatorn 332 vid avgasreningen. By utilizing the exhaust gas treatment system 350 shown in Figure 3, both the first reduction catalyst device 331 and the second reduction catalyst device 332 can be optimized with respect to a choice of catalyst characteristics for reduction of nitrogen oxides NO and / or with respect to volumes of the first 331 and second 332 reduction catalyst, respectively. By the present invention, the particulate filter 320 is utilized to the advantage of the function by considering how its thermal mass affects the temperature of the second reduction catalyst 332 and how the catalytic coating affects the NOx / NOx content upstream of the second reduction catalyst 332 in the exhaust gas purification.

Genom att ta hansyn till den termiska trogheten for partikelfiltret 320 kan den forsta reduktionskatalysatoranordningen 331 respektive den andra reduktionskatalysatoranordningen 332 optimeras med avseende pa den specifika temperaturfunktion de var och en kommer att uppleva. Eftersom de optimerade forsta 331 och andra 332 reduktionskatalysatoranordningarna Or inrattade for att samverkan rena avgaserna enligt foreliggande uppfinning kan avgasbehandlingssystemet 350, eller atminstone en del av dess komponenter, garas kompakt. Da utrymmet som är avsatt far avgasbehandlingssystemet 350 exempelvis i ett fordon Or 37 begransat är det en star fardel att tillhandahalla ett kompakt avgasbehandlingssystem genom en hog utnyttjandegrad av de anvanda katalysatorerna enligt foreliggande uppfinning. Denna hoga utnyttjandegrad, och det dartill horande mindre volymanspraket, ger aven majlighet till ett minskat mottryck och darmed aven till en lagre brAnsleforbrukning. By taking into account the thermal inertia of the particulate filter 320, the first reduction catalyst device 331 and the second reduction catalyst device 332, respectively, can be optimized with respect to the specific temperature function they will each experience. Since the optimized first 331 and second 332 reduction catalyst devices Or are designed to co-clean the exhaust gases of the present invention, the exhaust gas treatment system 350, or at least some of its components, can be compacted. Since the space set aside is limited by the exhaust gas treatment system 350, for example in a vehicle Or 37, it is a rigid part to provide a compact exhaust gas treatment system by a high degree of utilization of the catalysts used according to the present invention. This high degree of utilization, and the associated smaller volume language, also gives the opportunity for a reduced back pressure and thus also for a lower fuel consumption.

Foreliggande uppfinning tillhandahaller ett avgasbehandlingssystem 350 vilket effektivt minskar mangden kvaveoxider NO i avgasstrommen vid vasentligen alla kOrfall, innefattande speciellt kallstarter och lastpAdrag, det vill saga okat begart moment, frAn lag avgastemperatur samt lastavdrag, det vill saga minskat begart moment. Alltsa är avgasbehandlingssystemet 350 enligt foreliggande uppfinning lampligt vid vasentligen alla korfall som ger upphov till ett transient temperaturforlopp i avgasbehandlingen. Ett exempel pa ett sadant korfall kan utgoras av stadskorning som innefattar manga starter och inbromsningar. The present invention provides an exhaust gas treatment system 350 which effectively reduces the amount of nitrogen oxides NO in the exhaust stream at substantially all choirs, including especially cold starts and load deductions, i.e. increased starting torque, from low exhaust gas temperature and load deduction, i.e. reduced required torque. Thus, the exhaust gas treatment system 350 of the present invention is suitable for substantially all choruses that give rise to a transient temperature course in the exhaust gas treatment. An example of such a choir fall can be city driving which includes many starts and decelerations.

De problem med tidigare kand teknik som är relaterade till en for hog andel kvavedioxider NO2 kan losas Atminstone delvis genom utnyttjande av foreliggande uppfinning, eftersom tva reduktionskatalysatoranordningar 371, 372 ingar i avgasbehandlingssystemet 350. Problemet kan dtgardas genom att foreliggande uppfinning kombineras med insikten att mangden kvaveoxider NO styr hur star andel kvavedioxider NO2 som erhAlls nedstroms ett filter/substrat belagt med en katalytiskt oxiderande belaggning, det vill saga att mangden kvaveoxider NO kan utnyttjas for att styra vardet pa forhallandet NO2/NO. Genom att reducera kvaveoxiderna NO Over den forsta reduktionskatalysatoranordningen 371 vid drift vid lag temperatur kan ett krav pa en given kvot mellan kvavedioxid och kvaveoxider NO2/NO x i avgaserna som nar den andra reduktionskatalysatoranordningen 372 uppfyllas med en 38 mindre, och darmed mindre kostsam, mangd oxiderande belaggning mellan den forsta 331 och andra 332 reduktionskatalysatoranordningen, det viii saga pa den andra oxidationskatalysatorn DOC2 och/eller pa partikelfiltret cDPF. The prior art problems associated with a high proportion of nitrogen dioxide NO2 can be solved At least in part by utilizing the present invention, since two reduction catalyst devices 371, 372 are present in the exhaust gas treatment system 350. The problem can be solved by combining the present invention with the realization that the amount of nitrogen oxides NO controls the proportion of nitrogen dioxides NO2 obtained downstream of a filter / substrate coated with a catalytic oxidizing coating, ie the amount of nitrogen oxides NO can be used to control the value of the NO2 / NO ratio. By reducing the nitrogen oxides NO Over the first reduction catalyst device 371 when operating at low temperature, a requirement of a given ratio between nitrogen dioxide and nitrogen oxides NO2 / NO x in the exhaust gases when the second reduction catalyst device 372 can be met with a 38 smaller, and thus less expensive, amount of oxidizing coating between the first 331 and second 332 reduction catalyst devices, i.e. on the second oxidation catalyst DOC2 and / or on the particle filter cDPF.

Den forsta reduktionskatalysatoranordningen 331 i avgasbehandlingssystemet 350 ar enligt en utforingsform aktiv vid ett lagre reduktionstemperaturintervall Tred an oxidationstemperaturintervallet Tox vid vilket den kvavedioxidbaserade sotoxidationen, det viii saga oxidationen av ofullstandigt oxiderade kolforeningar, i partikelfiltret 320 ar aktiv. Med andra ord är temperaturen for en sa kallad "light-off" for sotoxidationen i partikelfiltret 320 hogre an "light-off" for reduktionen av kvaveoxider NO i den fOrsta reduktionskatalysatoranordningen 331. Harigenom konkurrerar reduktionen av kvaveoxider NO i den forsta reduktionskatalysatoranordningen 331 inte nodvandigtvis med sotoxidationen i partikelfiltret 320 eftersom de Or aktiva mom atminstone delvis olika temperaturintervall; 'redTox. The first reduction catalyst device 331 in the exhaust gas treatment system 350 is in one embodiment active at a lower reduction temperature range. Third is the oxidation temperature range Tox at which the nitrogen dioxide-based sotoxidation, i.e. the oxidation of incompletely oxidized carbon compounds 320 in the particulate filter. In other words, the temperature of a so-called "light-off" for the sotoxidation in the particulate filter 320 is higher than the "light-off" for the reduction of nitrogen oxides NO in the first reduction catalyst device 331. As a result, the reduction of nitrogen oxides NO in the first reduction catalyst device 331 does not. with the sotoxidation in the particulate filter 320 since the Or active mom at least partially different temperature ranges; 'redTox.

Avgasbehandlingssystemet begar ibland att motorn ska skapa varme for att avgasbehandlingssystemet ska kunna uppna en tillracklig effektivitet med avseende pa avgasrening. Detta varmeskapande uppnas dl pa bekostnad av att motorns totala effektivitet med avseende pa bransleforbrukningen minskas. En fordelaktig egenskap hos avgasbehandlingssystemet enligt foreliggande uppfinning är att den forsta reduktionskatalysatoranordningen uppstroms filtret kan fas att reagera snabbare pa denna skapade varme an vad som varit mojligt for exempelvis Euro VI-systemet. Darfor gar det at mindre bransle totalt sett genom utnyttjande av foreliggande uppfinning. 39 Enligt en utfaringsform av foreliggande uppfinning styrs motorn till att skapa sadan varme i en omfattning sa att den farsta reduktionskatalysatoranordningen nar en viss given temperatur/prestanda. Alltsa kan cid en effektiv avgasrening erhallas genom att den forsta reduktionskatalysatoranordningen kan arbeta vid en gynnsam temperatur, samtidigt som en onodigt star uppvdrmning, och ddrmed brdnsleineffektivitet, undviks. The exhaust gas treatment system sometimes requires the engine to generate heat in order for the exhaust gas treatment system to achieve sufficient efficiency with respect to exhaust gas purification. This heat generation is thus achieved at the expense of reducing the engine's overall efficiency in terms of fuel consumption. An advantageous feature of the exhaust gas treatment system according to the present invention is that the first reduction catalyst device upstream of the filter can be phased to react more quickly to this generated heat than has been possible for, for example, the Euro VI system. Therefore, there is less industry overall by utilizing the present invention. According to an embodiment of the present invention, the engine is controlled to generate such heat to an extent such that the first reduction catalyst device reaches a certain given temperature / performance. Thus, efficient exhaust gas purification can be obtained by operating the first reduction catalyst device at a favorable temperature, while avoiding unnecessary heating, and thus fuel efficiency.

Till skillnad fran ovan namnda tidigare kanda losningar maste inte den forsta reduktionskatalysatoranordningen 331 enligt foreliggande uppfinning vara narkopplad motorn och/eller turban. Att den forsta reduktionskatalysatoranordningen 331 enligt foreliggande uppfinning kan vara monterad langre fran motorn och/eller turban, och till exempel kan sitta i ljuddamparen, har en fordel i att en langre blandningsstracka for tillsatsmedel kan erhallas i avgasstrommen mellan motorn och/eller turban och den forsta reduktionskatalysatoranordningen 331. Detta gar att en bdttre utnyttjandegrad erhalls for den forsta reduktionskatalysatoranordningen 331. Samtidigt erhalls genom foreliggande uppfinning de i detta dokument namnda manga fardelarna med att ha mojlighet till reduktion av kvdveoxider NO bade uppstroms och nedstroms det termiskt troga filtret cDPF. Unlike the aforementioned prior art solutions, the first reduction catalyst device 331 of the present invention need not be anesthetized to the engine and / or turban. The fact that the first reduction catalyst device 331 according to the present invention can be mounted further from the engine and / or turban, and can for instance sit in the muffler, has an advantage in that a longer mixing distance for additives can be obtained in the exhaust stream between the engine and / or the turban and the first The reduction catalyst device 331. This results in a better utilization rate for the first reduction catalyst device 331. At the same time, the present invention provides the many advantages mentioned in this document with the possibility of reducing nitrogen oxides NO both upstream and downstream of the thermally faithful filter cDPF.

En ytterligare fordel for foreliggande uppfinning kan harledas till att den forsta oxidationskatalysatorn DOC] 310 och den andra reduktionskatalysatoranordningen 332 dr situerade/placerade i termiskt olika positioner. Detta medfor exempelvis vid ett lastpadrag att den forsta oxidationskatalysatorn DOC1 310 och den forsta reduktionskatalysatoranordningen 331 kommer att uppna en hogre avgastemperatur fore den andra reduktionskatalysatoranordningen 332 nar en hogre temperatur. A further advantage of the present invention can be deduced from the fact that the first oxidation catalyst DOC] 310 and the second reduction catalyst device 332 are situated / placed in thermally different positions. This means, for example, in the case of a loading path that the first oxidation catalyst DOC1 310 and the first reduction catalyst device 331 will reach a higher exhaust temperature before the second reduction catalyst device 332 reaches a higher temperature.

Den farsta reduktionskatalysatoranordningen 331 ges da, sasom namns ovan, mojlighet till reduktion av kvaveoxider NO fore den andra reduktionskatalysatoranordningen 332. Dessutom kommer layouten/konfigurationen av avgasbehandlingssystemet 3Oven leda till att den andra reduktionskatalysatoranordningen 332 far storre mojlighet att utfOra reduktionen enligt snabb SCR ("fast SCR") da den forsta oxidationskatalysatorn DOC1 3tidigt kan borja omvandla kvavemonoxid NO till kvavedioxid NO2. Vid det kritiska lastpadraget, cid det racier brist pa hogre avgastemperaturer, erhalls genom utnyttjande av fereliggande uppfinning en gynnsammare miljo for den andra reduktionskatalysatoranordningen 332 via en mer fordelaktig blandning av kvavedioxid och kvaveoxider NO2/NOx an vad som hade varit fallet am den fersta oxidationskatalysatorn DOC1 3 inte hade varit med i avgasbehandlingssystemet 350. The first reduction catalyst device 331 will then, as mentioned above, be given the possibility of reducing nitrogen oxides NO before the second reduction catalyst device 332. In addition, the layout / configuration of the exhaust gas treatment system 3 will also lead to the second reduction catalyst device 332 having greater ability to perform. SCR ") since the first oxidation catalyst DOC1 3 can start early to convert nitrogen monoxide NO to nitrogen dioxide NO2. In the critical loading path, due to the racial lack of higher exhaust temperatures, by utilizing the present invention, a more favorable environment is obtained for the second reduction catalyst device 332 via a more advantageous mixture of nitrogen dioxide and nitrogen oxides NO2 / NOx than would have been the case with the first oxidation catalyst. 3 had not been in the exhaust gas treatment system 350.

Enligt olika utforingsformer av foreliggande uppfinning utgors den forsta reduktionskatalysatoranordningen 331 av nagon av: - en forsta selektiv katalytisk reduktionskatalysator SCR; - en forsta selektiv katalytisk reduktionskatalysator SCR1 nedstrams integrerad med en farsta slip-katalysator ASC1/AMOX1, dar den forsta slip-katalysatorn ASC1/AMOXlar anordnad att oxidera en rest av tillsatsmedel, dar resten kan besta exempelvis av urea, ammoniak NE3 eller isocyansyra HNCO och/eller att vara SCR1 behjalplig med att ytterligare reducera kvaveoxider NO i avgasstrommen 303; - en farsta selektiv katalytisk reduktionskatalysator SCR1 nedstroms foljd av en separat forsta slip-katalysator ASC1, dar den farsta slip-katalysatorn ASC1 ar anordnad att oxidera en rest av tillsatsmedel, dar resten kan besta exempelvis av urea, ammoniak NH3 eller isocyansyra ENCO och/eller att vara SCR' behjalplig med att ytterligare reducera kvaveoxider NO i 41 avgasstrommen 303; och en forsta slip-katalysator ASC1, vilken i forsta hand ar anordnad for reduktion av kvaveoxider NO och i andra hand for oxidation av en rest av tillsatsmedel, dar resten kan besta exempelvis av urea, ammoniak NH3 eller isocyansyra HNCO i avgasstrommen 303. According to various embodiments of the present invention, the first reduction catalyst device 331 comprises any of: a first selective catalytic reduction catalyst SCR; a first selective catalytic reduction catalyst SCR1 is down-tightened integrated with a first slip catalyst ASC1 / AMOX1, where the first slip catalyst ASC1 / AMOXlar is arranged to oxidize a residue of additives, where the residue may consist of, for example, urea, ammonia NE3 or isocyanic acid HNCO and / or to be SCR1 helpful in further reducing nitrogen oxides NO in the exhaust stream 303; a first selective catalytic reduction catalyst SCR1 downstream followed by a separate first grinding catalyst ASC1, where the first grinding catalyst ASC1 is arranged to oxidize a residue of additives, where the residue may consist of, for example, urea, ammonia NH3 or isocyanic acid ENCO and / or to assist the SCR 'in further reducing nitrogen oxides NO in the exhaust gas stream 303; and a first slip catalyst ASC1, which is arranged primarily for the reduction of nitrogen oxides NO and secondarily for the oxidation of a residue of additives, where the residue may consist, for example, of urea, ammonia NH3 or isocyanic acid HNCO in the exhaust stream 303.

Enligt olika utforingsformer utgors den andra reduktionskatalysatoranordning 332 av nagon av: en andra selektiv katalytisk reduktionskatalysator SCR2; - en andra selektiv katalytisk reduktionskatalysator SCR2 nedstroms integrerad med en andra slip-katalysator ASC2/AMOX2, dar den andra slip-katalysatorn ASC2/AMOX2 Or anordnad att oxidera en rest av tillsatsmedel och/eller att vara SCR2 behjalplig med en ytterligare reduktion av kvaveoxider NOx avgasstrommen 303; och en andra selektiv katalytisk reduktionskatalysator SCR2 nedstroms foljd av en separat andra slip-katalysator ASC2, dar den andra slip-katalysatorn ASC2 är anordnad att oxidera en rest av tillsatsmedel och/eller att vara SCR2 behjalplig med en ytterligare reduktion av kvaveoxider NO i avgasstrommen 303. In various embodiments, the second reduction catalyst device 332 is comprised of any of: a second selective catalytic reduction catalyst SCR2; a second selective catalytic reduction catalyst SCR2 downstream integrated with a second grinding catalyst ASC2 / AMOX2, wherein the second grinding catalyst ASC2 / AMOX2 Or is arranged to oxidize a residue of additives and / or to be SCR2 helpful with a further reduction of nitrogen oxides NOx the exhaust stream 303; and a second selective catalytic reduction catalyst SCR2 downstream followed by a separate second grinding catalyst ASC2, wherein the second grinding catalyst ASC2 is arranged to oxidize a residue of additives and / or to assist SCR2 with a further reduction of nitrogen oxides NO in the exhaust stream 303 .

For bade den forsta 331 och andra 332 reduktionskatalysatoranordningen kan dess katalytiska egenskaper valjas baserat pa den miljo den exponeras, eller kommer att exponeras, for. Dessutom kan de katalytiska egenskaperna for den forsta 331 och andra 332 reduktionskatalysatoranordningen anpassas sa att de kan tillatas verka i symbios med varandra. Den forsta 331 och andra 332 reduktionskatalysatoranordningen kan vidare innefatta ett eller flera material vilka tillhandahaller den katalytiska egenskapen. Exempelvis kan overgangsmetaller sasom Vanadin och/eller Volfram utnyttjas, exempelvis i en katalysator innefattande V/V103/1i02. Aven metaller sasom jarn 42 och/eller koppar kan inga i den farsta 331 och/eller andra 332 reduktionskatalysatoranordningen, exempelvis i en Zeolitbaserad katalysator. For both the first 331 and second 332 reduction catalysts, its catalytic properties can be selected based on the environment to which it is, or will be, exposed. In addition, the catalytic properties of the first 331 and second 332 reduction catalyst devices can be adjusted so that they can be allowed to operate in symbiosis with each other. The first 331 and second 332 reduction catalyst devices may further comprise one or more materials which provide the catalytic property. For example, transition metals such as Vanadium and / or Tungsten can be used, for example in a catalyst comprising V / V10 3/10 2 O 2. Even metals such as iron 42 and / or copper can not be present in the first 331 and / or other 332 reduction catalyst device, for example in a zeolite-based catalyst.

Avgasbehandlingssystemet 350 som schematiskt visas i figur 3 kan enligt olika utforingsformer alltsa ha en mangd olika strukturer/konfigurationer, vilka kan sammanfattas enligt foljande stycken, och oldr respektive enhet DOC1, DOC2, SCR', SCR2, (c)DPF, ASC1, ASC2 har de respektive egenskaper som framgar av hela detta dokument. Partikelfiltret 320 med den atminstone delvis katalytiskt oxiderande belaggningen benamns har cDPF. Ett partikelfilter 320, vilket sasom beskrivs ovan kan ha, men inte maste ha, en katalytiskt oxiderande belaggning benamns nedan och i detta dokument (c)DPF. I detta dokument innefattar alltsa benamningen DPF ett partikelfilter som inte är belagt med oxiderande belaggning. Benamningen cDPF innefattar ett partikelfilter som ar atminstone delvis belagt med oxiderande belaggning. benamningen (c)DPF innefattar bade DPF och cDPF, vilket alltsa innebar att partikelfilter benamnt (c)DPF kan utgoras antingen av ett partikelfilter DPF utan oxiderande belaggning eller av ett partikelfilter cDPF med oxiderande belaggning. Den katalytiskt oxiderande belaggningen kan anpassas efter dess egenskaper att dels oxidera kvaveoxid NO och dels oxidera ofullstandigt oxiderade kolfOreningar. Ofullstandigt oxiderade kolforeningar kan exempelvis utgoras av branslerester som skapats genom motorns insprutningssystem. The exhaust gas treatment system 350 shown schematically in Figure 3 can thus, according to different embodiments, have a variety of structures / configurations, which can be summarized according to the following paragraphs, and the respective units DOC1, DOC2, SCR ', SCR2, (c) DPF, ASC1, ASC2 have the respective characteristics that appear throughout this document. The particulate filter 320 with the at least partially catalytic oxidizing coating is designated cDPF. A particulate filter 320, which as described above may have, but must not have, a catalytic oxidizing coating is referred to below and in this document (c) DPF. In this document, therefore, the term DPF includes a particulate filter which is not coated with oxidizing coating. The term cDPF includes a particulate filter that is at least partially coated with oxidizing coating. the name (c) DPF includes both DPF and cDPF, which means that particle filter named (c) DPF can be formed either by a particle filter DPF without oxidizing coating or by a particle filter cDPF with oxidizing coating. The catalytic oxidizing coating can be adapted to its properties of oxidizing nitrogen oxide NO and oxidizing incompletely oxidized carbon compounds. Incompletely oxidized carbon compounds can, for example, be fuel residues created by the engine's injection system.

Enligt en uppfinningsenlig konfiguration har avgasbehandlingssystemet strukturen DOC1-SCR1-cDPF-SCR2. Det viii saga att avgasbehandlingssystemet 350 innefattar en forsta oxidationskatalysator DOC1, nedstroms fOljt av en forsta selektiv katalytisk reduktionskatalysator SCR, nedstroms foljd av ett partikelfilter med en atminstone delvis katalytiskt oxiderande belaggning cDPF, nedstroms foljt av en andra 43 selektiv katalytisk reduktionskatalysator SCR2. For den cyan beskrivna utforingsformen dar aven en andra oxidationskatalysator DOC2 är anordnad mellan SCR ash (c)DPF far systemet strukturen DOC1-SCR1-DOC2-(c)DPF-SCR2. Ett symbiotiskt utnyttjande av bide den farsta selektivt katalytiska reduktionskatalysatorn SCR 1 tillsammans med den andra selektivt katalytiska reduktionskatalysatorn SCR2 avgasbehandlingssystemet 350 kan mojliggora att en andra slipkatalysator ASC2 kan uteldmnas i avgasbehandlingssystemet 3 for vissa tillampningar, exempelvis vid begrdnsade NOx-nivaer vilka ger begrdnsade krav pa omvandlingsgrad. Detta är en fordel exempelvis jdmfort med ovan ndmnda EuroVI-system, i vilket slip-katalysatorn i praktiken är ett krav. DA en SCRkatalysator typiskt är billigare an en ASC-katalysator kan genom denna utforingsform av uppfinningen tillverkningskostnaden minskas genom att uteldmna den andra slip-katalysatorn ASC2 Enligt en uppfinningsenlig konfiguration har avgasbehandlingssystemet strukturen DOC1-SCR1-ASC1-cDPF-SCR2. According to a configuration according to the invention, the exhaust gas treatment system has the structure DOC1-SCR1-cDPF-SCR2. It is said that the exhaust gas treatment system 350 comprises a first oxidation catalyst DOC1, downstream followed by a first selective catalytic reduction catalyst SCR, downstream followed by a particle filter with an at least partially catalytic oxidizing coating cDPF, downstream followed by a second catalyst reductive catalytic catalyst. For the cyan described embodiment, a second oxidation catalyst DOC2 is also arranged between SCR ash (c) DPF and the system has the structure DOC1-SCR1-DOC2- (c) DPF-SCR2. A symbiotic use of both the first selectively catalytic reduction catalyst SCR 1 together with the second selectively catalytic reduction catalyst SCR2 exhaust gas treatment system 350 may enable a second abrasive catalyst ASC2 to be fired in the exhaust gas treatment system 3 for certain applications, e.g. . This is an advantage, for example, compared with the above-mentioned EuroVI system, in which the grinding catalyst is in practice a requirement. Since an SCR catalyst is typically cheaper than an ASC catalyst, this embodiment of the invention can reduce the manufacturing cost by depleting the second grinding catalyst ASC2. According to an inventive configuration, the exhaust gas treatment system has the structure DOC1-SCR1-ASC1-cDPF-SCR2.

Det viii saga att avgasbehandlingssystemet 350 innefattar en farsta oxidationskatalysator DOC1, nedstrams foljt av en farsta selektiv katalytisk reduktionskatalysator SCR, nedstroms foljd av en fOrsta slip-katalysator ASC1, nedstroms fOljd av ett partikelfilter med en atminstone delvis katalytiskt oxiderande beldggning cDPF, nedstroms foljt av en andra selektiv katalytisk reduktionskatalysator SCR2. For den ovan beskrivna utfOringsformen ddr dven en andra oxidationskatalysator DOC2 är anordnad mellan SCR-2 och (c)DPF fir systemet strukturen DOC1- SCR1-DOC2-ASC1-(c)DPF-SCR2. Sisom ndmns ovan majliggOr utnyttjandet av bide den forsta selektivt katalytiska reduktionskatalysatorn SCR 1 och den andra selektivt katalytiska reduktionskatalysatorn SCR2 i avgasbehandlingssystemet 350 att 44 en andra slip-katalysator ASC2kan utelamnas i avgasbehandlingssystemet 350 for vissa tillimpningar, vilket sanker tillverkningskostnaden for fordonet. Utnyttjandet av den forsta slip-katalysatorn ASC1 mojliggor en storre belastning och darmed ett battre utnyttjande av den farsta selektiva katalytiska reduktionskatalysatorn SCR' och mojliggor aven en sankning av starttemperaturen ("light off"- temperaturen) for NOx-reduktionen. It is said that the exhaust gas treatment system 350 comprises a first oxidation catalyst DOC1, downstream followed by a first selective catalytic reduction catalyst SCR, downstream followed by a first slip catalyst ASC1, downstream followed by a particle filter with an at least partially catalytic oxide or DP second selective catalytic reduction catalyst SCR2. For the above-described embodiment, a second oxidation catalyst DOC2 is arranged between SCR-2 and (c) DPF for the system structure DOC1-SCR1-DOC2-ASC1- (c) DPF-SCR2. As mentioned above, the use of both the first selective catalytic reduction catalyst SCR 1 and the second selective catalytic reduction catalyst SCR2 in the exhaust gas treatment system 350 allows a second slip catalyst ASC2 to be omitted in the exhaust gas treatment system 350 for certain applications. The utilization of the first slip catalyst ASC1 allows a greater load and thus a better utilization of the first selective catalytic reduction catalyst SCR 'and also enables a lowering of the starting temperature ("light off" temperature) for the NOx reduction.

Enligt en uppfinningsenlig konfiguration har avgasbehandlingssystemet strukturen DOC1-SCR1-cDPF-SCR2-ASC2. According to a configuration according to the invention, the exhaust gas treatment system has the structure DOC1-SCR1-cDPF-SCR2-ASC2.

Det viii saga att avgasbehandlingssystemet 350 innefattar en forsta oxidationskatalysator DOC1, nedstroms foljt av en forsta selektiv katalytisk reduktionskatalysator SCR, nedstrams foljd av ett partikelfilter med en atminstone delvis katalytiskt oxiderande belaggning cDPF, nedstroms foljt av en andra selektiv katalytisk reduktionskatalysator SCR2, nedstroms foljd av en andra slip-katalysator ASC2. For den ovan beskrivna utforingsformen dar Oven en andra oxidationskatalysator DOC2 är anordnad mellan SCR-2 och (c)DPF fir systemet strukturen DOC-- SCR1- DOC2-(c)DPF-SCR2-ASC2. Detta avgasbehandlingssystem 3 majliggar utslappsnivier far kvaveoxider NOx nara noll, eftersom den andra reduktionskatalysatorn SCR2 kan belastas hirt, exempelvis genom okad dosering av det andra tillsatsmedlet, di den foljs nedstroms av den andra slip- katalysatorn ASC2. It is said that the exhaust gas treatment system 350 comprises a first oxidation catalyst DOC1, downstream followed by a first selective catalytic reduction catalyst SCR, downstream followed by a particulate filter with an at least partially catalytic oxidizing coating cDPF, downstream followed by a second selective catalytic catalyst second slip catalyst ASC2. For the embodiment described above, a second oxidation catalyst DOC2 is arranged between SCR-2 and (c) DPF for the system structure DOC-- SCR1- DOC2- (c) DPF-SCR2-ASC2. This exhaust gas treatment system 3 emits levels of nitrogen oxides NOx close to zero, since the second reduction catalyst SCR2 can be loaded rapidly, for example by increasing the dosage of the second additive, which is followed downstream by the second grinding catalyst ASC2.

Enligt en uppfinningsenlig konfiguration har avgasbehandlingssystemet strukturen DOC1-SCR1-ASC1-cDPF-SCR2- ASC2. Det viii saga att avgasbehandlingssystemet 350 innefattar en forsta oxidationskatalysator DOC1, nedstroms foljt av en forsta selektiv katalytisk reduktionskatalysator SCR', nedstroms foljd av en forsta slip-katalysator ASC1, nedstroms foljd av ett partikelfilter med en atminstone delvis katalytiskt oxiderande belaggning cDPF, nedstrams foljt av en andra selektiv katalytisk reduktionskatalysator SCR2, nedstroms faljd av en andra slip-katalysator ASC2. For den ovan beskrivna utforingsformen dar Oven en andra oxidationskatalysator DOC2 är anordnad mellan SCR- och (c)DPF fir systemet strukturen DOC1- SCRi-ASC1-DGC2-(c)DPF-SCR2-ASC2. Detta avgasbehandlingssystem 350 majliggor utslappsnivaer far kvaveoxider NO nara nail, eftersom den andra reduktionskatalysatorn SCR2 kan drivas hart, exempelvis genom Okad dosering av det andra tillsatsmedlet, di den foljs nedstroms av den andra slip-katalysatorn ASC2. According to a configuration according to the invention, the exhaust gas treatment system has the structure DOC1-SCR1-ASC1-cDPF-SCR2-ASC2. It is said that the exhaust gas treatment system 350 comprises a first oxidation catalyst DOC1, downstream followed by a first selective catalytic reduction catalyst SCR ', downstream followed by a first slip catalyst ASC1, downstream followed by a particulate filter with an at least partially catalytic oxidizing coating. a second selective catalytic reduction catalyst SCR2, downstream of a second slip catalyst ASC2. For the embodiment described above, a second oxidation catalyst DOC2 is arranged between SCR and (c) DPF for the system structure DOC1-SCR1-ASC1-DGC2- (c) DPF-SCR2-ASC2. This exhaust gas treatment system 350 emits emission levels of nitrogen oxides NO near the nail, since the second reduction catalyst SCR2 can be driven hard, for example by increased dosing of the second additive, which is followed downstream of the second grinding catalyst ASC2.

Utnyttjandet av den fersta slip-katalysatorn ASC1 majligger Oven en sankning av starttemperaturen ("light off"- temperaturen) for NOx-reduktionen och kan Oven ge en storre belastning och clamed ett battre utnyttjande av den forsta selektiva katalytiska reduktionskatalysatorn SCR'. The utilization of the first slip catalyst ASC1 allows Oven to lower the starting temperature ("light off" temperature) for the NOx reduction and can give Oven a greater load and clamed a better utilization of the first selective catalytic reduction catalyst SCR '.

Enligt en uppfinningsenlig konfiguration har avgasbehandlingssystemet strukturen DOC1-ASC1-cDPF-SCR2. Det viii saga att avgasbehandlingssystemet 350 innefattar en forsta oxidationskatalysator DGC1, nedstroms faljt av en forsta slip-katalysator ASC1, nedstroms foljd av ett partikelfilter med en Atminstone delvis katalytiskt oxiderande belaggning cDPF, nedstroms foljt av en andra selektiv katalytisk reduktionskatalysator SCR2. Far den ovan beskrivna utforingsformen dar Oven en andra oxidationskatalysator DOC2 är anordnad mellan SCR- och (c)DPF fir systemet strukturen DOC1- Asci-DOC2-(c)DPF-sCR2. Aven har kan, pa grund av utnyttjandet av bide den farsta slip-katalysatorn ASC1 och den andra selektivt katalytiska reduktionskatalysatorn SCR2, den andra slip-katalysatorn ASC2 utelamnas i avgasbehandlingssystemet 3 for vissa tillampningar. Utnyttjandet av den forsta slip- katalysatorn ASC1 mojligger en sankning av starttemperaturen ("light off"-temperaturen) for NOx-reduktionen. 46 Enligt en uppfinningsenlig konfiguration har avgasbehandlingssystemet strukturen DOC2-ASC2-cDPF-SCR2-ASC2. Det viii saga att avgasbehandlingssystemet 350 innefattar en forsta oxidationskatalysator DOC2, nedstroms foljt av en forsta slip-katalysator ASC2, nedstrams foljd av ett partikelfilter med en atminstone derv-is katalytiskt oxiderande belaggning cDPF, nedstroms faljt av en andra selektiv katalytisk reduktionskatalysator SCR2, nedstroms foljd av en andra slipkatalysator ASC2. For den ovan beskrivna utferingsformen (Jar Oven en andra oxidationskatalysator DOC2 Or anordnad mellan SCR' och (c)DPF fir systemet strukturen DOC2-ASC2-D°C2-(c)DPFSCR2-ASC2. Detta avgasbehandlingssystem 350 mojliggor utslappsnivaer for kvaveoxider NO nara nail, eftersom den andra reduktionskatalysatorn SCR2 kan belastas hart, det vill saga med relativt hog dosering av det andra tillsatsmedlet, di den foljs nedstroms av den andra slip-katalysatorn ASC2. Utnyttjandet av den fersta slip-katalysatorn ASC2 mojligger en sankning av starttemperaturen ("light off"-temperaturen) for NOx-reduktionen. According to a configuration according to the invention, the exhaust gas treatment system has the structure DOC1-ASC1-cDPF-SCR2. It is said that the exhaust gas treatment system 350 comprises a first oxidation catalyst DGC1, downstream followed by a first slip catalyst ASC1, downstream followed by a particle filter with an at least partially catalytic oxidizing coating cDPF, downstream followed by a second selective catalytic SC reduction catalyst. In the embodiment described above, a second oxidation catalyst DOC2 is arranged between the SCR and (c) DPF for the system structure DOC1-Asci-DOC2- (c) DPF-sCR2. Also, due to the utilization of both the first grinding catalyst ASC1 and the second selectively catalytic reduction catalyst SCR2, the second grinding catalyst ASC2 can be omitted in the exhaust gas treatment system 3 for certain applications. The utilization of the first grinding catalyst ASC1 makes it possible to lower the starting temperature ("light off" temperature) for the NOx reduction. According to a configuration according to the invention, the exhaust gas treatment system has the structure DOC2-ASC2-cDPF-SCR2-ASC2. It is said that the exhaust gas treatment system 350 comprises a first oxidation catalyst DOC2, downstream followed by a first slip catalyst ASC2, downstream followed by a particle filter with at least one catalytic oxidizing coating cDPF, downstream folded by a second selective catalyst of a second grinding catalyst ASC2. For the above-described embodiment (Jar Oven a second oxidation catalyst DOC2 Or arranged between SCR 'and (c) DPF for the system structure DOC2-ASC2-D ° C2- (c) DPFSCR2-ASC2. This exhaust gas treatment system 350 allows emission levels for nitrogen oxides NO near nail , since the second reduction catalyst SCR2 can be loaded hard, i.e. with a relatively high dosage of the second additive, in which it is followed downstream of the second grinding catalyst ASC2. The use of the first grinding catalyst ASC2 allows a lowering of the starting temperature ("light"). off "temperature) for the NOx reduction.

I de ovan uppraknade konfigurationerna enligt utfOringsformerna kan, sasom beskrivs ovan, den fOrsta reduktionskatalysatorn SCR och den forsta slip-katalysatorn ASC2 utgaras av en integrerad enhet innefattande bide SCR och ASC2, eller kan utgoras av separata enheter for SCR2 och ASC2. In the above-listed configurations according to the embodiments, as described above, the first reduction catalyst SCR and the first grinding catalyst ASC2 may be composed of an integrated unit comprising both SCR and ASC2, or may consist of separate units for SCR2 and ASC2.

Pa motsvarande satt kan den andra reduktionskatalysatorn SCR2 och den andra slip-katalysatorn ASC2 antingen utgoras av en integrerad enhet innefattande bide SCR2 och ASC2, eller kan utgoras av separata enheter for SCR2 och ASC2. Similarly, the second reduction catalyst SCR2 and the second grinding catalyst ASC2 may either be an integrated unit comprising both SCR2 and ASC2, or may be separate units for SCR2 and ASC2.

Enligt en utforingsform av foreliggande uppfinning innefattar avgasbehandlingssystemet 350 ett system 370 for tillforsel av tillsatsmedel, vilket innefattar atminstone en pump 373 47 anordnad att farse den forsta 371 och andra 372 doseringsanordningen med tillsatsmedel, det viii saga med exempelvis ammoniak eller urea. Systemet 370 tillhandahiller enligt en utforingsform itminstone en av den forsta 371 och andra 372 doseringsanordningen tillsatsmedel i flytande form. According to an embodiment of the present invention, the exhaust gas treatment system 350 comprises a system 370 for supplying additives, which comprises at least one pump 373 47 arranged to fill the first 371 and second 372 dosing devices with additives, the viii saga with for example ammonia or urea. The system 370 according to one embodiment provides at least one of the first 371 and second 372 dosing devices additives in liquid form.

Tillsatsmedel i flytande form kan tankas pi mdnga pifyllnadsstationer/mackar ddr drivmedel tillhandahills, varfor pafyllnaden av tillsatsmedlet, och ddrmed ett optimerat utnyttjande av de tvi reduktionsstegen i avgasbehandlingssystemet kan sdkerstdllas, ddr det optimerade utnyttjandet exempelvis kan innebdra att bide den fbrsta och den andra doseringsanordningen utnyttjas for dosering vid olika typer av drift. Det optimerade utnyttjandet är exempelvis di inte begrdnsat till att den forsta doseringsanordningen endast utnyttjas vid kallstarter. Det finns idag alltsd redan ett existerande distributionsndt for flytande tillsatsmedel, vilket sdkerstdller tillgingen till tillsatsmedel ddr fordonet framfors. Additives in liquid form can be refueled at many filling stations / gas stations where fuel is provided, so that the filling of the additive, and thus an optimized utilization of the two reduction steps in the exhaust gas treatment system can be ensured, where the optimized utilization can mean, for example, for dosing in different types of operation. The optimized utilization, for example, is not limited to the first dosing device being used only for cold starts. Today, therefore, there is already an existing distribution channel for liquid additives, which ensures the addition of additives when the vehicle is driven.

Dessutom behover fordon endast kompletteras med en ytterligare doseringsanordning, den forsta 371 doseringsanordningen, om endast flytande tillsatsmedel är tillgdngligt for utnyttjande. Hdrigenom minimeras tillskottet i komplexitet genom utnyttjande av endast flytande tillsatsmedel. Om till exempel Oven gasformigt tillsatsmedel utnyttjas, forutom det flytande tillsatsmedlet, behover avgasbehandlingssystemet utrustas med ett komplett system for tillforsel av det gasformiga tillsatsmedlet. Dessutom behover ett distributionsndt och/eller logistik for tillhandahillande av det gasformiga tillsatsmedlet byggas upp. In addition, vehicles only need to be supplemented with an additional dosing device, the first 371 dosing device, if only liquid additives are available for use. This minimizes the addition in complexity by using only liquid additives. If, for example, the gaseous additive is used in addition to the liquid additive, the exhaust gas treatment system needs to be equipped with a complete system for supplying the gaseous additive. In addition, a distribution network and / or logistics for the supply of the gaseous additive need to be built up.

Det totala avgasbehandlingssystemets sekunddra utsldpp av exempelvis ammoniak NH3 och/eller kvdvedioxider NO2 vid vanlig drift av forbrdnningsmotorn, det vill saga inte bara vid 48 kallstarter, kan genom utnyttjande av en utfaringsform av foreliggande uppfinning minskas genom att tillsatsmedlet doseras vid bade den farsta 371 och andra 372 doseringsanordningen. Detta forutsatter dock vid utnyttjandet av utfaringsformen att en vasentligen kontinuerlig dosering är mojlig att tillhandahalla. Att utnyttja tillsatsmedel i flytande form gor att tillsatsmedlet racker utan avbrott far service, eftersom tillsatsmedel i vatskeform finns att kopa pa vanliga mackar. Harigenom kan vasentligen kontinuerlig dosering med bade den forsta 371 och andra 372 doseringsanordningen geras under hela normala serviceintervall for ett fordon. The secondary emission treatment system's secondary emissions of, for example, ammonia NH3 and / or carbon dioxide NO2 during normal operation of the internal combustion engine, i.e. not only at 48 cold starts, can be reduced by using an embodiment of the present invention by dosing the additive at both the first 371 and other 372 dosing device. However, when utilizing the embodiment, this presupposes that a substantially continuous dosage is possible to provide. Utilizing additives in liquid form means that the additive racks are serviced without interruption, as additives in liquid form can be bought at regular gas stations. As a result, substantially continuous dosing with both the first 371 and second 372 dosing devices can be done throughout normal service intervals of a vehicle.

Mojligheten till kontinuerlig dosering med bade den forsta 371 och andra 372 doseringsanordningen gor att avgasbehandlingssystemet kan utnyttjas till dess fulla potential. Alltsa kan systemet styras sa att robusta och mycket hoga totala grader av NOx-omvandling kan erhallas over tid, utan att systemet behover ta hojd for att tillsatsmedlet kan ta slut. Den sakerstallda tillgangen till tillsatsmedel gor Oven att en tillforlitlig styrning av NO2-halten NO2/NOx alltid kan utfaras, det vill saga under hela service intervallen. The possibility of continuous dosing with both the first 371 and second 372 dosing devices means that the exhaust gas treatment system can be utilized to its full potential. Thus, the system can be controlled so that robust and very high total degrees of NOx conversion can be obtained over time, without the system having to take height for the additive to run out. The factual availability of additives also means that a reliable control of the NO2 content NO2 / NOx can always be carried out, that is to say during the entire service intervals.

Att utnyttja tillsatsmedel i flytande form for dosering med bade den forsta 371 och andra 372 doseringsanordningen gor att komplexiteten for systemet 370 halls lag, eftersom en gemensam tank kan utnyttjas for lagring av tillsatsmedlet. Tillsatsmedel i flytande form kan tankas pa manga pafyllnadsstationer/mackar dar drivmedel tillhandahalls, varfor pafyllnaden av tillsatsmedlet, och darmed ett optimerat utnyttjande av de tva reduktionsstegen i avgasbehandlingssystemet kan sakerstallas. 49 Enligt en annan utforingsform tillhandahaller systemet 370 atminstone en av den forsta 371 och andra 372 doseringsanordningen tillsatsmedel i gasform. Enligt en utforingsform kan detta tillsatsmedel utgoras av vatgas H2. Utilizing additives in liquid form for dosing with both the first 371 and second 372 dosing devices allows the complexity of the system 370 to be maintained, since a common tank can be used for storing the additive. Additives in liquid form can be refueled at many filling stations / gas stations where fuel is provided, so that the filling of the additive, and thus an optimized utilization of the two reduction steps in the exhaust gas treatment system, can be ensured. According to another embodiment, the system 370 provides at least one of the first 371 and second 372 dosing devices in gaseous additives. According to one embodiment, this additive may be hydrogen gas H2.

Ett exempel pa ett sadant system 370 for tillforsel av tillsatsmedel visas schematiskt i figur 3, dar systemet innefattar den forsta doseringsanordningen 371 och den andra doseringsanordningen 372, vilka Or anordnade uppstroms den forsta reduktionskatalysatorn 331 respektive uppstrOms den andra reduktionskatalysatorn 332. De forsta och andra doseringsanordningarna 371, 372, vilka ofta utgOrs av dosermunstycken som doserar tillsatsmedel till, och blandar detta tillsatsmedel med, avgasstrommen 303, tillhandahalls tillsatsmedel av den atminstone en pumpen 373 via ledningar 375 for tillsatsmedel. Den atminstone en pumpen 373 erhaller tillsatsmedlet fran en eller flera tankar 376 for tillsatsmedel via en eller flera ledningar 377 mellan tanken/tankarna 376 och den atminstone en pumpen 373. Det ska har inses att tillsatsmedlet kan vara i flytande form och/eller i gasform, sasom beskrivs ovan. Da tillsatsmedlet Or I flytande form är pumpen 373 en vatskepump och de en eller flera tankarna 376 Or vatskebehallare. Dd tillsatsmedlet Or i gasform är pumpen 373 en gaspump och de en eller flera tankarna 376 är gasbehallare. Om bade gasformigt och flytande tillsatsmedel utnyttjas anordnas flera tankar och pumpar, dar atminstone en tank och pump Or inrattad for tillhandahallande av flytande tillsatsmedel och atminstone en tank och pump Or inrattade for tillhandahallande av gasformigt tillsatsmedel. An example of such an additive supply system 370 is shown schematically in Figure 3, where the system comprises the first metering device 371 and the second metering device 372, which are arranged upstream of the first reduction catalyst 331 and upstream of the second reduction catalyst 332. The first and second metering devices 371, 372, which are often dispensing nozzles that dispense additives into, and mix this additive with, the exhaust stream 303, additives are provided by the at least one pump 373 via additive lines 375. The at least one pump 373 receives the additive from one or more additive tanks 376 via one or more lines 377 between the tank (s) 376 and the at least one pump 373. It will be appreciated that the additive may be in liquid and / or gaseous form, as described above. Since the additive Or in liquid form, the pump 373 is a liquid pump and the one or more tanks 376 Or are liquid containers. Dd the additive Or in gaseous form, the pump 373 is a gas pump and the one or more tanks 376 are gas containers. If both gaseous and liquid additives are used, several tanks and pumps are provided, at least one tank and pump Or being provided for supplying liquid additives and at least one tank and pump Or being provided for providing gaseous additives.

Enligt en utforingsform av uppfinningen innefattar den atminstone en pumpen 373 en gemensam pump som matar bade den forsta 371 och andra 372 doseringsanordningen med det fOrsta respektive andra tillsatsmedlet. Enligt en annan utforingsform av uppfinningen innefattar den Atminstone en pumpen en farsta och en andra pump, vilka matar den forsta 371 respektive den andra 372 doseringsanordningen med det forsta respektive andra tillsatsmedlet. Tillsatsmedelssystemets 370 specifika funktion finns \Jai_ beskriven i den tidigare kanda tekniken, och det exakta forfarandet vid insprutning av tillsatsmedel beskrivs darfor inte narmare har. Allmant galler dock att temperaturen vid insprutningspunkt/SCR-katalysator bor vara Over en undre gransvardestemperatur for att undvika utfallningar samt bildande av joke onskvarda biprodukter, sasom ammoniumnitrat NH4NO3. Ett exempel pa ett varde for en sAdan undre gransvardestemperatur kan vara cirka 200 °C. Enligt en utforingsform av uppfinningen innefattar systemet 370 far tillforsel av tillsatsmedel en doseringsstyrenhet 374 anordnad att styra den Atminstone en pumpen 373, sa att tillsatsmedel tillfors avgasstrommen. Doseringsstyrenheten 374 innefattar enligt en utferingsform en forsta pumpstyrningssenhet 378 anordnad att styra den Atminstone en pumpen 373, pA sadant satt att en fersta dosering av det forsta tillsatsmedlet tillfors avgasstrommen 303 via den forsta doseringsanordningen 371. Doseringsstyrenheten 374 innefattar aven en andra pumpstyrningsenhet 379 anordnad att styra den Atminstone en pumpen 373 IDA sAdant satt att en andra dosering av det andra tillsatsmedlet tillfors avgasstrommen 303 via den andra doseringsanordningen 372. According to an embodiment of the invention, the at least one pump 373 comprises a common pump which feeds both the first 371 and the second 372 dosing device with the first and second additives, respectively. According to another embodiment of the invention, the At least one pump comprises a first and a second pump, which feed the first 371 and the second 372 dosing device, respectively, with the first and second additive, respectively. The specific function of the additive system 370 is described in the prior art, and the exact procedure for injecting additives is therefore not further described. In general, however, the temperature at the injection point / SCR catalyst should be above a lower limit value temperature to avoid precipitation and the formation of joke by-product by-products, such as ammonium nitrate NH4NO3. An example of a value for such a lower limit value temperature may be about 200 ° C. According to an embodiment of the invention, the system 370 for supply of additives comprises a dosing control unit 374 arranged to control it At least one pump 373, so that additives are supplied to the exhaust gas stream. According to one embodiment, the dosing control unit 374 comprises a first pump control unit 378 arranged to control the At least one pump 373, in such a way that a first dosing of the first additive is supplied to the exhaust gas stream 303 via the first dosing device 371. At least one pump 373 IDA sAdant provided that a second dose of the second additive is supplied to the exhaust stream 303 via the second metering device 372.

De forsta och andra tillsatsmedlen utgors vanligen av samma typ av tillsatsmedel, exempelvis urea. Dock kan, enligt en utforingsform av foreliggande uppfinning, det forsta tillsatsmedlet och det andra tillsatsmedlet vara av olika typer, exempelvis urea och ammoniak, vilket gar att doseringen till var och en av de forsta 331 och andra 332 reduktionskatalysatoranordningarna, och darmed Oven funktionen 51 for var och en av de fOrsta 331 och andra 332 reduktionskatalysatoranordningarna kan optimeras Oven med avseende pa typ av tillsatsmedel. Om olika typer av tillsatsmedel utnyttjas innefattar tanken 376 flera deltankar, vilka innehaller de olika respektive typerna av tillsatsmedel. The first and second additives usually consist of the same type of additive, for example urea. However, according to an embodiment of the present invention, the first additive and the second additive may be of different types, for example urea and ammonia, giving the dosage to each of the first 331 and second 332 reduction catalyst devices, and thus the function 51 for each of the first 331 and second 332 reduction catalyst devices can be optimized above with respect to the type of additive. If different types of additives are used, the tank 376 comprises several sub-tanks, which contain the different respective types of additives.

En eller flera pumpar 373 kan utnyttjas for att tillhandahalla de olika typerna av tillsatsmedel till den fOrsta doseringsanordningen 371 och den andra doseringsanordningen 372. Sasom ndmns ovan är de en eller flera tankarna och de en eller flera pumparna anpassade efter tillsatsmedlets tillstand, det viii saga efter am tillsatsmedlet Or gasformigt eller flytande. One or more pumps 373 may be used to provide the various types of additives to the first metering device 371 and the second metering device 372. As mentioned above, the one or more tanks and the one or more pumps are adapted to the condition of the additive, am the additive Or gaseous or liquid.

De en eller flera pumparna 373 styrs alltsa av en doseringsstyrenhet 374, vilken genererar styrsignaler for styrning av tillforsel av tillsatsmedel sa att Onskad mangd insprutas i avgasstrommen 303 med hjalp av den forsta 371 respektive andra 372 doseringsanordningen uppstroms den fOrsta 331 respektive andra 332 reduktionskatalysatoranordningen. Mer i detalj Or den fOrsta pumpstyrningsenhet 378 anordnad att styra antingen en gemensam pump, eller en for den fOrsta doseringsanordningen 371 dedikerad pump, varigenom den fOrsta doseringen styrs att tillforas avgasstrommen 303 via den fOrsta doseringsanordningen 371. Den andra pumpstyrningsenheten 379 är anordnad att styra antingen en gemensam pump, eller en far den andra doseringsanordningen 372 dedikerad pump, varigenom den andra doseringen styrs att tillfaras avgasstrammen 303 via den andra doseringsanordningen 372. The one or more pumps 373 are thus controlled by a metering control unit 374, which generates control signals for controlling the supply of additives so that the desired amount is injected into the exhaust stream 303 by means of the first 371 and second 372 metering devices upstream of the first 331 and second 332 reduction catalyst, respectively. In more detail, the first pump control unit 378 is arranged to control either a common pump, or a pump dedicated to the first dosing device 371, whereby the first dosing is controlled to be supplied to the exhaust stream 303 via the first dosing device 371. The second pump control unit 379 is arranged to control a common pump, or a dedicated pump for the second metering device 372, whereby the second metering is controlled to be supplied to the exhaust stream 303 via the second metering device 372.

Enligt en aspekt av foreliggande uppfinning tillhandahalls ett forfarande for behandling av en avgasstrom 303 som avges av en forbranningsmotor 301. Detta forfarande beskrivs har med hjalp 52 av figur 4, i vilken farfarandestegen foljer avgasstrOmmens flode genom avgasbehandlingssystemet 350. According to one aspect of the present invention, there is provided a method of treating an exhaust stream 303 emitted by an internal combustion engine 301. This method is described with the aid of 52 of Figure 4, in which the process steps follow the flow of the exhaust stream through the exhaust treatment system 350.

I ett forsta steg 401 av forfarandet utfors en oxidering av kvaveforeningar, kolforeningar och/eller kolvateforeningar i avgasstrommen 303. Denna oxidering utfors av en forsta oxidationskatalysator 310 anordnad sa att avgasstrommen 303 passerar igenom den. In a first step 401 of the process, an oxidation of nitrogen compounds, carbon compounds and / or hydrocarbon compounds is performed in the exhaust stream 303. This oxidation is performed by a first oxidation catalyst 310 arranged so that the exhaust stream 303 passes through it.

I ett andra steg 402 av forfarandet tillfors avgasstrOmmen ett forsta tillsatsmedel genom utnyttjande av en forsta doseringsanordning 371 anordnad nedstrams namnda forsta oxidationskatalysator 310. I ett tredje steg 403 av forfarandet utfors en reduktion av kvaveoxider NOx avgasstrommen genom utnyttjande av detta forsta tillsatsmedel I en forsta reduktionskatalysatoranordning 331, vilken kan innefatta en forsta selektiv katalytisk reduktionskatalysator SCR' och/eller en forsta slip-katalysator ASC1, anordnad nedstroms den forsta doseringsanordningen 371. Den forsta slip-katalysatorn ASC1 oxiderar har en rest av tillsatsmedel, dar resten kan besta exempelvis av urea, ammoniak NH3 eller isocyansyra HNCO, och/eller ger en ytterligare reduktion av kvaveoxider NO i avgasstrommen 303. Det skall noteras att reduktionen av kvaveoxider NO medelst den forsta reduktionskatalysatoranordningen 331 i detta dokument kan innefatta partiell oxidation sa lange som den totala reaktionen utgor en reduktion av kvaveoxider NOR. In a second step 402 of the process, the exhaust gas stream is fed to a first additive by utilizing a first metering device 371 disposed downstream of said first oxidation catalyst 310. In a third step 403 of the process, a reduction of nitrogen oxides NOx is carried out to the exhaust stream by using this first additive reducing agent. 331, which may comprise a first selective catalytic reduction catalyst SCR 'and / or a first grinding catalyst ASC1, arranged downstream of the first dosing device 371. The first grinding catalyst ASC1 oxidizes has a residue of additives, the remainder may consist of, for example, urea, ammonia NH3 or isocyanic acid HNCO, and / or gives a further reduction of nitrogen oxides NO in the exhaust stream 303. It should be noted that the reduction of nitrogen oxides NO by the first reduction catalyst device 331 in this document may include partial oxidation as long as the total reaction constitutes a reduction. n of nitrogen oxides NOR.

I ett fjarde steg 404 av forfarandet filtreras avgasstrOmmen, varvid sotpartiklar fangas upp av ett partikelfilter 320, vilket enligt en utforingsform atminstone delvis kan innefatta en katalytiskt oxiderande belaggning. Dessutom oxideras sotpartiklar och en eller flera ofullstandigt oxiderade kvave- och/eller kolforeningar. 53 I ett femte steg 405 av farfarandet tillfars ett andra tillsatsmedel avgasstrommen 303 genom utnyttjande av en andra doseringsanordning 372. I ett sjatte steg 406 av farfarandet utfbrs en reduktion av kvaveoxiderna NO i avgasstrommen 303 genom utnyttjande av atminstone det andra tillsatsmedlet i en andra reduktionskatalysatoranordning 332, vilken kan innefatta en andra selektiv katalytisk reduktionskatalysator SCR2 och i vissa konfigurationer en andra slip-katalysator ASC2, anordnad nedstrems den andra doseringsanordningen 371. Den andra slip- katalysatorn oxiderar har ett bverskott av ammoniak och/eller ger en ytterligare reduktion av kvaveoxider NO i avgasstremmen 303. Det skall noteras att reduktionen av kvaveoxider NO medelst den andra reduktionskatalysatoranordningen 332 i detta dokument kan innefatta partiell oxidation sd lange som den totala reaktionen utger en reduktion av kvaveoxider NOR. In a fourth step 404 of the process, the exhaust gas stream is filtered, whereby soot particles are captured by a particle filter 320, which according to one embodiment may at least partially comprise a catalytic oxidizing coating. In addition, soot particles and one or more incompletely oxidized nitrogen and / or carbon compounds are oxidized. In a fifth step 405 of the process, a second additive is fed to the exhaust stream 303 using a second metering device 372. In a sixth step 406 of the process, a reduction of the nitrogen oxides NO in the exhaust stream 303 is performed by using at least the second additive in a second reducing catalyst 33 , which may comprise a second selective catalytic reduction catalyst SCR2 and in some configurations a second grinding catalyst ASC2, arranged below the second dosing device 371. The second grinding catalyst oxidizes has an excess of ammonia and / or gives a further reduction of nitrogen oxides NO in the exhaust gas stream 303. It should be noted that the reduction of nitrogen oxides NO by the second reduction catalyst device 332 in this document may include partial oxidation sd lange as the total reaction constitutes a reduction of nitrogen oxides NOR.

Det kan konstateras att en fbrsta temperatur Ti som den fbrsta reduktionskatalysatoranordningen 331 exponeras for och en andra temperatur 12 som den andra reduktionskatalysatoranordningen 332 exponeras for har stor betydelse for avgasbehandlingssystemets 350 funktion. Dock Or det svart att reglera dessa temperaturer T1, T2, eftersom de till stor del beror av hur fbraren framfbr fordonet, det viii saga att de farsta Ti och andra T2 temperaturerna beror av den aktuella driften av fordonet och av inmatning via exempelvis en gaspedal i fordonet. It can be seen that a first temperature Ti to which the first reduction catalyst device 331 is exposed and a second temperature 12 to which the second reduction catalyst device 332 is exposed are of great importance to the operation of the exhaust gas treatment system 350. However, it is difficult to regulate these temperatures T1, T2, since they largely depend on how the driver drives the vehicle, it can be said that the first T1 and other T2 temperatures depend on the actual operation of the vehicle and on input via, for example, an accelerator pedal in the vehicle.

Forfarandet for avgasbehandling och sjalva avgasbehandlingssystemet 350 blir avsevart effektivare an ett traditionellt system (sasom det visat i figur 2) genom att den forsta temperaturen Ti fbr den forsta reduktionskatalysatoranordningen 331, vid exempelvis startfbrlopp, tidigare nar hog-re varden for den fbrsta temperaturen T1, och darigenom hog-re effektivitet vid 54 reduktionen av kvaveoxider NO genom forfarandet enligt foreliggande uppfinning. Antsa erhalls hr en effektivare reduktion av kvaveoxider NOR, exempelvis yid kallstarter och vid padrag fran laga avgastemperaturer, vilket ger mindre okning av branslefarbrukning yid saclana karfall. Med andra ord utnyttjar foreliggande uppfinning de svarstyrda forsta Ti och andra 12 temperaturerna till sin fardel pa sa satt att de bidrar till att Oka den sammanlagda effektiviteten for avgasreningssystemet. The exhaust gas treatment process and the exhaust gas treatment system 350 itself are considerably more efficient than a traditional system (as shown in Figure 2) in that the first temperature Ti before the first reduction catalyst device 331, for example at start-up cycle, previously reaches the value of the first temperature T1. and thereby higher efficiency in the reduction of nitrogen oxides NO by the process of the present invention. Assume that a more effective reduction of nitrogen oxides NOR is obtained here, for example in cold starts and at paddles from low exhaust gas temperatures, which results in less increase in fuel consumption in saclana vessels. In other words, the present invention utilizes the response-controlled first Ti and other 12 temperatures to its advantage in such a way that they contribute to increasing the overall efficiency of the exhaust gas purification system.

De for avgasbehandlingssystemet 350 ovan namnda fordelarna erhalls aven for forfarandet enligt foreliggande uppfinning. The above-mentioned advantages of the exhaust gas treatment system 350 are also obtained for the process of the present invention.

Genom att tva oxiderande steg utnyttjas i avgasbehandlingssystemet enligt foreliggande uppfinning, det vill saga i det forsta forfarandesteget 401, i vilket oxidering av kvaveforeningar, kolforeningar och/eller kolvateforeningar utfors medelst den forsta oxidationskatalysatorn 310, och i det fjarde forfarandesteget, I vilket oxidationen av en eller flera av kvaveoxid NO och ofullstandigt oxiderade kolforeningar utfors medelst partikelfiltret 320 och/eller en andra oxidationskatalysator DOC2, kan en okad andel av den totala NOR-omvandlingen fas att ske via snabb SCR, vet vill saga medelst kvavemonoxid NO och kvavedioxid NO2. Nar reduktionen till storre andel sker via reaktionsvagar over bade kvavemonoxid NO och kvavedioxid NO2 kan det totala anspraket pa katalysatorvolym minskas samtidigt som den transienta responsen forbattras for NOR-reduktionen. By utilizing two oxidizing steps in the exhaust gas treatment system of the present invention, i.e. in the first process step 401, in which oxidation of nitrogen compounds, carbon compounds and / or hydrocarbon compounds is carried out by the first oxidation catalyst 310, and in the fourth process step, in which the oxidation of a or more of nitrous oxide NO and incompletely oxidized carbon compounds are carried out by means of the particulate filter 320 and / or a second oxidation catalyst DOC2, an increased proportion of the total NOR conversion phase can take place via rapid SCR, i.e. nitrous oxide NO and nitrogen dioxide NO2. When the reduction to a greater extent takes place via reaction waves over both nitrogen monoxide NO and nitrogen dioxide NO2, the total claim on catalyst volume can be reduced at the same time as the transient response is improved for the NOR reduction.

Dessutom kan den uppstroms forsta reduktionskatalysatoranordningen 331 monterade forsta oxidationskatalysatorn 310 aven utnyttjas for att skapa varme i nedstroms monterade komponenter, vilken enligt en utforingsform kan utnyttjas for en robust initiering av 5 regenerering av partikelfiltret 320 i avgasbehandlingssystemet 350 och/eller kan utnyttjas for optimering av NO-reduktionen i avgasbehandlingssystemet 350. In addition, the first oxidation catalyst 310 mounted upstream of the upstream first reduction catalyst device 331 can also be used to create heat in downstream mounted components, which according to one embodiment can be used for a robust initiation of particle filter regeneration 320 in the exhaust gas treatment system 350 and / or can be used to optimize NO the reduction in the exhaust gas treatment system 350.

Enligt en utforingsform av forfarandet enligt foreliggande uppfinning styrs reduktionen medelst den forsta reduktionskatalysatoranordningen 331 till att ske mom ett reduktionstemperaturintervall 'red, vilket atminstone delvis skiljer sig fran ett oxidationstemperaturintervall Lox mom vilket en signifikant sotoxidation medelst partikelfiltret 3 sker, 'redT„ varigenom reduktionen av kvaveoxider NO i den forsta reduktionskatalysatoranordningen inte signifikant konkurrerar med den kvavedioxidbaserade sotoxidationen i partikelfiltret cDPF eftersom de är aktiva mom atminstone delvis olika temperaturintervall 'redTo, Enligt en utforingsform av forfarande enligt foreliggande uppfinning okas tillforseln av tillsatsmedel till den forsta doseringsanordningen 371 och/eller den andra doseringsanordningen 372 till en niva av tillfort tillsatsmedel vid vilken rester/utfallningar/kristallisation kan uppsta. Denna niva kan exempelvis bestammas genom jamforelse med ett forutbestamt gransvarde for tillforseln. Utnyttjande av denna utforingsform kan alltsa resultera i att rester/utfallningar/kristaller av tillsatsmedel skapas. According to one embodiment of the process of the present invention, the reduction is controlled by means of the first reduction catalyst device 331 to occur at a reduction temperature range, which is at least partially different from an oxidation temperature range of Lox, which a significant sotoxidation by the particle filter 3 occurs. NO in the first reduction catalyst device does not significantly compete with the nitrogen dioxide-based sotoxidation in the particle filter cDPF because they are active at least in part different temperature ranges' redTo. According to one embodiment of the process of the present invention, the supply of additives to the first dosing device 371 and / or 372 to a level of added additive at which residues / precipitates / crystallization may occur. This level can be determined, for example, by comparison with a predetermined spruce value for the supply. Utilization of this embodiment can thus result in residues / precipitates / crystals of additives being created.

Enligt en utforingsform av forfarandet enligt fOreliggande uppfinning minskas tillforseln av tillsatsmedel till den forsta doseringsanordningen 371 och/eller till den andra doseringsanordningen 372 da utfallningar/rester av tillsatsmedlet har bildats, varigenom dessa utfallningar kan varmas bort. Minskningen kan har innebara att tillfOrseln helt avbryts. Harigenom kan exempelvis en storre dosering i den forsta doseringspositionen for den forsta 56 reduktionskatalysatoranordningen tillatas, eftersom eventuella utfallningar/rester naturligt kan varmas bort samtidigt som emissionskraven uppfylls av den andra reduktionskatalysatoranordningen under tiden. According to an embodiment of the method according to the present invention, the supply of additives to the first dosing device 371 and / or to the second dosing device 372 is reduced when precipitates / residues of the additive have formed, whereby these precipitates can be heated away. The reduction may have meant that the supply is completely interrupted. As a result, for example, a larger dosage in the first dosing position of the first reduction catalyst device can be allowed, since any precipitates / residues can naturally be heated away at the same time as the emission requirements are met by the second reduction catalyst device in the meantime.

Minskningen/avbrytandet av tillforseln kan har bero av aktuella och/eller predikterade driftsforhallanden for forbranningsmotorn och/eller avgasbehandlingssystemet. Alltsa maste exempelvis inte den andra reduktionskatalysatoranordningen 332 vara inrattad for att for alla driftsfall klara av en avstangning av tillforseln medelst den forsta doseringsanordningen 371. En intelligent styrning mojliggor darfor ett mindre system vilket kan utnyttjas nar det ar lampligt och nar detta system kan tillhandahalla en erforderlig katalytisk funktion. The reduction / interruption of the supply may be due to current and / or predicted operating conditions for the internal combustion engine and / or the exhaust gas treatment system. Thus, for example, the second reduction catalyst device 332 must not be designed to handle a shutdown of the supply by means of the first dosing device 371 in all operating cases. An intelligent control therefore enables a smaller system which can be used when appropriate and when this system can provide a required catalytic function.

Enligt en utforingsform av foreliggande uppfinning optimeras den forsta reduktionskatalysatoranordningen 371 baserat pa egenskaper, sasom katalytiska egenskaper, for den frirsta 371 och/eller andra 372 reduktionskatalysatoranordningen. Dessutom kan aven den andra reduktionskatalysatoranordningen 372 optimeras baserat pa egenskaper, sasom katalytiska egenskaper, for den forsta 371 och/eller andra 372 reduktionskatalysatoranordningen. Dessa mojligheter till optimering av den forsta reduktionskatalysatoranordningen och/eller den andra reduktionskatalysatoranordningen ger en totalt sett effektiv avgasrening som battre tar hansyn till det kompletta avgasbehandlingssystemets forhallanden. According to one embodiment of the present invention, the first reduction catalyst device 371 is optimized based on properties, such as catalytic properties, for the first 371 and / or second 372 reduction catalyst device. In addition, the second reduction catalyst device 372 can also be optimized based on properties, such as catalytic properties, for the first 371 and / or second 372 reduction catalyst device. These possibilities for optimizing the first reduction catalyst device and / or the second reduction catalyst device provide an overall efficient exhaust gas purification which better takes into account the conditions of the complete exhaust gas treatment system.

De ovan namnda egenskaperna for den forsta 371 och/eller andra 372 reduktionskatalysatoranordningen kan vara relaterade till en eller flera av katalytiska egenskaper for den forsta 371 och/eller andra 372 reduktionskatalysatoranordningen, en katalysatortyp for den forsta 371 och/eller andra 372 57 reduktionskatalysatoranordningen, ett temperaturintervall mom vilket den forsta 371 och/eller andra 372 reduktionskatalysatoranordningen är aktiv, en tackningsgrad av ammoniak for den forsta 371 och/eller andra 372 reduktionskatalysatoranordningen 372. The above-mentioned properties of the first 371 and / or second 372 reduction catalyst device may be related to one or more of the catalytic properties of the first 371 and / or other 372 reduction catalyst device, a catalyst type of the first 371 and / or other 372 57 reduction catalyst device, a temperature range at which the first 371 and / or second 372 reduction catalyst device is active, a degree of ammonia filling for the first 371 and / or second 372 reduction catalyst device 372.

Enligt en utforingsform av foreliggande uppfinning optimeras den forsta reduktionskatalysatoranordningen 371 respektive den andra reduktionskatalysatoranordning 372 baserat pa driftsforhallanden for den forsta 371 respektive andra 372 reduktionskatalysatoranordningen. Dessa driftsforhallanden kan vara relaterade till en temperatur, det vill saga en statisk temperatur, for den forsta 371 respektive den andra 372 reduktionskatalysatoranordningen och/eller till en temperaturtrend, det viii saga en forandring av temperaturen, for den forsta 371 respektive den andra 372 reduktionskatalysatoranordningen. According to one embodiment of the present invention, the first reduction catalyst device 371 and the second reduction catalyst device 372, respectively, are optimized based on the operating conditions of the first 371 and second 372 reduction catalyst devices, respectively. These operating conditions may be related to a temperature, i.e. a static temperature, for the first 371 and the second 372 reduction catalyst device, respectively, and / or to a temperature trend, i.e. a change in temperature, for the first 371 and the second 372 reduction catalyst device, respectively.

Enligt en utforingsform av foreliggande uppfinning styrs tillforsel av det forsta tillsatsmedlet genom utnyttjande av den forsta doseringsanordningen 371 baserat pa en fOrdelning av kvoten mellan kvavedioxid och kvaveoxider NO2/NO x i den forsta reduktionskatalysatoranordningen 371. Detta har en fordel i att doseringen av det forsta tillsatsmedlet medelst den forsta doseringsanordningen 371 da kan styras sa att avgasstrommen innehaller en andel kvavedioxid NO2 nar den nar partikelfiltret 320, vilket mojliggor en effektiv reaktionskinetik Over den forsta reduktionskatalysatoranordningen 331 medelst snabb SCR, samt en viss kvavedioxidbaserad (NO2-baserad) sotoxidation. Med andra ord kan tillgang till kvavedioxid NO2 har garanteras vid partikelfiltrets 320 sotoxidation, eftersom doseringen av det forsta tillsatsmedlet kan styras sa att det alltid finns kvavedioxid NO2 kvar i avgasstrommen 303 nar den nay. 58 partikelfiltret 320. Mangden kvdvedioxid NO2, och alarmed fordelning av kvoten mellan kvavedioxid och kvaveoxider NO2/NO, uppstrams den farsta reduktionskatalysatoranordningen 371 kan exempelvis faststallas baserat pa forutbestamda data for den farsta oxidationskatalysatorn 310, till exempel i form av mappade varden for kvavedioxid NO2 efter den forsta oxidationskatalysatorn 310. Med en sadan styrning av doseringen av det forsta tillsatsmedlet kommer alit doserat tillsatsmedel, och hela NOx-omvandlingen Over den farsta reduktionskatalysatoranordningen, forbrukas genom snabb SCR, vilket har i detta dokument ndmnda fardelar. According to an embodiment of the present invention, the supply of the first additive is controlled by using the first dosing device 371 based on a distribution of the ratio between nitrogen dioxide and nitrogen oxides NO2 / NO x in the first reduction catalyst device 371. This has an advantage in that the dosage of the first additive the first metering device 371 can then be controlled so that the exhaust stream contains a proportion of nitrogen dioxide NO2 when it reaches the particulate filter 320, which enables efficient reaction kinetics over the first reduction catalyst device 331 by rapid SCR, as well as some nitrogen dioxide-based (NO2-based) sotoxidation. In other words, access to nitrogen dioxide NO2 may have been guaranteed during the sotoxidation of the particulate filter 320, since the dosage of the first additive can be controlled so that there is always nitrogen dioxide NO2 left in the exhaust stream 303 when it is nay. 58 the particle filter 320. The amount of nitrogen dioxide NO2, and with the distribution of the ratio between nitrogen dioxide and nitrogen oxides NO2 / NO, the first reduction catalyst device 371 is tightened can be determined based on predetermined data for the first oxidation catalyst 310, for example in the form of mapped NO2 the first oxidation catalyst 310. With such a control of the dosage of the first additive comes alit dosed additive, and the whole NOx conversion Over the first reduction catalyst device, is consumed by fast SCR, which has in this document mentioned parts.

Som ett icke-begransande exempel kan styrningen har utforas sa att doseringen av det forsta tillsatsmedlet mycket sdllan motsvarar en NOx-omvandling overstigande vdrdet for 2 ganger kvoten mellan andelen kvavedioxid NO2 och andelen kvaveoxider NO„ det viii saga att doseringen av det forsta tillsatsmedlet motsvarar en NOx-omvandling mindre an (NO2/N0x)*2. Om di exempelvis NO2/NO x = 30%, sa kan doseringen av det forsta tillsatsmedlet styras att motsvara en NOx-omvandling mindre an 60% (2*30%=60%), exempelvis en NOx-omvandling lika med cirka 50%, vilket skulle garantera att reaktionshastigheten Over den forsta reduktionskatalysatoranordningen Or snabb och att 5% kvavedioxid NO2 finns kvar far NO2-baserad sotoxidation medelst partikelfiltret 320. As a non-limiting example, the control may have been carried out so that the dosage of the first additive very much corresponds to a NOx conversion exceeding the value of twice the ratio between the proportion of nitrogen dioxide NO2 and the proportion of nitrogen oxides NO, which means that the dosage of the first additive corresponds to a NOx conversion less than (NO2 / NOx) * 2. If, for example, NO2 / NO x = 30%, then the dosage of the first additive can be controlled to correspond to a NOx conversion less than 60% (2 * 30% = 60%), for example a NOx conversion equal to about 50%, which would guarantee that the reaction rate Over the first reduction catalyst device Or is fast and that 5% nitrogen dioxide NO2 remains if NO2-based sotoxidation by means of the particulate filter 320.

Enligt en utforingsform av forfarandet enligt fareliggande uppfinning utfors en aktiv styrning av reduktionen utford av den forsta reduktionskatalysatoranordningen 331 baserat pa ett forhallande mellan mangden kvavedioxid NO2SCR2 och mangden kvaveoxider NOx SCR2 som nar den andra reduktionskatalysatoranordningen 332. Med andra ord styrs alltsa kvoten NO2snR2/NOx snR2 till att ha ett far reduktionen i den andra reduktionskatalysatoranordningen 332 lampligt varde, 59 varigenom en effektivare reduktion kan erhallas. Mer i detalj utfOr alltsa har den fbrsta reduktionskatalysatoranordningen 331 en forsta reduktion av en forsta mangd kvaveoxider NOxscpa som nar den fbrsta reduktionskatalysatoranordningen 331. Vid den andra reduktionskatalysatoranordningen 332 utfOrs sedan en andra reduktion av en andra mangd kvaveoxider NOxsc122 vilken nar den andra reduktionskatalysatoranordningen 332, dar en anpassning utfOrs av fOrhallandet NO2scR2/NOx SCR2 mellan mangden kvavedioxid NO2SCR2 och den andra mangden kvaveoxider NO. SCR2 vilka nar den andra reduktionskatalysatoranordningen 332. According to one embodiment of the process of the present invention, an active control of the reduction challenge is performed by the first reduction catalyst device 331 based on a ratio between the amount of nitrogen dioxide NO2SCR2 and the amount of nitrogen oxides NOx SCR2 reaching the second reduction catalyst device 332. In other words, the NOx2 to have a father the reduction in the second reduction catalyst device 332 appropriate, 59 whereby a more effective reduction can be obtained. In more detail, therefore, the first reduction catalyst device 331 has a first reduction of a first amount of nitrogen oxides NOxscpa which reaches the first reduction catalyst device 331. At the second reduction catalyst device 332, a second reduction of a second amount of nitrogen oxidants2 is performed which NOx2 an adjustment is made to the NO2scR2 / NOx SCR2 ratio between the amount of nitrogen dioxide NO2SCR2 and the other amount of nitrogen oxides NO. SCR2 which reach the second reduction catalyst device 332.

Denna anpassning utfors har genom utnyttjande av en aktiv styrning av den fOrsta reduktionen baserat pa ett varde for ferhallande NO2sca2/NOx sca2, med avsikt att ge ferhallandet NO2 SCR2/NOx SCR2 ett varde som Or den andra reduktionen effektivare. Va.rdet fer ferhallandet NO2 SCR2/NOx SCR2 kan har utgoras av ett uppmatt varde, ett modellerat varde och/eller ett predikterat varde. This adjustment is performed by utilizing an active control of the first reduction based on a value for the proportional NO2sca2 / NOx sca2, with the intention of giving the ratio NO2 SCR2 / NOx SCR2 a value which makes the second reduction more efficient. The value for the ratio NO2 SCR2 / NOx SCR2 may have consisted of a measured value, a modeled value and / or a predicted value.

Enligt en utfbringsform av fOreliggande uppfinning kan aven vardet for forhallandet NO2/NO2 for det forsta reduktionssteget 331 styras genom att genom att nivan for kvaveoxiderna NO vid det farsta reduktionssteget 331 styrs genom styrning/justering av motor- och eller fbrbranningsatgarder vilka vidtas fbr motorn. According to an embodiment of the present invention, the value of the NO2 / NO2 ratio for the first reduction stage 331 can also be controlled by controlling the level of the nitrogen oxides NO at the first reduction stage 331 by controlling / adjusting engine and or combustion measures taken for the engine.

Fackmannen inser att en meted for behandling av en avgasstrOm enligt foreliggande uppfinning dessutom kan implementeras i ett datorprogram, vilket nar det exekveras i en dater astadkommer att datorn utfOr fOrfarandet. Datorprogrammet utgor vanligtvis en del av en datorprogramprodukt 503, dar datorprogramprodukten innefattar ett lampligt digitalt icke- flyktigt/bestandigt/varaktigt/permanent lagringsmedium pa vilket datorprogrammet är lagrat. Namnda datorlasbara ickeflyktigt/bestandigt/varaktigt/permanent medium bestar av ett 60 lampligt minne, sasom exempelvis: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flashminne, EEPROM (Electrically Erasable PROM), en harddiskenhet, etc. Those skilled in the art will appreciate that a method of processing an exhaust stream according to the present invention may additionally be implemented in a computer program, which when executed in a dater causes the computer to perform the procedure. The computer program usually forms part of a computer program product 503, wherein the computer program product comprises a suitable digital non-volatile / durable / permanent / permanent storage medium on which the computer program is stored. The said computer-readable non-volatile / durable / durable / permanent medium consists of a 60 light memory, such as: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically Erasable PROM ), a hard disk drive, etc.

Figur 5 visar schematiskt en styrenhet 500. Styrenheten 500 innefattar en berakningsenhet 501, vilken kan utgoras av vasentligen nagon lamplig typ av processor eller mikrodator, t.ex. en krets for digital signalbehandling (Digital Signal Processor, DSP), eller en krets med en forutbestamd specifik funktion (Application Specific Integrated Circuit, ASIC). Figure 5 schematically shows a control unit 500. The control unit 500 comprises a computing unit 501, which can be constituted by essentially any suitable type of processor or microcomputer, e.g. a Digital Signal Processor (DSP), or an Application Specific Integrated Circuit (ASIC).

Berakningsenheten 501 är forbunden med en, i styrenheten 500 anordnad, minnesenhet 502, vilken tillhandahaller berakningsenheten 501 t.ex. den lagrade programkoden och/eller den lagrade data berakningsenheten 501 behover for att kunna utfora berakningar. Berakningsenheten 501 är aven anordnad att lagra del- eller slutresultat av berakningar i minnesenheten 502. The calculation unit 501 is connected to a memory unit 502 arranged in the control unit 500, which provides the calculation unit 501 e.g. the stored program code and / or the stored data calculation unit 501 needs to be able to perform calculations. The calculation unit 501 is also arranged to store partial or end results of calculations in the memory unit 502.

Vidare är styrenheten 500 forsedd med anordningar 511, 512, 513, 514 for mottagande respektive sandande av in- respektive utsignaler. Dessa in- respektive utsignaler kan innehalla vagformer, pulser, eller andra attribut, vilka av anordningarna 511, 513 for mottagande av insignaler kan detekteras som information och kan omvandlas till signaler som kan behandlas av berakningsenheten 501. Dessa signaler tillhandahalls sedan berakningsenheten 501. Anordningarna 512, 514 for sandande av utsignaler är anordnade att omvandla berakningsresultat fran berakningsenheten 501 till utsignaler for overforing till andra delar av fordonets styrsystem och/eller den/de komponenter for vilka signalerna Or avsedda. Furthermore, the control unit 500 is provided with devices 511, 512, 513, 514 for receiving and transmitting input and output signals, respectively. These input and output signals may contain waveforms, pulses, or other attributes, which of the input signals receiving devices 511, 513 may be detected as information and may be converted into signals which may be processed by the calculating unit 501. These signals are then provided to the calculating unit 501. The devices 512 , 514 for transmitting output signals are arranged to convert calculation results from the calculation unit 501 into output signals for transmission to other parts of the vehicle control system and / or the component (s) for which the signals Or are intended.

Var och en av anslutningarna till anordningarna for mottagande respektive sandande av in- respektive utsignaler kan utgoras 61 av en eller flera av en kabel; en databuss, sasom en CAN-buss (Controller Area Network bus), en MOST-buss (Media Orientated Systems Transport bus), eller nagon annan busskonfiguration; eller av en tradlos anslutning. Each of the connections to the devices for receiving and transmitting input and output signals, respectively, may be formed 61 by one or more of a cable; a data bus, such as a CAN bus (Controller Area Network bus), a MOST bus (Media Orientated Systems Transport bus), or any other bus configuration; or by a wireless connection.

En fackman inser att den ovan namnda datorn kan utgbras av berOkningsenheten 501 och att det ovan nOmnda minnet kan utgoras av minnesenheten 502. One skilled in the art will appreciate that the above-mentioned computer may be constituted by the computing unit 501 and that the above-mentioned memory may be constituted by the memory unit 502.

AllmOnt bestar styrsystem i moderna fordon av ett kommunikationsbussystem bestaende av en eller flera kommunikationsbussar far att sammankoppla ett antal elektroniska styrenheter (ECU:er), eller controllers, och olika pa fordonet lokaliserade komponenter. Ett dylikt styrsystem kan innefatta ett stort antal styrenheter, och ansvaret for en specifik funktion kan vara uppdelat pa fler an en styrenhet. Fordon av den visade typen innefattar alltsa ofta betydligt fler styrenheter an vad som visas i figur 5, vilket är valkant for fackmannen mom teknikomradet. General control systems in modern vehicles consist of a communication bus system consisting of one or more communication buses which can connect a number of electronic control units (ECUs), or controllers, and various components located on the vehicle. Such a control system may comprise a large number of control units, and the responsibility for a specific function may be divided into more than one control unit. Vehicles of the type shown thus often comprise considerably more control units than what is shown in Figure 5, which is a choice for those skilled in the art.

Sasom inses av fackmannen kan styrenheten 500 i figur 5 innefatta en eller flera av styrenheterna 115 och 160 i figur 1, styrenheten 260 i figur 2, styrenheten 360 i figur 3 samt styrenheten 374 i figur 3. As will be appreciated by those skilled in the art, the control unit 500 of Figure 5 may include one or more of the control units 115 and 160 of Figure 1, the control unit 260 of Figure 2, the control unit 360 of Figure 3 and the control unit 374 of Figure 3.

Foreliggande uppfinning Or i den visade utforingsformen implementerad i styrenheten 500. Uppfinningen kan dock Oven implementeras helt eller delvis i en eller flera andra vid fordonet redan befintliga styrenheter eller i nagon for foreliggande uppfinning dedikerad styrenhet. The present invention is in the embodiment shown implemented in the control unit 500. However, the invention may be implemented in whole or in part in one or more other control units already existing with the vehicle or in a control unit dedicated to the present invention.

Fackmannen inser ocksa att avgasbehandlingssystemet ovan kan modifieras enligt de olika utforingsformerna av metoden enligt uppfinningen. Dessutom avser uppfinningen motorfordonet 100, till exempel en personbil, en lastbil eller en buss, eller en annan enhet innefattande atminstone ett avgasbehandlingssystem 62 enligt uppfinningen, sAsom exempelvis en farkost eller en spannings/stram-generator. Those skilled in the art will also appreciate that the above exhaust gas treatment system may be modified according to the various embodiments of the method of the invention. In addition, the invention relates to the motor vehicle 100, for example a passenger car, a truck or a bus, or another unit comprising at least one exhaust gas treatment system 62 according to the invention, such as for example a vehicle or a voltage / tension generator.

Foreliggande uppfinning är inte begransad till de ovan beskrivna utforingsformerna av uppfinningen utan avser och innefattar alla utforingsformer mom de bifogade sjalvstandiga kravens skyddsomfang. 63 The present invention is not limited to the above-described embodiments of the invention but relates to and includes all embodiments within the scope of the appended independent claims. 63

Claims (34)

1. Patentkrav 1. Avgasbehandlingssystem (350) anordnat for behandling av en avgasstrom (303) vilken resulterar fran en forbranning i en forbranningsmotor (301), kannetecknat av - en forsta oxidationskatalysator (310) anordnad att oxidera foreningar innefattande en eller flera av kvave, kol och vate i namnda avgasstrom; 1. en forsta doseringsanordning (371) anordnad nedstrom namnda forsta oxidationskatalysator (310) och anordnad att tillfora ett forsta tillsatsmedel i namnda avgasstrom (303); 2. en forsta reduktionskatalysatoranordning (331) anordnad nedstroms namnda forsta doseringsanordning (371) och anordnad for reduktion av kvaveoxider NO i namnda avgasstram (303) genom utnyttjande av namnda forsta tillsatsmedel; - ett partikelfilter (320) anordnat nedstroms namnda forsta reduktionskatalysatoranordning (331) °on anordnat att fanga upp sotpartiklar i namnda avgasstrom; 3. en andra doseringsanordning (372) anordnad nedstroms namnda partikelfilter (320) och anordnad att tillfora ett andra tillsatsmedel i namnda avgasstrom (303); 4. en andra reduktionskatalysatoranordning (332) anordnad nedstroms namnda andra doseringsanordning (372) och anordnad far reduktion av kvaveoxider NO i namnda avgasstrom (303) genom utnyttjande av atminstone ett av namnda forsta och namnda andra tillsatsmedel; och 5. en katalytiskt oxiderande belaggning, vilken Or anordnad nedstrams namnda farsta reduktionskatalysatoranordning (331) och uppstroms namnda andra reduktionskatalysatoranordning (332) och är anordnad att oxidera sotpartiklar samt att oxidera en eller flera av kvaveoxid NO och ofullstandigt oxiderade kolfereningar i namnda avgasstrem (303). 64 An exhaust gas treatment system (350) arranged to treat an exhaust stream (303) resulting from a combustion in an internal combustion engine (301), characterized by - a first oxidation catalyst (310) arranged to oxidize compounds comprising one or more of nitrogen, carbon and hydrogen in said exhaust stream; A first metering device (371) arranged downstream of said first oxidation catalyst (310) and arranged to supply a first additive into said exhaust stream (303); A first reduction catalyst device (331) arranged downstream of said first dosing device (371) and arranged to reduce nitrogen oxides NO in said exhaust gas stream (303) by using said first additive; a particulate filter (320) arranged downstream of said first reduction catalyst device (331) arranged to capture soot particles in said exhaust stream; A second metering device (372) arranged downstream of said particle filter (320) and arranged to supply a second additive into said exhaust stream (303); A second reduction catalyst device (332) arranged downstream of said second metering device (372) and arranged to reduce nitrogen oxides NO in said exhaust stream (303) by using at least one of said first and said second additives; and 5. a catalytic oxidizing coating, which is arranged downstream of said first reduction catalyst device (331) and upstream of said second reduction catalyst device (332) and is arranged to oxidize soot particles and to oxidize one or more of nitric oxide NO and incompletely oxidized carbon gases. ). 64 2. Avgasbehandlingssystem (350) enligt patentkrav 1, varvid atminstone ett av namnda fOrsta och andra tillsatsmedel innefattar ammoniak eller ett amne ur vilket ammoniak ken utvinnas och/eller frigbras. An exhaust gas treatment system (350) according to claim 1, wherein at least one of said first and second additives comprises ammonia or a substance from which the ammonia is recovered and / or released. 3. Avgasbehandlingssystem (350) enligt nagot av patentkrav 1-2, varvid namnda forsta reduktionskatalysatoranordning (331) innefattar nagon i gruppen av: 1. en forsta selektiv katalytisk reduktionskatalysator (SCR); - en forsta selektiv katalytisk reduktionskatalysator (SCR) nedstroms integrerad med en forsta slip-katalysator (ASC2), dar namnda forsta slip-katalysator (ASC1) ar anordnad att oxidera en rest av tillsatsmedel och/eller att bista namnda forsta selektiva katalytiska reduktionskatalysator (SCR2) med en ytterligare reduktion av kvaveoxider NO i namnda avgasstrom (303); 2. en forsta selektiv katalytisk reduktionskatalysator (SCR) nedstrbms fbljd av en separat fbrsta slip-katalysator (ASC2), dar namnda forsta slip-katalysator (ASC1) är anordnad att oxidera en rest av tillsatsmedel och/eller att bista namnda farsta selektiva katalytiska reduktionskatalysator (SCR) med en ytterligare reduktion av kvaveoxider NO i namnda avgasstrOm (303); och 3. en fOrsta slip-katalysator (ASC1), vilken ar anordnad i farsta hand for reduktion av kvaveoxider NOx och i andra hand for oxidation av en rest av tillsatsmedel i namnda avgasstrom (303). An exhaust gas treatment system (350) according to any one of claims 1-2, wherein said first reduction catalyst device (331) comprises any one of the group of: 1. a first selective catalytic reduction catalyst (SCR); a first selective catalytic reduction catalyst (SCR) downstream integrated with a first slip catalyst (ASC2), wherein said first slip catalyst (ASC1) is arranged to oxidize a residue of additives and / or to assist said first selective catalytic reduction catalyst (SCR2). ) with a further reduction of nitrogen oxides NO in said exhaust stream (303); A first selective catalytic reduction catalyst (SCR) downstream followed by a separate first grinding catalyst (ASC2), wherein said first grinding catalyst (ASC1) is arranged to oxidize a residue of additives and / or to assist said first selective catalytic reduction catalyst (SCR) with a further reduction of nitrogen oxides NO in said exhaust stream (303); and 3. a first slip catalyst (ASC1), which is arranged firstly for the reduction of nitrogen oxides NOx and secondarily for the oxidation of a residue of additives in said exhaust gas stream (303). 4. Avgasbehandlingssystem (350) enligt nagot av patentkrav 1-3, varvid namnda andra reduktionskatalysatoranordning (332) innefattar nagon i gruppen av: 1. en andra selektiv katalytisk reduktionskatalysator (SCR2); 6 - en andra selektiv katalytisk reduktionskatalysator (SCR2) nedstroms integrerad med en andra slip-katalysator (ASC2), dar namnda andra slip-katalysator (ASC2) är anordnad att oxidera en rest av tillsatsmedel och/eller att bista namnda andra selektiva katalytiska reduktionskatalysator (SCR2) med en ytterligare reduktion av kvaveoxider NO i namnda avgasstrom (303); och - en andra selektiv katalytisk reduktionskatalysator (SCR2) nedstrems foljd av en separat andra slip-katalysator (ASC2), dar namnda andra slip-katalysator (ASC2) är anordnad att oxidera en rest av tillsatsmedel och/eller att bista namnda andra selektiva katalytiska reduktionskatalysator (SCR2) med en ytterligare reduktion av kvaveoxider NO i namnda avgasstrem (303). An exhaust gas treatment system (350) according to any one of claims 1-3, wherein said second reduction catalyst device (332) comprises any one of the group of: 1. a second selective catalytic reduction catalyst (SCR2); 6 - a second selective catalytic reduction catalyst (SCR2) downstream integrated with a second grinding catalyst (ASC2), wherein said second grinding catalyst (ASC2) is arranged to oxidize a residue of additives and / or to assist said second selective catalytic reduction catalyst (ASC2). SCR2) with a further reduction of nitrogen oxides NO in said exhaust stream (303); and - a second selective catalytic reduction catalyst (SCR2) downstream followed by a separate second slip catalyst (ASC2), wherein said second slip catalyst (ASC2) is arranged to oxidize a residual of additives and / or to assist said second selective catalytic reduction catalyst. (SCR2) with a further reduction of nitrogen oxides NO in said exhaust gas stream (303). 5. Avgasbehandlingssystem (350) enligt nagot av patentkrav 1-4, varvid namnda partikelfilter (320) ar den forsta avgasbehandlingssystemskomponent namnda avgasstrOm (303) nar efter att ha passerat namnda forsta reduktionskatalysatoranordning (331). An exhaust gas treatment system (350) according to any one of claims 1 to 4, wherein said particulate filter (320) is the first exhaust gas treatment system component said exhaust gas stream (303) after passing said first reduction catalyst device (331). 6. Avgasbehandlingssystem (350) enligt nagot av patentkrav 1-5, varvid namnda avgasbehandlingssystem (350) innefattar ett system (370) for tillforsel av tillsatsmedel, vilket innefattar atminstone en pump (373) anordnad att forse namnda forsta (371) och andra (372) doseringsanordning med namnda forsta respektive andra tillsatsmedel. An exhaust gas treatment system (350) according to any one of claims 1-5, wherein said exhaust gas treatment system (350) comprises a system (370) for supplying additives, which comprises at least one pump (373) arranged to supply said first (371) and others (371). 372) dosing device with said first and second additives, respectively. 7. Avgasbehandlingssystem (350) enligt patentkrav 6, varvid namnda system (370) for tillforsel av tillsatsmedel innefattar en doseringsstyrenhet (374) anordnad att styra namnda atminstone en pump (373). The exhaust gas treatment system (350) of claim 6, wherein said additive supply system (370) comprises a metering control unit (374) arranged to control said at least one pump (373). 8. Avgasbehandlingssystem (350) enligt patentkrav 6, varvid namnda system (370) for tillforsel av tillsatsmedel 66 innefattar en doseringsstyrenhet (374) innefattande: 1. en forsta pumpstyrningsenhet (378) anordnad att styra namnda atminstone en pump (373), varvid en farsta dosering av namnda forsta tillsatsmedel tillfors namnda avgasstrom genom utnyttjande av namnda forsta doseringsanordning (371); och 2. en andra pumpstyrningsenhet (379) anordnad att styra namnda atminstone en pump (373), varvid en andra dosering av namnda andra tillsatsmedel tillfors namnda avgasstrom genom utnyttjande av namnda andra doseringsanordning (372). The exhaust gas treatment system (350) of claim 6, wherein said additive supply system (370) comprises a metering control unit (374) comprising: 1. a first pump control unit (378) arranged to control said at least one pump (373), wherein a first metering of said first additive is supplied to said exhaust stream using said first metering device (371); and 2. a second pump control unit (379) arranged to control said at least one pump (373), wherein a second dose of said second additive is supplied to said exhaust stream by utilizing said second metering device (372). 9. Avgasbehandlingssystem enligt nagot av patentkrav 1- 8. varvid namnda forsta reduktionskatalysatoranordning (331) är anordnad for reduktion av namnda kvaveoxider NO mom ett reduktionstemperaturintervall 'red, vilket atminstone delvis skiljer sig fran ett oxidationstemperaturintervall Lox mom vilket en oxidation av ofullstandigt oxiderade kolfOreningar i namnda partikelfilter (320) kan ske; 'redTox. An exhaust gas treatment system according to any one of claims 1 to 8, wherein said first reduction catalyst device (331) is arranged to reduce said nitrogen oxides NO with a reduction temperature range, which is at least partially different from an oxidation temperature range of Lox with which an oxidation of incompletely oxidized oxides said particle filter (320) can be done; 'redTox. 10. Avgasbehandlingssystem enligt nagot av patentkrav 1- 9. varvid namnda forsta oxidationskatalysator (310) är anordnad att skapa varme for nedstroms monterade komponenter. An exhaust gas treatment system according to any one of claims 1 to 9, wherein said first oxidation catalyst (310) is arranged to create heat for downstream mounted components. 11. Avgasbehandlingssystem enligt nagot av patentkrav 1- 10. varvid namnda katalytiskt oxiderande belaggning är anordnad enligt en i gruppen av: 1. innefattad i namnda partikelfilter (320); 2. innefattad delvis i namnda partikelfilter (320) och delvis i en andra oxidationskatalysator anordnad nedstroms namnda forsta reduktionskatalysatoranordning (331) och uppstrams namnda partikelfilter (320); och 3. innefattad i en andra oxidationskatalysator anordnad nedstroms namnda forsta reduktionskatalysatoranordning (331) och uppstrams namnda partikelfilter (320). 67 An exhaust gas treatment system according to any one of claims 1 to 10, wherein said catalytic oxidizing coating is arranged according to one of the group of: 1. included in said particulate filter (320); 2. comprising partly in said particle filter (320) and partly in a second oxidation catalyst arranged downstream of said first reduction catalyst device (331) and tightening said particle filter (320); and 3. included in a second oxidation catalyst disposed downstream of said first reduction catalyst device (331) and upstream of said particulate filter (320). 67 12. FOrfarande for behandling av en avgasstrOm (303) vilken resulterar frdn en forbrdnning i en forbrdnningsmotor (301), kdrinetecknat av 1. en oxidation av foreningar innefattande en eller flera av kvdve, kol och vate i ndmnda avgasstrOm genom utnyttjande av en fOrsta oxidationskatalysator (310); 2. en styrning av en tillfarsel av ett fOrsta tillsatsmedel i namnda avgasstrOm genom utnyttjande av en fOrsta doseringsanordning (371) anordnad nedstrOms namnda fOrsta oxidationskatalysator (310), varvid namnda tillforsel av namnda fOrsta tillsatsmedel pAverkar en reduktion av kvaveoxider NO i ndmnda avgasstrOm genom utnyttjande av namnda fOrsta tillsatsmedel i Atminstone en fOrsta reduktionskatalysatoranordning (331) anordnad nedstrOms namnda fOrsta doseringsanordning (371); 3. ett uppfdngande av sotpartiklar i namnda avgasstrOm (303) genom utnyttjande av ett partikelfilter (320), vilket är anordnat nedstrOms ndmnda fOrsta reduktionskatalysatoranordning (331); och - en styrning av tillforsel av ett andra tillsatsmedel i namnda avgasstrOm (303) genom utnyttjande av en andra doseringsanordning (372) anordnad nedstrOms namnda partikelfilter (320), varvid namnda tillfersel av namnda andra tillsatsmedel pdverkar en reduktion av kvaveoxider NO i namnda avgasstrOm (303) genom utnyttjande av Atminstone ett av namnda fOrsta och namnda andra tillsatsmedel i en andra reduktionskatalysatoranordning (332) anordnad nedstrOms namnda andra doseringsanordning (372); och 4. en oxidation av sotpartiklar samt oxiderande av en eller flera av kvdveoxid NO och ofullstandigt oxiderade kolfOreningar i namnda avgasstrOm (303) genom utnyttjande av en katalytiskt oxiderande belaggning, vilken Or anordnad nedstrOms ndmnda fOrsta reduktionskatalysatoranordning (331) 68 och uppstrams namnda andra reduktionskatalysatoranordning (332). A process for treating an exhaust stream (303) which results from a combustion in an internal combustion engine (301), characterized by 1. an oxidation of compounds comprising one or more of nitrogen, carbon and hydrogen in said exhaust stream by using a first oxidation catalyst (310); Controlling a supply of a first additive in said exhaust stream by utilizing a first metering device (371) disposed downstream of said first oxidation catalyst (310), said supply of said first additive affecting a reduction in the amount of nitrogen in of said first additive in At least one first reduction catalyst device (331) arranged downstream of said first dosing device (371); A capture of soot particles in said exhaust stream (303) by utilizing a particulate filter (320) arranged downstream of said first reduction catalyst device (331); and - controlling the supply of a second additive in said exhaust stream (303) by using a second dosing device (372) arranged downstream of said particle filter (320), said supply of said second additive influencing a reduction of nitrogen oxides NO in said exhaust stream ( 303) by utilizing at least one of said first and said second additives in a second reduction catalyst device (332) arranged downstream of said second dosing device (372); and 4. an oxidation of soot particles and the oxidation of one or more of nitrous oxide NO and incompletely oxidized carbon compounds in said exhaust stream (303) by utilizing a catalytic oxidizing coating, which is arranged downstream of said first reduction catalyst and second catalyst (681). (332). 13. Forfarande enligt patentkrav 12, varvid namnda forbranningsmotor (301) styrs att skapa varme for uppvarmning av dtminstone en av namnda oxidationskatalysator (310) och namnda forsta reduktionskatalysatoranordning (331) i sadan omfattning att namnda forsta reduktionskatalysatoranordning (331) nar en forutbestamd prestanda for omvandling av kvaveoxider NOR. The method of claim 12, wherein said combustion engine (301) is controlled to generate heat for heating at least one of said oxidation catalyst (310) and said first reduction catalyst device (331) to such an extent that said first reduction catalyst device (331) predetermines a performance conversion of nitrogen oxides NOR. 14. Forfarande enligt nagot av patentkrav 12-13, varvid namnda reduktion medelst namnda forsta reduktionskatalysatoranordning (331) styrs att ske mom ett reduktionstemperaturintervall 'red, vilket atminstone delvis skiljer sig fran ett oxidationstemperaturintervall Tc„ mom vilket en oxidation av ofullstandigt oxiderade kolfOreningar i namnda partikelfilter (320) kan ske; 'red A process according to any one of claims 12-13, wherein said reduction by means of said first reduction catalyst device (331) is controlled to take place at a reduction temperature range, which is at least partially different from an oxidation temperature range Tc, which an oxidation of incompletely oxidized carbon compounds in said particle filter (320) can be done; 'red 15. Forfarande enligt nagot av patentkrav 12-14, varvid namnda tillforsel av atminstone ett av namnda fOrsta och andra tillsatsmedel genom utnyttjande av en av namnda forsta doseringsanordning (371) respektive namnda andra doseringsanordning (372) okas till en niva vid vilken en risk finns for att utfallningar av namnda tillsatsmedel uppstar. A method according to any one of claims 12-14, wherein said supply of at least one of said first and second additives by utilizing one of said first dosing device (371) and said second dosing device (372) is increased to a level at which there is a risk for precipitations of said additives to occur. 16. Forfarande enligt patentkrav 15, varvid namnda forsta reduktionskatalysatoranordning (331) innefattar en fOrsta slip-katalysator (ASC1), vilken i forsta hand utfor reduktion av kvaveoxider NO och i andra hand utfOr oxidation av en rest av tillsatsmedel i namnda avgasstrom (303). The process of claim 15, wherein said first reduction catalyst device (331) comprises a first slip catalyst (ASC1), which primarily performs reduction of nitrogen oxides NO and secondarily performs oxidation of a residue of additives in said exhaust stream (303). . 17. Ferfarande enligt nagot av patentkrav 12-14, varvid namnda tillforsel av atminstone ett av namnda fOrsta och andra tillsatsmedel genom utnyttjande av en av namnda forsta 69 doseringsanordning (371) respektive namnda andra doseringsanordning (372) minskas, varefter rester av Atminstone ett av namnda farsta och andra tillsatsmedel elimineras av varme has namnda avgasstrom, dar namnda minskande av namnda tillfarsel utfOrs am erforderlig total katalytisk funktion for ett avgasbehandlingssystem (350) vilket utfar namnda farfarande kan tillhandahallas efter namnda minskande. A method according to any one of claims 12-14, wherein said supply of at least one of said first and second additives by utilizing one of said first 69 dosing device (371) and said second dosing device (372), respectively, is reduced, after which residues of at least one of said first and other additives are eliminated by said exhaust gas stream, where said reduction of said feed is performed at the required total catalytic function of an exhaust gas treatment system (350) which said said process may be provided after said reduction. 18. FOrfarande enligt patentkrav 17, varvid namnda erforderliga katalytiska funktion beror av aktuella och/eller predikterade driftsforhallanden for namnda forbranningsmotor (301). The method of claim 17, wherein said required catalytic function depends on current and / or predicted operating conditions for said internal combustion engine (301). 19. FOrfarande enligt nagat av patentkrav 17-18, varvid namnda minskande av namnda tillforsel utgor ett avbrott av namnda tillforsel. A method according to any of claims 17-18, wherein said reduction of said supply constitutes an interruption of said supply. 20. FOrfarande enligt nagot av patentkrav 12-19, varvid namnda paverkan pa namnda reduktion av kvaveoxider NO for namnda fOrsta reduktionskatalysatoranordning (371) styrs baserat pa en eller flera egenskaper och/eller driftfortnallanden for namnda fOrsta reduktionskatalysatoranordning (371). A method according to any of claims 12-19, wherein said effect on said reduction of nitrogen oxides NO for said first reduction catalyst device (371) is controlled based on one or more properties and / or operating ratios of said first reduction catalyst device (371). 21. FOrfarande enligt nagot av patentkrav 12-19, varvid namnda paverkan pa namnda reduktion av kvaveoxider NO for namnda fOrsta reduktionskatalysatoranordning (371) styrs baserat pa en eller flera egenskaper och/eller driftfOrhallanden for namnda andra reduktionskatalysatoranordning (372). A method according to any of claims 12-19, wherein said effect on said reduction of nitrogen oxides NO for said first reduction catalyst device (371) is controlled based on one or more properties and / or operating conditions of said second reduction catalyst device (372). 22. FOrfarande enligt nAgot av patentkrav 12-19, varvid namnda paverkan pa namnda andra reduktionskatalysatoranordning (372) styrs baserat pa en eller flera egenskaper och/eller 70 driftfOrhallanden for namnda andra reduktionskatalysatoranordning (372). A method according to any one of claims 12-19, wherein said effect on said second reduction catalyst device (372) is controlled based on one or more properties and / or operating conditions of said second reduction catalyst device (372). 23. Forfarande enligt nagot av patentkrav 12-19, varvid namnda paverkan pa namnda andra reduktionskatalysatoranordning (372) styrs baserat pa en eller flera egenskaper och/eller driftforhallanden for namnda forsta reduktionskatalysatoranordning (371). A method according to any of claims 12-19, wherein said effect on said second reduction catalyst device (372) is controlled based on one or more properties and / or operating conditions of said first reduction catalyst device (371). 24. Forfarande enligt nagot av patentkrav 20-23, varvid namnda egenskaper for namnda forsta (371) respektive andra (372) reduktionskatalysatoranordning Or relaterade till en eller flera i gruppen av: 1. katalytiska egenskaper far namnda forsta reduktionskatalysatoranordning (371); 2. katalytiska egenskaper for namnda andra reduktionskatalysatoranordning (372); 3. en katalysatortyp for namnda forsta reduktionskatalysatoranordning (371); 4. en katalysatortyp for namnda andra reduktionskatalysatoranordning (372); - ett temperaturintervall mom vilket namnda forsta reduktionskatalysatoranordning (371) Or aktiv; 5. ett temperaturintervall mom vilket namnda andra reduktionskatalysatoranordning (372) Or aktiv; 6. en tackningsgrad av ammoniak for namnda forsta reduktionskatalysatoranordning (371) ; och 7. en tackningsgrad av ammoniak for namnda andra reduktionskatalysatoranordning (372). A process according to any one of claims 20-23, wherein said properties of said first (371) and second (372) reduction catalyst devices, respectively, are related to one or more in the group of: 1. catalytic properties of said first reduction catalyst device (371); 2. catalytic properties of said second reduction catalyst device (372); A catalyst type for said first reduction catalyst device (371); 4. a catalyst type for said second reduction catalyst device (372); a temperature range in which said first reduction catalyst device (371) is active; A temperature range in which said second reduction catalyst device (372) is active; 6. a degree of ammonia filling for said first reduction catalyst device (371); and 7. a degree of ammonia filling for said second reduction catalyst device (372). 25. Forfarande enligt nagot av patentkrav 20-23, varvid namnda driftsforhallanden for namnda forsta (371) respektive andra (372) reduktionskatalysatoranordning Or relaterade till en eller flera i gruppen av: 71 1. en temperatur for namnda forsta reduktionskatalysatoranordning (371); 2. en temperatur far namnda andra reduktionskatalysatoranordning (372); - en temperaturtrend far namnda farsta reduktionskatalysatoranordning (371); och 3. en temperaturtrend far namnda andra reduktionskatalysatoranordning (372). A method according to any one of claims 20-23, wherein said operating conditions of said first (371) and second (372) reduction catalyst devices Or are related to one or more in the group of: 71 1. a temperature of said first reduction catalyst device (371); A temperature of said second reduction catalyst device (372); a temperature trend called the first reduction catalyst device (371); and 3. a temperature trend called said second reduction catalyst device (372). 26. Forfarande enligt nagot av patentkrav 12-25, varvid namnda tillforsel av namnda forsta tillsatsmedel genom utnyttjande av namnda forsta doseringsanordning (371) styrs baserat pa en fordelning av kvoten mellan kvavedioxid och kvaveoxider NO2/NO x uppstroms namnda forsta reduktionskatalysatoranordning (371). A method according to any one of claims 12-25, wherein said supply of said first additive by using said first dosing device (371) is controlled based on a distribution of the ratio between nitrogen dioxide and nitrogen oxides NO2 / NO x upstream of said first reduction catalyst device (371). 27. Forfarande enligt nagot av patentkrav 12-26, varvid 1. namnda forsta reduktionskatalysatoranordning (331) utfor en forsta reduktion av en forsta mangd av namnda kvaveoxider NOx scRi vilken nar namnda forsta reduktionskatalysatoranordning (331); och - en anpassning av ett forhallande NO2scRiNOx SCR1 mellan en forsta mangd kvavedioxid NO2scRi och namnda forsta mangd kvaveoxider NOx SCR1 vilka nar namnda forsta reduktionskatalysatoranordning (331) utfors vid behov, varvid en aktiv styrning av namnda forsta mangd kvaveoxider NO, scR1 utfors medelst motor- och/eller forbranningsatgarder. A process according to any one of claims 12 to 26, wherein 1. said first reduction catalyst device (331) performs a first reduction of a first amount of said nitrogen oxides NOx scRi which reaches said first reduction catalyst device (331); and - an adaptation of a ratio of NO2scRiNOx SCR1 between a first amount of nitrogen dioxide NO2scRi and said first amount of nitrogen oxides NOx SCR1 which when said first reduction catalyst catalyst device (331) is carried out when necessary, an active control of said first amount of nitrogen oxides NO, scR and / or incinerators. 28. Forfarande enligt nagot av patentkrav 12-27, varvid 1. namnda andra reduktionskatalysatoranordning (332) utfar en andra reduktion av en andra mangd av namnda kvaveoxider NOx scR2 vilken nar namnda andra reduktionskatalysatoranordning (332); och 2. en anpassning av ett forhallande NO2scR2/NOx SCR2 mellan en 72 andra mangd kvavedioxid NO2SCR2 och namnda andra mangd kvaveoxider NOx SCR2 vilka nar namnda andra reduktionskatalysatoranordning (332) utfors vid behov, varvid en aktiv styrning av namnda forsta reduktion av namnda forsta mangd kvaveoxider NO.scR1 utfors baserat pa ett varde for namnda forhallande NO2 SCR2/NOx SCR2• A process according to any one of claims 12-27, wherein 1. said second reduction catalyst device (332) performs a second reduction of a second amount of said nitrogen oxides NOx scR2 which reaches said second reduction catalyst device (332); and 2. an adaptation of a NO2scR2 / NOx SCR2 ratio between a 72 second amount of nitrogen dioxide NO2SCR2 and said second amount of nitrogen oxides NOx SCR2 which is performed when said second reduction catalyst device (332) if necessary, an active control of said first reduction of said first amount nitrogen oxides NO.scR1 are carried out based on a value for the said ratio NO2 SCR2 / NOx SCR2 • 29. Forfarande enligt patentkrav 28, varvid namnda varde for namnda forhallande NO2scR2/NOx SCR2 utgors av ett i gruppen av: - ett uppmatt varde; 1. ett modellerat varde; 2. ett predikterat varde. The method of claim 28, wherein said value for said ratio NO2scR2 / NOx SCR2 is one of the group of: - a measured value; 1. a modeled value; 2. a predicted value. 30. Forfarande enligt nagot av patentkrav 12-29, varvid namnda forsta oxidationskatalysator (310) och/eller en andra oxidationskatalysator skapar varme for nedstroms monterade komponenter. A process according to any one of claims 12-29, wherein said first oxidation catalyst (310) and / or a second oxidation catalyst creates heat for downstream mounted components. 31. Forfarande enligt nagot av patentkrav 12-30, varvid en oxidation av kvave- och/eller kolvateforeningar i namnda avgasstrom utfors genom utnyttjande av en andra oxidationskatalysator anordnad nedstrams namnda forsta reduktionskatalysatoranordning (331) och uppstrOms namnda katalytiskt oxiderande belaggning. A process according to any one of claims 12-30, wherein an oxidation of nitrogen and / or hydrocarbon compounds in said exhaust stream is carried out using a second oxidation catalyst arranged downstream of said first reduction catalyst device (331) and upstream of said catalytic oxidizing coating. 32. Forfarande enligt nagot av patentkrav 12-30, varvid namnda katalytiskt oxiderande belaggning Or anordnad enligt en i gruppen av: 1. innefattad i ett partikelfilter (320) innefattande namnda katalytiskt oxiderande belaggning; 2. innefattad delvis i ett partikelfilter (320) innefattande namnda katalytiskt oxiderande belaggning och delvis i en andra oxidationskatalysator anordnad nedstrOms namnda forsta reduktionskatalysatoranordning (331) och uppstrOms namnda 73 partikelfilter (320); och - innefattad i en andra oxidationskatalysator anordnad nedstrams namnda farsta reduktionskatalysatoranordning (331) och uppstroms ett partikelfilter (320). A method according to any one of claims 12 to 30, wherein said catalytically oxidizing coating Or is arranged according to one of the group of: 1. comprising in a particulate filter (320) comprising said catalytically oxidizing coating; 2. comprised partly in a particulate filter (320) comprising said catalytically oxidizing coating and partly in a second oxidation catalyst arranged downstream of said first reduction catalyst device (331) and upstream of said 73 particulate filters (320); and - included in a second oxidation catalyst arranged downstream of said first reduction catalyst device (331) and upstream of a particulate filter (320). 33. Datorprogram innefattande programkod, vilket nar namnda programkod exekveras i en dator astadkommer att namnda dator utfor forfarandet enligt nagot av patentkrav 12-32. A computer program comprising program code, which when said program code is executed in a computer, causes said computer to perform the method according to any of claims 12-32. 34. Datorprogramprodukt innefattande ett datorldsbart medium och ett datorprogram enligt patentkrav 33, varvid namnda datorprogram är innefattat i namnda datorlasbara medium. 91. 901. "-' 1. 01. LOI. 901. 91. 901. ---' LO £01. 1701. ----# £ 1. r4 I- 'Old 2/ 201 00000 260 2 IA computer program product comprising a computer readable medium and a computer program according to claim 33, wherein said computer program is included in said computer readable medium. 91. 901. "- '1. 01. LOI. 901. 91. 901. ---' LO £ 01. 1701. ---- # £ 1. r4 I- 'Old 2/201 00000 260 2 I
SE1450230A 2014-02-28 2014-02-28 Exhaust gas treatment system and method for treating an exhaust gas stream SE542085C2 (en)

Priority Applications (57)

Application Number Priority Date Filing Date Title
SE1450230A SE542085C2 (en) 2014-02-28 2014-02-28 Exhaust gas treatment system and method for treating an exhaust gas stream
PCT/SE2015/050225 WO2015130216A1 (en) 2014-02-28 2015-02-27 System and method for purification of an exhaust stream by use of two reduction catalysts
RU2016137489A RU2667852C2 (en) 2014-02-28 2015-02-27 Device and method for impacting amount of nitrogen oxides in exhaust gases from internal combustion engine
CN201580010939.9A CN106062332A (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
US15/120,089 US10273851B2 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
EP15755946.9A EP3111071B1 (en) 2014-02-28 2015-02-27 Method and system for controlling nitrogen oxide emissions from a combustion engine
PCT/SE2015/050222 WO2015130213A1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
SE1550224A SE538728C2 (en) 2014-02-28 2015-02-27 Exhaust gas treatment system and method for treating an exhaust gas stream
KR1020167026603A KR101890380B1 (en) 2014-02-28 2015-02-27 Device and method for impacting the amount of nitrogen oxides in exhaust gases from an internal combustion engine
US15/314,451 US10364724B2 (en) 2014-02-28 2015-02-27 Device and method comprising double reducing devices and a catalytically coated particle filter for treatment of an exhaust stream
EP15755632.5A EP3134625B1 (en) 2014-02-28 2015-02-27 Device and method comprising double reducing devices and a catalytically coated particle filter for treatment of an exhaust stream
EP15755785.1A EP3111067B1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
PCT/SE2015/050221 WO2015130212A1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
BR112016017572A BR112016017572B8 (en) 2014-02-28 2015-02-27 Method and system for controlling nitrogen oxide emissions from a combustion engine
SE1550227A SE543192C2 (en) 2014-02-28 2015-02-27 Method and exhaust gas treatment system for treating an exhaust gas stream
PCT/SE2015/050228 WO2015130218A1 (en) 2014-02-28 2015-02-27 Method and system for controlling nitrogen oxide emissions from a combustion engine
SE1550228A SE539093C2 (en) 2014-02-28 2015-02-27 Process and exhaust treatment system for treating an exhaust stream
PCT/SE2015/050223 WO2015130214A1 (en) 2014-02-28 2015-02-27 Device and method comprising double reducing devices and a catalytically coated particle filter for treatment of an exhaust stream
KR1020167026602A KR101890840B1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
PCT/SE2015/050220 WO2015130211A1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
US15/120,075 US10267197B2 (en) 2014-02-28 2015-02-27 System and method for purification of an exhaust stream by use of two reduction catalysts
RU2016137488A RU2669129C2 (en) 2014-02-28 2015-02-27 Exhaust gas extraction system and method for processing exhaust gas stream
CN201580010763.7A CN106062331A (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
BR112016017664-2A BR112016017664B1 (en) 2014-02-28 2015-02-27 METHOD AND SYSTEM FOR CONTROLLING NITROGEN OXIDE EMISSIONS FROM A COMBUSTION ENGINE
BR112016017662-6A BR112016017662B1 (en) 2014-02-28 2015-02-27 EXHAUST TREATMENT SYSTEM AND METHOD FOR TREATMENT OF AN EXHAUST CURRENT
SE1550223A SE1550223A1 (en) 2014-02-28 2015-02-27 Exhaust gas treatment system and method for treating an exhaust gas stream
US15/120,101 US10273852B2 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
SE1550226A SE538724C2 (en) 2014-02-28 2015-02-27 Process and exhaust treatment system for treating an exhaust stream
EP15755634.1A EP3111066B1 (en) 2014-02-28 2015-02-27 Method and system for controlling nitrogen oxide emissions from a combustion engine
US15/120,081 US10273850B2 (en) 2014-02-28 2015-02-27 Method and system for controlling nitrogen oxide emissions from a combustion engine
EP15755231.6A EP3134624B1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
US15/314,441 US10054023B2 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
BR112016017659-6A BR112016017659B1 (en) 2014-02-28 2015-02-27 SYSTEM AND METHOD FOR PURIFICATION OF AN ESCAPE CURRENT BY THE USE OF TWO REDUCTION CATALYST
EP15755558.2A EP3111065B1 (en) 2014-02-28 2015-02-27 System and method for purification of an exhaust stream by use of two reduction catalysts
KR1020167026599A KR101890838B1 (en) 2014-02-28 2015-02-27 Method and system for controlling nitrogen oxide emissions from a combustion engine
BR112016017582-4A BR112016017582B1 (en) 2014-02-28 2015-02-27 METHOD AND SYSTEM FOR IMPACTING THE AMOUNT OF NITROGEN OXIDES IN EXHAUST GASES COMING FROM AN INTERNAL COMBUSTION ENGINE
KR1020167026597A KR101858683B1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
RU2016134217A RU2670480C2 (en) 2014-02-28 2015-02-27 Nitrogen oxide emission control system and method for internal combustion engine
EP15755143.3A EP3111072B1 (en) 2014-02-28 2015-02-27 Device and method for impacting the amount of nitrogen oxides in exhaust gases from an internal combustion engine
US15/120,107 US10267198B2 (en) 2014-02-28 2015-02-27 Device and method for impacting the amount of nitrogen oxides in exhaust gases from an internal combustion engine
PCT/SE2015/050229 WO2015130219A1 (en) 2014-02-28 2015-02-27 Method and system for controlling nitrogen oxide emissions from a combustion engine
KR1020167026601A KR101890839B1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
PCT/SE2015/050226 WO2015130217A1 (en) 2014-02-28 2015-02-27 Device and method for impacting the amount of nitrogen oxides in exhaust gases from an internal combustion engine
KR1020167026598A KR101858684B1 (en) 2014-02-28 2015-02-27 System and method for purification of an exhaust stream by use of two reduction catalysts
SE1550222A SE540528C2 (en) 2014-02-28 2015-02-27 Exhaust gas treatment system and method for treating an exhaust gas stream
EP15754802.5A EP3111064B1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
EP15754739.9A EP3111063A4 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
US15/120,104 US10260392B2 (en) 2014-02-28 2015-02-27 Method and system for controlling nitrogen oxide emissions from a combustion engine
SE1550221A SE538726C2 (en) 2014-02-28 2015-02-27 Exhaust gas treatment system and method for treating an exhaust gas stream
RU2016137649A RU2677024C2 (en) 2014-02-28 2015-02-27 Exhaust gas treatment system and method for treating exhaust gas stream
BR112016017578-6A BR112016017578B1 (en) 2014-02-28 2015-02-27 EXHAUST TREATMENT SYSTEM AND EXHAUST CURRENT TREATMENT METHOD
SE1550220A SE1550220A1 (en) 2014-02-28 2015-02-27 Exhaust gas treatment system and method for treating an exhaust gas stream
US15/120,055 US10260391B2 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
KR1020167026604A KR101858685B1 (en) 2014-02-28 2015-02-27 Method and system for controlling nitrogen oxide emissions from a combustion engine
PCT/SE2015/050224 WO2015130215A1 (en) 2014-02-28 2015-02-27 Exhaust treatment system and method for treatment of an exhaust stream
SE1550225A SE540144C2 (en) 2014-02-28 2015-02-27 Exhaust gas treatment system comprising dual reduction catalyst devices and process for treating an exhaust gas stream
US16/032,706 US10626769B2 (en) 2014-02-28 2018-07-11 Exhaust treatment system and method for treatment of an exhaust stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1450230A SE542085C2 (en) 2014-02-28 2014-02-28 Exhaust gas treatment system and method for treating an exhaust gas stream

Publications (2)

Publication Number Publication Date
SE1450230A1 true SE1450230A1 (en) 2015-08-29
SE542085C2 SE542085C2 (en) 2020-02-25

Family

ID=54207109

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1450230A SE542085C2 (en) 2014-02-28 2014-02-28 Exhaust gas treatment system and method for treating an exhaust gas stream

Country Status (1)

Country Link
SE (1) SE542085C2 (en)

Also Published As

Publication number Publication date
SE542085C2 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
US10626769B2 (en) Exhaust treatment system and method for treatment of an exhaust stream
US11007481B2 (en) Exhaust treatment system and method for treatment of an exhaust gas stream
SE539134C2 (en) Exhaust gas treatment system and method for treating an exhaust gas stream
SE1450230A1 (en) Exhaust gas treatment system and method for treating an exhaust gas stream
SE1450229A1 (en) Exhaust gas treatment system and method for treating an exhaust gas stream