SE1350902A1 - Roll-over warning in vehicles - Google Patents

Roll-over warning in vehicles Download PDF

Info

Publication number
SE1350902A1
SE1350902A1 SE1350902A SE1350902A SE1350902A1 SE 1350902 A1 SE1350902 A1 SE 1350902A1 SE 1350902 A SE1350902 A SE 1350902A SE 1350902 A SE1350902 A SE 1350902A SE 1350902 A1 SE1350902 A1 SE 1350902A1
Authority
SE
Sweden
Prior art keywords
vehicle
camera
distance
detecting
normal plane
Prior art date
Application number
SE1350902A
Other languages
Swedish (sv)
Other versions
SE538987C2 (en
Inventor
Fredrich Claezon
Carl Fredrik Ullberg
Mikael Lindberg
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1350902A priority Critical patent/SE538987C2/en
Priority to PCT/SE2014/050818 priority patent/WO2015009222A1/en
Priority to DE112014002961.0T priority patent/DE112014002961B4/en
Publication of SE1350902A1 publication Critical patent/SE1350902A1/en
Publication of SE538987C2 publication Critical patent/SE538987C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • G01S17/875Combinations of systems using electromagnetic waves other than radio waves for determining attitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • B60W2420/408
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/18Roll

Abstract

SAM MAN DRAG Forfarande (300) och berakningsenhet (120) for detektion av valtning av ett fordon (100). Forfarandet (300) innefattar faststallande (301) av ett normalplan (140), genom matning av ett avstand (Al) i fordonets hojdriktning mellan en 3D-kamera (110-1, 110-2) innefattad i fordonet (100) och ett underlag (130) da fordonet (100) är i horisontell position. Forfarandet (300) innefattar aven matning (302) med 3Dkameran (110-1, 110-2) av avstandet (A2, A3) mellan 3D-kameran (110-1, 110-2) och fordonets underlag (130). Vidare innefattar forfarandet (300) aven berakning (303) av skillnaden i avstand, mellan det uppmatta (302) avstandet (A2, A3) och avstandet (Al) till det faststallda (301) normalplanet (140) samt detektering (304) av att fordonet (100) hailer pa att valta da den beraknade (303) skillnaden i avstand overskrider ett troskelvarde. SAM MAN DRAG Method (300) and calculating unit (120) for detecting the steering of a vehicle (100). The method (300) comprises determining (301) a normal plane (140), by feeding a distance (A1) in the height direction of the vehicle between a 3D camera (110-1, 110-2) included in the vehicle (100) and a substrate (130) when the vehicle (100) is in a horizontal position. The method (300) also includes feeding (302) with the 3D camera (110-1, 110-2) the distance (A2, A3) between the 3D camera (110-1, 110-2) and the vehicle base (130). The method (300) further comprises calculating (303) the difference in distance, between the measured (302) distance (A2, A3) and the distance (A1) to the determined (301) normal plane (140) and detecting (304) that the vehicle (100) is about to roll over when the calculated (303) difference in distance exceeds a threshold value.

Description

VALTVARNING I FORDON TEKNISKT OMRADE Uppfinningen hanfor sig till ett forfarande och en berakningsenhet associerade med ett fordon. Narmare bestarnt anger uppfinningen en mekanism for detektion av valtning av ett fordon. VEHICLE WARNING WARNING TECHNICAL FIELD The invention relates to a method and a calculating unit associated with a vehicle. More specifically, the invention provides a mechanism for detecting the steering of a vehicle.

BAKGRUND Ett fordon kan komma att luta i forhallande till vagplanet, exempelvis pa grund av 10 tung, osymmetriskt placerad last och/ eller ojarnnt underlag, exempelvis vid dikeskorning eller liknande. BACKGROUND A vehicle may be inclined in relation to the plane of the road, for example due to heavy, asymmetrically placed load and / or uneven ground, for example when ditching or the like.

Med fordon avses i detta sammanhang exempelvis lastbil, langtradare, flakbil, transportbil, hjullastare, buss, terrangbil, bandvagn, stridsvagn, fyrhjuling, traktor, personbil eller annat liknande motordrivet bemannat eller obemannat transport-medel, anpassat fOr landbaserad geografisk forflyttning. In this context, vehicles refer to, for example, lorries, lorries, flatbed trucks, transport vehicles, wheel loaders, buses, SUVs, tracked vehicles, tanks, quad bikes, tractors, cars or other similar motorized or unmanned means of transport, adapted for land-based geographical movement.

Sadan lutning pa fordonet kan i sin tur fa fordonet att valta, vilket kan skada fordo-nets forare allvarligt. For tunga fordon är valtolyckor antagligen den vanligaste dodsorsaken for foraren. Such tilting of the vehicle can in turn cause the vehicle to tip over, which can seriously damage the driver of the vehicle. For heavy vehicles, rollover accidents are probably the most common cause of death for the driver.

For att detektera att fordonet är pa vag att valta anvands ofta en krocksensor inne- fattande en typ av accelerometer saint gyro som 'canner av accelerationer och rotationsaccelerationer. Man kan anvanda sig av en fordonsmodell som är framraknad att ge en signal nar radande lutningsvinkel och acceleration Overskrider det lage dar fordonet är sidostabilt och darmed kommer att valta. Dá ett tungt fordon valter forhallandevis langsamt, vantar man ofta langt in i fOrloppet fOr att inte riske- ra att losa ut fordonets sidokrockkudde f6r tidigt, eller av misstag. To detect that the vehicle is about to roll over, a crash sensor inside is often used. grasping a type of accelerometer Saint Gyro as' canner of accelerations and rotational accelerations. You can use a vehicle model that is advanced to give a signal when the radiating angle of inclination and acceleration exceeds the low where the vehicle is laterally stable and thus will roll over. When a heavy vehicle rolls relatively slowly, one often waits far into the process so as not to risk to release the vehicle's side airbag prematurely, or accidentally.

For att kalibrera en krocksensor fOr att hantera valtolyckor av della slag kravs ett flertal krockprover dar man mater in accelerometerdata for varje position och for- 2 donstyp man viii montera krocksensor och valtskydd pa. Detta är mycket kostsamt och tidskravande. In order to calibrate a crash sensor in order to handle selection accidents of various kinds, a number of crash tests are required in which accelerometer data for each position and 2 device type man viii mount crash sensor and roller protection on. This is very costly and time consuming.

Krocksensorn med accelerometer och gyro kan i sig inte detektera om fordonet riskerar att valta in i en sten och kommer armed inte att losa ut sidokrockkudde i tid vid en sadan olycka. Detta kan eventuellt losas genom att inmontera en eller flera trycksensorer, som ett komplennent, som monteras exempelvis i dorrarna. Dessa har till uppgift att kanna av nar sidan pa fordonet slar i marken for att vid de tillfallena losa ut sidokrockkudden tidigare an annars. Detta är i de fall da fordonet valter mot exempelvis en sten eller annat objekt som sticker upp Than markplanet. 10 Att inmontera sadan extra trycksensor medfor dock extra kablage som ska dras ut i dorrarna. Darmed kravs extra arbetsmoment och materialkostnad. The crash sensor with accelerometer and gyro itself cannot detect if the vehicle risks rolling into a rock and the armed will not release the side airbag in time in such an accident. This can possibly be solved by installing one or more pressure sensors, as a complement, which is mounted, for example, in the doors. These have the task of detecting when the side of the vehicle hits the ground in order to release the side airbag earlier than otherwise. This is in cases where the vehicle rolls against, for example, a rock or other object protruding from the ground floor. 10 Installing such an extra pressure sensor, however, entails extra wiring that must be pulled out in the doors. This requires extra work and material costs.

En krocksensor är en dyr komponent, som dessutom har ett mycket begransat anvandningsomrade som enbart kan detektera valtning av fordonet och inte exempelvis att ett annat fordon är pa vag att kora in i sidan, eller att det egna fordo-net är pa vag att kOra pa ett hinder etc. A crash sensor is an expensive component, which also has a very limited area of use that can only detect the steering of the vehicle and not, for example, that another vehicle is about to run into the side, or that its own vehicle is about to run into an obstacle etc.

Det kan konstateras att mycket annu aterstar att Ora for att forbattra detektionen av faror som foranleder utlosning av sidokrockskydd i ett fordon och dessutom sanka kostnaden for detta. It can be stated that much remains to be done to improve the detection of hazards that cause the release of side impact protection in a vehicle and also reduce the cost of this.

SAMMANFATTNING AV UPPFINNINGEN Det är darfor en malsattning med denna uppfinning att forbattra detektion av valtfling av ett fordon, for att losa atminstone nagot av ovan angivna problem och darmed uppna en fordonsforbattring. SUMMARY OF THE INVENTION It is therefore an object of this invention to improve the detection of vehicle flaking, in order to solve at least some of the above problems and thereby achieve a vehicle improvement.

Enligt en forsta aspekt av uppfinningen uppnas denna malsattning av ett forfaran- de i en berakningsenhet f6r detektion av valtning av ett fordon. Forfarandet innefattar faststallande av ett normalplan, genom matning av ett avstand i fordonets hojdriktning mellan en 3D-kamera innefattad i fordonet och ett underlag da fordo-net ar i horisontell position. Vidare innefattar forfarandet matning med 3D-kameran 3 av avstandet mellan 3D-kameran och fordonets underlag. F6rfarandet innefattar aven berakning av skillnaden i avstand, mellan det uppmatta avstandet och avstandet till det faststallda normalplanet. FOrfarandet innefattar ocksa detektering av att fordonet hailer pa att valta da den beraknade skillnaden i avstand overskri- der ett trOskelvarde. According to a first aspect of the invention, this grinding is achieved by a process those in a calculating unit for detecting the management of a vehicle. The method comprises determining a normal plane, by feeding a distance in the height direction of the vehicle between a 3D camera included in the vehicle and a substrate when the vehicles are in a horizontal position. Furthermore, the procedure includes feeding with the 3D camera 3 of the distance between the 3D camera and the vehicle base. The method also includes calculating the difference in distance between the measured distance and the distance to the determined normal plane. The method also includes detecting that the vehicle is about to roll over when the calculated difference in distance is exceeded. there a threshold value.

Enligt en andra aspekt av uppfinningen uppnas denna malsattning av en berakningsenhet fOr detektion av valtning av ett fordon. Berakningsenheten innefattar en signalmottagare, anordnad att ta emot ett matvarde fran en 3D-kamera innefattad i fordonet. Vidare innefattar berakningsenheten aven en processorkrets, an- ordnad att faststalla ett normalplan, baserat pa matning av ett avstand i fordonets hOjdriktning mellan en 3D-kamera innefattad i fordonet och ett underlag dá fordo-net är i horisontell position. Processorkretsen är aven anordnad att berakna skillnaden i avstand, mellan uppmatt avstand till underlaget och avstandet till det faststallda normalplanet. Dessutom är processorkretsen anordnad att detektera att fordonet hailer pa att valta da den beraknade skillnaden i avstand overskrider ett troskelvarde. According to a second aspect of the invention, this targeting is achieved by a calculating unit for detecting the steering of a vehicle. The calculating unit comprises a signal receiver, arranged to receive a food value from a 3D camera included in the vehicle. Furthermore, the calculating unit also comprises a processor circuit, arranged to establish a normal plane, based on feeding a distance in the vertical direction of the vehicle between a 3D camera included in the vehicle and a surface where the vehicle is in a horizontal position. The processor circuit is also arranged to calculate the difference in distance, between the measured distance to the substrate and the distance to the determined normal plane. In addition, the processor circuit is arranged to detect that the vehicle tends to tip over as the calculated difference in distance exceeds a threshold value.

Genom att anvanda en 3D-kamera for att detektera valtning av fordonet, istallet for konventionell krocksensor uppnas en palitligare detektion av valtning samt en utokad funktionalitet da uppstickande foremal eller ojamnheter i underlaget, vilka riskerar att tranga in i eller sla emot styrhytten vid valtning kan detekteras. Darigenom ges mojlighet att utlosa sidokrockkudde och/eller baltesstrackare tidigare an vanligt. Dessutom uppnas ytterligare anvandningsomraden utover detektion av valtning, jamfort med konventionell krocksensor, exempelvis detektion av annan trafikant i en for -Waren skynnd vinkel, mata avstand till frannforvarande fordon i syfte att varna foraren om avstandet är for kort, och/eller att anpassa fordonets farthallare till framforvarande fordons hastighet. By using a 3D camera to detect the steering of the vehicle, instead of a conventional crash sensor, a more reliable detection of steering and an unmatched functionality is achieved when protruding objects or irregularities in the ground, which risks penetrating or hitting the wheelhouse during overturning can be detected. This gives the opportunity to release the side airbag and / or belt tensioner earlier than usual. In addition, further areas of application are achieved in addition to detection of overturning, compared with conventional crash sensor, for example detection of another road user at an angle of advance of the vehicle, feeding distance to the vehicle in front of the vehicle. purpose to warn the driver if the distance is too short, and / or to adapt the vehicle's cruise control to the speed of the vehicle in front.

Darigenom, genom att ateranvanda 3D-kameran for att mata och faststalla fordo-nets lutning enligt de hari beskrivna nnetoderna kan man reducera antalet sensorer i fordonet, vilket leder till lagre nnaterialkostnad, fare moment vid monteringen samt lagre tillverkningskostnad for fordonet genom att farre komponenter behover lagerhallas och monteras i fordonet. 4 Ytterligare en fordel är att 3D-kameran är relativt okanslig for var den monteras pa fordonet sa lange den har fritt synfalt. En snabb och enkel montering nnojliggors darigenom, vilket aven detta leder till sankt tillverkningskostnad. Thereby, by reusing the 3D camera to feed and determine the inclination of the vehicle according to the methods described here, one can reduce the number of sensors in the vehicle, which leads to lower material cost, danger moments during assembly as well as lower manufacturing costs for the vehicle as fewer components need to be stored and mounted in the vehicle. 4 Another advantage is that the 3D camera is relatively unobtrusive for where it is mounted on the vehicle as long as it has clear vision. A quick and easy assembly is thereby facilitated, which also leads to a low manufacturing cost.

Vidare, da varken monteringshojd eller placering av 3D-kameran är kansligt sa kravs inte lika manga prover f6r att kalibrera algoritmerna som vid anvandning av konventionella krocksensorer, vilket sanker kostnader och ger en kortare tid till marknaden fOr sadan valtvarning. Darmed uppnas en forbattring av fordonet. Furthermore, since neither the mounting height nor the placement of the 3D camera is probable, not as many tests are required to calibrate the algorithms as when using conventional crash sensors, which reduces costs and gives a shorter time to the market for such an election warning. This achieves an improvement of the vehicle.

Andra fordelar och ytterligare nya sardrag kommer att framga fran foljande detaljerade beskrivning av uppfinningen. Other advantages and further features will become apparent from the following detailed description of the invention.

FIGURFoRTECKNING Uppfinningen kommer nu att beskrivas ytterligare i detalj med hanvisning till bifogade figurer, vilka illustrerar olika utf6ringsformer av uppfinningen: Figur 1Aillustrerar ett fordon med en sensor, visat i profil. LIST OF FIGURES The invention will now be described in further detail with reference to the accompanying figures, which illustrate various embodiments of the invention: Figure 1 Illustrates a vehicle with a sensor, shown in profile.

Figur 1Billustrerar ett fordon med en sensor, visat bakifran. Figure 1 Illustrates a vehicle with a sensor, shown from behind.

Figur 2Aillustrerar ett fordon med en sensor, visat bakifran med en vinkelav- vikelse mot horisontalplanet. Figure 2 Illustrates a vehicle with a sensor, shown from behind with an angular deviation to the horizontal plane.

Figur 2Billustrerar ett fordon med tva sensorer, visat bakifran, med en vinkel- avvikelse mot horisontalplanet. Figure 2 Illustrates a vehicle with two sensors, shown from behind, with an angular deviation from the horizontal plane.

Figur 2Cillustrerar ett fordon med tva sensorer, visat bakifran, med en vinkel- avvikelse mot horisontalplanet dar detektion av ett foremal pa underlaget Ors. Figure 2Cillustrates a vehicle with two sensors, shown from behind, with an angular deviation from the horizontal plane where detection of an object on the substrate Ors.

Figur 3är ett flodesschema som illustrerar en utf6ringsform av ett f6rfarande. Figure 3 is a flow chart illustrating an embodiment of a method.

Figur 4är en illustration av en berakningsenhet i ett system, enligt en utf6- ringsform av uppfinningen. Figure 4 is an illustration of a calculating unit in a system, according to an embodiment embodiment of the invention.

DETALJERAD BESKRIVNING AV UPPFINNINGEN Uppfinningen är definierad som ett f6rfarande och en berakningsenhet f6r bestamning av vinkelavvikelse i horisontalplanet pa ett fordon, vilka kan realiseras i flagon av de nedan beskrivna utforingsfornnerna. Denna uppfinning kan dock genomforas i manga olika former och ska inte ses som begransad av de hari beskrivna utfOringsformerna, vilka istallet är avsedda att belysa och askadliggora olika aspekter av uppfinningen. DETAILED DESCRIPTION OF THE INVENTION The invention is defined as a method and a calculation unit for determining angular deviation in the horizontal plane of a vehicle, which can be realized in flake of the embodiments described below. However, this invention may be embodied in many different forms and should not be construed as limited by the embodiments described herein, which are intended to illustrate and illustrate various aspects of the invention.

Ytterligare aspekter och sardrag av uppfinningen kan konnnna att framga fran den 10 foljande detaljerade beskrivningen nar den beaktas i samband med de bifogade figurerna. Figurerna är dock enbart att betrakta som exempel pa olika utforingsformer av uppfinningen och ska inte ses som begransande for uppfinningen, vilken begransas enbart av de bifogade kraven. Vidare är figurerna inte nodvandigtvis skalenligt ritade och är, om inget annat sarskilt skrivs, avsedda att konceptuellt illustrera aspekter av uppfinningen. Further aspects and features of the invention may be apparent from it The following detailed description when considered in conjunction with the accompanying figures. However, the figures are to be considered only as examples of different embodiments of the invention and should not be construed as limiting the invention, which is limited only by the appended claims. Furthermore, the figures are not necessarily to scale, and are, unless otherwise specifically stated, intended to be conceptually illustrate aspects of the invention.

Figur 1A visar ett fordon 100 i en fardriktning 101. Denna fardriktning 101 avser en befintlig eller planerad fardriktning 101, det viii saga fordonet 100 kan vara i rorelse i fardriktningen 101, eller vara stillastaende, forberedd pa en planerad rorelse i fardriktningen 101 eller rora sig i rakt motsatt riktning, det viii saga backa. Figure 1A shows a vehicle 100 in a direction of travel 101. This direction of travel 101 refers to an existing or planned direction of travel 101, the said vehicle 100 may be in motion in the direction of travel 101, or be stationary, prepared for a planned movement in the direction of travel 101 or move in the exact opposite direction, the viii saga back.

Fordonet 100 har en styrhytt 105, i vilken fordonets forare vanligtvis är placerad under kOming med fordonet 100. The vehicle 100 has a wheelhouse 105, in which the driver of the vehicle is usually located during commuting with the vehicle 100.

Pa eller i fordonet 100, exempelvis i eller pa styrhytten 105 är atminstone en 3Dkamera 110-1 nnonterad. Denna 3D-kamera 110-1 kan innefatta, eller utgoras av exempelvis en radarmatare, en lasermatare sasom exempelvis en Light Detec- tion And Ranging (LIDAR), ibland aven benamnd LADAR eller laser-radar, en kamera sasom exempelvis en Time-of-Flight kamera (ToF kamera), en stereokamera, en ljusfaltskamera, eller liknande anordning konfigurerad for avstandsbedOmning. 6 En LIDAR är ett optiskt rnatinstrument som mater egenskaper hos reflekterat ljus for att faststalla avstandet och/eller andra egenskaper av ett pa avstAnd belaget forernal. Tekniken parninner om radar, (Radio Detection and Ranging), men istallet fOr radiovagor anvands ljus. Typiskt mater man avstandet till ett foremal genom att mata tidsfOrdrOjningen mellan en utsand laserpuls och den registrerade reflex-en fran foremalet. At or in the vehicle 100, for example in or on the wheelhouse 105, at least one 3D camera 110-1 is installed. This 3D camera 110-1 may include, or consist of, for example, a radar feeder, a laser feeder such as a Light Detector. tion And Ranging (LIDAR), sometimes also called LADAR or laser radar, a camera such as a Time-of-Flight camera (ToF camera), a stereo camera, a light field camera, or similar device configured for distance assessment. 6 A LIDAR is an optical instrument that measures the properties of reflected light to determine the distance and / or other properties of a remote-controlled forearm. The technology is based on radar (Radio Detection and Ranging), but instead of radio waves, light is used. Typically, you feed the distance to a form through to feed the time delay between a transmitted laser pulse and the recorded reflex from the form.

En ToF kamera är en typ av kamera som tar en sekvens av bilder och mater ett avstAnd till ett foremal baserat pa den kanda ljushastigheten, genom att mata tidsatgangen fOr en ljussignal mellan kameran och fOrernalet, exempelvis genom att mata fasf6rskjutningen mellan den utskickade ljussignalen och en mottagen reflektion av denna ljussignal, Than foremalet. A ToF camera is a type of camera that takes a sequence of pictures and measures a distance to an object based on the known light speed, by feeding the time access for a light signal between the camera and the forearm, for example by feed the phase shift between the transmitted light signal and a received reflection of this light signal, Than foremalet.

I vissa utf6ringsformer kan fler an en 3D-kamera 110-1 monteras pa fordonet 100. En fOrdel med att ha fler an tva 3D-kameror 110-1 är att palitligare avstandsbedomning kan g6ras, samt att ett storre omrade kan overvakas av en ytterligare 3D-kamera. En annan fOrdel är att en bedOmning av fordonets lutning kan gOras i flera dimensioner, sasom tva eller tre dimensioner enligt vissa utf6ringsformer. I sadana utforingsformer med fler an en 3D-kamera 110-1 kan 3D-kamerorna utgoras av samma typ av 3D-kamera eller av olika typer av 3D-kameror enligt olika utforingsformer. 20 I fordonet 100 finns aven en berakningsenhet 120, som är anordnad att ta emot matuppgifter fran 3D-kameran 110-1, och utfora berakningar baserade pa dessa matuppgifter. Exempelvis kan ett avstand till fordonets underlag 1upprnatas av 3D-kameran 110-1 och skickas till berakningsenheten 120, som kan jam-fora detta matvarde med ett matvarde som gjorts pa ett horisontalplan. In some embodiments, more than one 3D camera 110-1 may be mounted on the vehicle 100. An advantage of having more than two 3D cameras 110-1 is that more reliable distance assessment can be made, and that a larger area can be monitored by an additional 3D camera. Another advantage is that an assessment of the inclination of the vehicle can be made in several dimensions, such as two or three dimensions according to certain embodiments. In such embodiments with more than one 3D camera 110-1, the 3D cameras can consist of the same type of 3D camera or of different types of 3D cameras according to different embodiments. In the vehicle 100 there is also a calculation unit 120, which is arranged to receive food data from the 3D camera 110-1, and perform calculations based on this food data. For example, a distance to the vehicle base 1 can be taken up by the 3D camera 110-1 and sent to the calculation unit 120, which can compare this food value with a food value made on a horizontal plane.

Enligt vissa utforingsformer kan en 3D-kamera 110-1 vara monterad pa var sida om styrhytten 105 sa att man kan detektera om fordonet 100 är pa vag att valta. 3D-kameran 110-1 kan uppmata avstandet till fordonets underlag 130, exempelvis kontinuerligt eller med visst tidsintervall. Genom att faststalla ett normalplan da fordonet 100 framfors pa horisontellt underlag, faststalla avstandet till detta nor- 7 malplan och jamfora detta avstand med det senare uppmatta avstandet kan valtrisken kir fordonet 100 beraknas, exempelvis dá ett visst gransvarde overskrids. According to some embodiments, a 3D camera 110-1 may be mounted on each side of the wheelhouse 105 so that it can be detected if the vehicle 100 is about to roll over. The 3D camera 110-1 can measure the distance to the vehicle base 130, for example continuously or with a certain time interval. By establishing a normal plane when the vehicle 100 is driven on a horizontal surface, determine the distance to this 7 grinding plane and compare this distance with the later measured distance, the rolling risk of the vehicle 100 can be calculated, for example when a certain spruce value is exceeded.

En fordel med att placera 3D-kameran 110-1 inne i styrhytten 105 pa fordonet 100, istallet for utanpa fordonet 100 är att 3D-kameran 110-1 dar är mer skyddad for yttre skador som smuts, snOslask och liknande, liksom mot stold, skadegorelse och annan averkan. Darigenom kan tillforlitligheten hos 3D-kameran 110-1 forbattras och livslangden hos 3D-kameran 110-1 fOrlangas, jamfiirt med om de placeras utanpa fordonet 100. An advantage of placing the 3D camera 110-1 inside the wheelhouse 105 on the vehicle 100, instead of on the outside of the vehicle 100 is that the 3D camera 110-1 is more protected there for external damage such as dirt, snOslask and the like, as well as against theft, damage and other damage. As a result, the reliability of the 3D camera 110-1 can be improved and the service life of the 3D camera 110-1 can be extended, even if they are placed outside the vehicle 100.

A andra sidan kan 3D-kameran 110-1 i vissa utforingsformer placeras hOgt upp 10 nara taket pa fordonet 100. Harigenom kan en lang rackvidd erhallas for 3Dkameran 110-1. En hog placering ger visst skydd mot smutsstank fran andra for-don och aven mot stold och skadegOrelse etc. On the other hand, in some embodiments, the 3D camera 110-1 can be placed high up near the roof of the vehicle 100. This allows a long rack width for the 3D camera 110-1. A high location provides some protection against the stench of dirt from other vehicles and also against theft and damage, etc.

Enligt vissa utfOringsformer kan 3D-kameran 110-1 vara anordnad att detektera ett foremal vid sidan av fordonet 100 som sticker upp ur underlaget 130 och riskerar att sla emot hytten 105 och darmed skada fOraren, innan fordonet 100 har valt fullstandigt. According to some embodiments, the 3D camera 110-1 may be arranged to detect an object next to the vehicle 100 which protrudes from the ground 130 and risks hitting the cab 105 and thereby damaging the driver, before the vehicle 100 has completely selected.

Sadant uppstickande fOremal kan utgOras av ett godtyckligt fOremal, sasom en sten, ett annat fordon, en vagskylt, en fastighet, ett trad, ett husdjur eller annat liknande forernal. Det saknar betydelse for uppfinningen om det uppstickande 10- rernalet är i rorelse eller är stillastaende. Uppfinningen är aven oberoende av om det egna fordonet 100 är stillastaende eller i rorelse enligt vissa utfOringsformer. Such a protruding form can be an arbitrary form, such as a stone, another vehicle, a road sign, a property, a tree, a pet or other similar forernal. It is irrelevant to the invention if the protruding 10- rernalet is in motion or is stationary. The invention is also independent of whether the own vehicle 100 is stationary or in motion according to certain embodiments.

En fordel med att anvanda en 3D-kamera 110-1 for att detektera valtning av fordonet 100 jamfort med tidigare anvand krocksensor baserad pa accelerometer och gyro är att en 3D-kamera 110-1 har fler anvandningsomraden utover detektion av valtning. Exempelvis kan 3D-kameran 110-1 detektera fotgangare, andra for-don som nalkas det egna fordonet 100 etc. och kan darmed mojliggora mer funktionalitet an en konventionell krocksensor. En sidokrockkudde anpassad kir valtolyckor har storre potential att radda liv an en rattmonterad krockkudde i ett tungt fordon sasom en lastbil, langtradare eller buss och det är darfor viktigt att den fun- 8 gerar sa bra som mojligt. Samtidigt ar det naturligtvis forodande for trafiksakerheten om en krockkudde utloses av misstag i fordonet 100 under transport. An advantage of using a 3D camera 110-1 to detect the steering of the vehicle 100 compared to previously used crash sensor based on accelerometer and gyro is that a 3D camera 110-1 has more applications beyond detection. of management. For example, the 3D camera 110-1 can detect pedestrians, other vehicles approaching its own vehicle 100, etc. and can thus enable more functionality than a conventional crash sensor. A side airbag adapted to accidental accidents has a greater potential to save life than a steering wheel-mounted airbag in a heavy vehicle such as a truck, truck or bus and it is therefore important that it 8 do as well as possible. At the same time, it is of course presumptuous for road safety if an airbag is accidentally triggered in the vehicle 100 during transport.

Exempelvis kan 3D-kameran 110-1 vara placerad i eller pa fordonet 100 for ett annat andamal, sasom att mata avstand till framforvarande fordon i syfte att varna foraren om avstandet är for kort, och/eller att anpassa fordonets farthallare till framforvarande fordons hastighet. Ett annat tankbart syfte är att detektera ett uppdykande foremal framfor fordonet 100 och varna foraren for detta, eller initiera en automatisk inbromsning, exempelvis. For example, the 3D camera 110-1 may be located in or on the vehicle 100 for another purpose, such as to distance to the vehicle in front for the purpose of warning the driver if the distance is too short, and / or to adapt the vehicle's cruise control to the speed of the vehicle in front. Another conceivable purpose is to detect an emerging vehicle in front of the vehicle 100 and warn the driver thereof, or initiate an automatic braking, for example.

Darigenom, genom att ateranvanda 3D-kameran 110-1 for att mata och faststalla 10 fordonets lutning enligt de hari beskrivna metoderna kan man reducera antalet sensorer i fordonet 100, vilket leder till lagre materialkostnad, farre moment vid monteringen samt lagre tillverkningskostnad fOr fordonet 100 genom att fame komponenter behOver lagerhallas och monteras i fordonet 100. Thereby, by reusing the 3D camera 110-1 to feed and fix According to the methods described here, the number of sensors in the vehicle 100 can be reduced, which leads to lower material costs, fewer steps during assembly and lower manufacturing costs for the vehicle 100 by having components stored and mounted in the vehicle 100.

En annan fordel är att 3D-kameran 110-1 är i start sett okanslig for var den monteras pa hytten 105 sa lange den har fritt synfalt. En snabb och enkel montering mojliggors darigenom, vilket leder till sankt tillverkningskostnad. Another advantage is that the 3D camera 110-1 is initially insensitive to where it is mounted on the cab 105 as long as it has a clear view. A quick and easy assembly is made possible, which leads to a low manufacturing cost.

Ytterligare fordel med 3D-kameran 110-1 jamfort med konventionell krocksensor är att den som ovan beskrivits kan detektera om fordonet 100 är pa vag att valta in i nagot uppstickande foremal och darmed ge mojlighet till att losa ut sidokrockkudde och/eller baltesstrackare tidigare an vanligt. An additional advantage of the 3D camera 110-1 compared to a conventional crash sensor is that the one described above can detect if the vehicle 100 is about to roll into a protruding object and thus give the possibility to release the side airbag and / or belt tensioner earlier than usual .

Vidare, da varken monteringsh6jd eller placering av 3D-kameran 110-1 är kansligt sa kravs inte lika manga prover for att kalibrera algoritmerna, vilket sanker kostnader och ger en kortare tid till marknaden for sadan valtvarning. Furthermore, since neither the mounting height nor the placement of the 3D camera 110-1 is probable, not as many samples are required to calibrate the algorithms, which reduces costs and gives a shorter time to the market for such an election warning.

Figur 1B visar fordonet 100 i figur 1A, betraktat bakifran. 3D-kameran 110-1 ma- ter avstandet Al till fordonets underlag 130 i hojdled da fordonet 100 befinner sig pa en horisontell yta. Med hojdled avses har en riktning som är vasentligen vinkelrat mot fordonets fardriktning 101. Harigenom kan ett normalplan 1faststallas, tillsammans med referensavstandet A1 till detta normalplan 140. 9 Enligt olika utf6ringsformer kan sadant faststallande av referensavstandet Al och normalplanet 140 g6ras exempelvis i samband med fordonets tillverkning, vid besiktning, vid mjukvaruuppdatering fOr fordonet 100 eller da det kan faststallas att fordonet 100 befinner sig pa en horisontell yta, exempelvis genom matningar med 3D-kameran 110-1 eller annan sensor i fordonet. Figure 1B shows the vehicle 100 of Figure 1A, viewed from behind. The 3D camera 110-1 ma- ter the distance A1 to the vehicle base 130 in height when the vehicle 100 is on a horizontal surface. By height is meant has a direction which is substantially perpendicular to the direction of travel 101 of the vehicle. Hereby a normal plane 1 can be determined, together with the reference distance A1 to this normal plane 140. 9 According to various embodiments, such determination of the reference distance A1 and the normal plane 140 can be made, for example, in connection with the vehicle's manufacture, during inspection, during software update for the vehicle 100 or when it can be determined that the vehicle 100 is on a horizontal surface, for example by feeds with 3D camera 110-1 or other sensor in the vehicle.

Figur 2A visar fordonet 100 i figur 1A och figur 1B, betraktat bakifran, men nu pa vag att valta. 3D-kameran 110-1 mater avstandet A2 till underlaget 130. Detta matvarde kan sedan skickas till berakningsenheten 120 via ett tradbundet eller tradlOst granssnitt. 10 Sadant tradlost granssnitt kan exempelvis vara baserat pa nagon av foljande teknologier: Global System for Mobile Communications (GSM), Enhanced Data Rates for GSM Evolution (EDGE), Universal Mobile Telecommunications System (UMTS), Code Division Access (CDMA), (CDMA 2000), Time Division Synchronous CDMA (TD-SCDMA), Long Term Evolution (LTE); Wireless Fidelity (Wi-Fi), de- finierad av Institute of Electrical and Electronics Engineers (IEEE) standarder 802.11 a, ac, b, g och/eller n, Internet Protocol (IP), Bluetooth och/ eller Near Field Communication, (NFC), eller liknande komnnunikationsteknologi enligt olika utforingsformer. Figure 2A shows the vehicle 100 in Figure 1A and Figure 1B, viewed from behind, but now about to roll over. The 3D camera 110-1 feeds the distance A2 to the substrate 130. This food value can then be sent to the computing unit 120 via a wired or wireless interface. Such a wireless interface may, for example, be based on any of the following technologies: Global System for Mobile Communications (GSM), Enhanced Data Rates for GSM Evolution (EDGE), Universal Mobile Telecommunications System (UMTS), Code Division Access (CDMA), (CDMA 2000), Time Division Synchronous CDMA (TD-SCDMA), Long Term Evolution (LTE); Wireless Fidelity (Wi-Fi), de- funded by the Institute of Electrical and Electronics Engineers (IEEE) standards 802.11 a, ac, b, g and / or n, Internet Protocol (IP), Bluetooth and / or Near Field Communication, (NFC), or similar communication technology according to different embodiments.

Enligt vissa andra utforingsformer är berakningsenheten 120 och 3D-kameran 110-1 anordnade for kommunikation och informationsoverforing over ett tradbundet granssnitt. Sadant tradbundet granssnitt kan innefatta ett kommunikationsbussystem bestaende av en eller flera konnmunikationsbussar f6r att sammankoppla ett antal elektroniska styrenheter (ECU:er), eller kontrollenheter/controllers, och olika pa fordonet 100 lokaliserade komponenter och sensorer, som exempel- vis 3D-kameran 110-1. According to some other embodiments, the baring unit is 120 and the 3D camera 110-1 arranged for communication and information transmission over a wired interface. Such wired interfaces may include a communication bus system consisting of one or more communication buses for interconnecting a number of electronic control units (ECUs), or controllers / controllers, and various components and sensors located on the vehicle 100, such as view the 3D camera 110-1.

Berakningsenheten 120 och 3D-kameran 110-1 är anordnade att kommunicera dels med varandra, for att ta emot signaler och matvarden och eventuellt aven trigga en matning, exempelvis vid visst tidsintervall. Vidare är berakningsenheten 120 och 3D-kameran 110-1 anordnade att kommunicera exempelvis via fordonets kommunikationsbuss, vilken kan utgoras av en eller flera av en kabel; en data- buss, sasom en CAN-buss (Controller Area Network buss), en MOST-buss (Media Oriented Systems Transport), eller nagon annan busskonfiguration. The calibration unit 120 and the 3D camera 110-1 are arranged to communicate partly with each other, in order to receive signals and the food value and possibly also trigger a supply, for instance at a certain time interval. Furthermore, the calculating unit 120 and the 3D camera 110-1 are arranged to communicate, for example, via the vehicle communication bus, which may be one or more of a cable; a data bus, such as a CAN bus (Controller Area Network bus), a MOST bus (Media Oriented Systems Transport), or any other bus configuration.

Da matvardet som representerar det uppmatta avstandet A2 mellan 3D-kameran 110-1 och fordonets underlag 130 tas emot i berakningsenheten 120 kan detta sedan jamforas med det tidigare faststallda avstandet Al till normalplanet 140. Enligt vissa utforingsformer kan detekteringen av att fordonet 100 hailer pa att valta gOras da skillnaden mellan avstanden Al och A2 overskrider ett visst gransvarde, exempelvis 50 cm, 100 cm, 130 cm, 180 cm, 250 cm eller nagot annat godtyckligt gransvarde mellan nagon av dessa exempel pa gransvarden. I vissa utfti10 ringsformer kan sadant gransvarde variera med fordonstyp, fordonsmodell och last, exempelvis. Since the food value representing the measured distance A2 between the 3D camera 110-1 and the vehicle base 130 is received in the calculation unit 120, this can then be compared with the previously determined distance A1 to the normal plane 140. According to some embodiments, the detection of the vehicle 100 valta gOras when the difference between the distance A1 and A2 exceeds a certain spruce value, for example 50 cm, 100 cm, 130 cm, 180 cm, 250 cm or any other spruce value between any of these examples of the spruce value. In some embodiments, such spruce response may vary with vehicle type, vehicle model and load, for example.

Vidare kan matningen med 3D-kameran 110-1 av avstandet A2 till fordonets underlag 130 anvandas for att berakna en vinkel a pa fordonets lutning i fOrhallande till det faststallda normalplanet 140. Furthermore, the feeding with the 3D camera 110-1 of the distance A2 to the vehicle base 130 can be used to calculate an angle α of the vehicle inclination in relation to the determined normal plane 140.

Vinkeln a kan beraknas ur foljande trigonometriska samband (sinusteoremet for ratvinklig triangel): A2-A1 Sin a = Dar avstandet D betecknar avstandet mellan det yttre hjulets kontaktyta med underlaget 130 samt den punkt pa normalplanet 140 som 3D-kameran 110-1 Or sin avlasning pa. Detta avstand D, som vasentligen är konstant kan faststallas eller uppmatas pa forhand vid en kalibrering och lagras som en konstant. The angle a can be calculated from the following trigonometric relationships (the sine theorem for right-angled triangle): A2-A1 Sin a = Where the distance D denotes the distance between the contact surface of the outer wheel with the base 130 and the point on the normal plane 140 at which the 3D camera 110-1 Or reads. This distance D, which is substantially constant, can be determined or measured in advance during a calibration and stored as a constant.

Enligt vissa utforingsformer kan detekteringen av att fordonet 100 hailer pa att valta goras da vinkeln a pa fordonets lutning overskrider ett visst gransvarde, sasom exempelvis 0, 25°, 42°, 600 eller annan gransvarde mellan nagot av dessa ex- empel pa gransvarden. I vissa utforingsformer kan sadant gransvarde variera med fordonstyp, fordonsmodell och last, exempelvis. According to some embodiments, the detection that the vehicle 100 is about to roll can be made when the angle of inclination of the vehicle exceeds a certain spruce value, such as 0, 25 °, 42 °, 600 or another spruce value between any of these empel pa gransvarden. In some embodiments, such spruce value may vary with vehicle type, vehicle model and load, for example.

Det illustrerade exemplet pa ett fordons vinkelavvikelse a i figur 2A är enbart en godtycklig illustration. 11 Figur 2B visar fordonet 100 i figur 1A, figur 1 B och/eller 2A, betraktat bakifran, men nu pa vag att valta och innefattande ytterligare en 3D-kamera 110-2 som mater avstandet A3 till underlaget 130. Detta matvarde kan sedan skickas till berakningsenheten 120 via ett tradbundet eller tradlost granssnitt enligt tidigare beskriv- ning och anvandas tillsammans med, eller istallet for matvardet A2 upprnatt med den f6rsta 3D-kameran 110-1. The illustrated example of a vehicle angular deviation a in Figure 2A is merely an arbitrary illustration. 11 Figure 2B shows the vehicle 100 of Figure 1A, Figure 1B and / or 2A, viewed from behind, but now about to roll over and including another 3D camera 110-2 which measures the distance A3 to the substrate 130. This food value can then be sent to the scaling unit 120 via a wired or wireless interface as previously described. and used in conjunction with, or instead of, the food A2 obtained with the first 3D camera 110-1.

Den andra 3D-kameran 110-2 kan vara placerad pa andra sidan fordonet 100, i forhallande till den f6rsta kameran 110-1 enligt vissa utforingsformer exempelvis sa som visas i figur 2B, eller pa samma sida som den forsta kameran 110-1. 10 En fordel med att ha en andra 3D-kamera 110-2 som komplement till den forsta kameran 110-1 är att palitligare matuppgifter kan erhallas och man kan undvika att matning g6rs i ett dike, grop eller annan halighet vid sidan av korbanan 130. The second 3D camera 110-2 may be located on the other side of the vehicle 100, relative to the first camera 110-1 according to certain embodiments, for example as shown in Figure 2B, or on the same side as the first camera 110-1. An advantage of having a second 3D camera 110-2 as a complement to the first camera 110-1 is that more reliable food information can be obtained and feeding can be avoided in a ditch, pit or other cavity next to the track 130.

Ytterligare en fordel med att ha en andra 3D-kamera 110-2 som komplement till den forsta kameran 110-1 och lata dessa vara placerade pa motsatta sidor om fordonet 100 är att ett fOremal som sticker upp ur underlaget 130 och hotar tranga in i styrhytten 105 och skada foraren. Detta visas narmare i figur 2C. Another advantage of having a second 3D camera 110-2 as a complement to the first camera 110-1 and allowing them to be placed on opposite sides of the vehicle 100 is that an object protrudes from the ground 130 and threatens to penetrate the wheelhouse. 105 and damage the driver. This is shown in more detail in Figure 2C.

I figur 2C visas hur den andra 3D-kameran 110-2 detekterar ett forernal 150 som, om fordonet 100 skulle valta, skulle kunna tranga in i styrhytten 105 och skada foraren. Harvid kan man vidta flagon eller nagra atgarder fOr att skydda foraren, sasom exempelvis utlosa en sidokrockkudde, stracka sakerhetsbaltet, falla ned en skyddsgardin fOr sidofOnstret i styrhytten 105, flytta fOrarstolen at motsatt riktning som fordonet 100 faller at, utlosa en katapultmekanism i forarstolen och skjuta ut fOraren ur styrhytten 105, eller liknande. Figure 2C shows how the second 3D camera 110-2 detects a forernal 150 which, if the vehicle 100 were to overturn, could penetrate the wheelhouse 105 and damage the driver. In this case, flakes or some measures can be taken to protect the driver, such as releasing a side airbag, tightening the safety belt, dropping a curtain in front of the side window in the wheelhouse 105, moving the driver's seat in the opposite direction as the vehicle 100 falls, triggering a catapult mechanism in the driver's seat and pushing the driver out of the wheelhouse 105, or similar.

Figur 3 illustrerar ett exempel pa ufforingsform for uppfinningen. Flodesschemat i figur 3 askadliggOr ett fOrfarande 300 fOr detektion av valtning av ett fordon 100. Forfarandet 300 kan utforas helt eller delvis i en berakningsenhet 120 i fordonet 100, baserat pa en eller flera matningar gjorda med en 3D-kamera 110-1 i fordo-net 100. Alternativt kan forfarandet 300 utforas i ett system i fordonet 100, vilket system innefattar en 3D-kamera 110-1 och en berakningsenhet 120. I vissa utfo- 12 ringsformer kan berakningsenheten 120 vara innefattad i 3D-kamera 110-1 i fordonet 100. Figure 3 illustrates an example embodiment of the invention. Flodesschemat i Figure 3 illustrates a method 300 for detecting selection of a vehicle 100. The method 300 may be performed in whole or in part in a calculation unit 120 in the vehicle 100, based on one or more feeds made with a 3D camera 110-1 in the vehicle 100. Alternatively, the method 300 may be performed in a system of the vehicle 100, the system comprising a 3D camera 110-1 and a calculating unit 120. In some embodiments 12 The calculating unit 120 may be included in the 3D camera 110-1 of the vehicle 100.

Fordonet 100 kan innefatta tva 3D-kameror 110-1, 110-2 i vissa utfOringsformer. Sadan 3D-kamera 110-1, 110-2 kan utgoras av: en Time of Flight, ToF, kamera; en stereokamera; och/eller en ljusfaltskannera. The vehicle 100 may include two 3D cameras 110-1, 110-2 in some embodiments. Such a 3D camera 110-1, 110-2 may consist of: a Time of Flight, ToF, camera; a stereo camera; and / or a light field scanner.

For all kunna detektera valtning av fordonet 100 pa ett korrekt satt, kan forfarandet 300 innefatta ett antal steg 301-305. Det b6r dock observeras att vissa av de beskrivna stegen 301-305 kan utforas i en nagot annorlunda kronologisk ordning an vad nummerordningen antyder och att vissa av dem kan utfOras parallellt med 10 varandra, enligt olika utforingsformer. Vidare kan vissa steg utforas i vissa, men inte nOdvandigtvis alla utforingsformer, sasom steg 305. Forfarandet 300 innefattar foljande steg: Steg 301 Ett normalplan 140 faststalls genom matning av ett avstand Al i fordonets hojdriktning mellan en 3D-kamera 110-1, 110-2 innefattad i fordonet 100 och ett under-lag 130 da fordonet 100 är i horisontell position. In order to be able to detect the steering of the vehicle 100 in a correct manner, the method 300 may comprise a number of steps 301-305. It should be noted, however, that some of the described steps 301-305 may be performed in a slightly different chronological order from what the numbering order suggests and that some of them may be performed in parallel with Each other, according to different embodiments. Furthermore, certain steps may be performed in some, but not necessarily all, embodiments, such as step 305. The method 300 includes the following steps: Step 301 A normal plane 140 is determined by feeding a distance A1 in the height direction of the vehicle between a 3D camera 110-1, 110-2 included in the vehicle 100 and a substrate 130 when the vehicle 100 is in a horizontal position.

En horisontell position kan enligt vissa utforingsformer faststallas genom matning med 3D-kameran 110-1, 110-2, genom matning med annan sensor i fordonet 100 eller genom matning mot en referensyta som faststallts vara horisontell, exempelvis en plan vagstracka. According to certain embodiments, a horizontal position can be determined by feeding with the 3D camera 110-1, 110-2, by feeding with another sensor in the vehicle 100 or by feeding against a reference surface which has been determined to be horizontal, for example a flat carriageway.

Steg 302 3D-kameran 110-1, 110-2 uppmater avstandet A2, A3 mellan 3D-kameran 110-1, 110-2 och fordonets underlag 130. Step 302 The 3D camera 110-1, 110-2 measures the distance A2, A3 between the 3D camera 110-1, 110-2 and the vehicle base 130.

I vissa utforingsformer kan fordonet 100 innefatta tva 3D-kameror 110-1, 110-2, och matningen av avstandet A2, A3 kan g6ras med respektive 3D-kamera 110-1, 110-2. 13 Matningen med 3D-kameran 110-1, 110-2 av avstandet A2, A3 mellan 3Dkameran 110-1, 110-2 och fordonets underlag 130 kan innefatta avstandsmatning till ett flertal punkter pa underlaget 130. In some embodiments, the vehicle 100 may include two 3D cameras 110-1, 110-2, and the feeding of the distance A2, A3 may be done with the respective 3D camera 110-1, 110-2. 13 The supply with the 3D camera 110-1, 110-2 of the distance A2, A3 between the 3D camera 110-1, 110-2 and the vehicle base 130 may include distance feeding to a plurality of points on the base 130.

Matningen med 3D-kameran 110-1, 110-2 av avstandet A2, A3 kan i vissa utforingsformer anvandas f6r att berakna en vinkel a pa fordonets lutning i forhallande till det faststallda normalplanet 140. The feed with the 3D camera 110-1, 110-2 of the distance A2, A3 can in certain embodiments be used to calculate an angle α on the inclination of the vehicle in relation to the determined normal plane 140.

Matningen med 3D-kameran 110-1, 110-2 av avstandet A2, A3 mellan 3Dkameran 110-1, 110-2 och fordonets underlag 130 kan goras kontinuerligt, eller med ett visst forutbestamt eller konfigurerbart tidsintervall. The feeding with the 3D camera 110-1, 110-2 of the distance A2, A3 between the 3D camera 110-1, 110-2 and the vehicle base 130 can be done continuously, or with a certain predetermined or configurable time interval.

Steg 303 Skillnaden i avstand mellan det uppmatta 302 avstandet A2, A3 och avstandet Al till det faststallda 301 normalplanet 140 beraknas. Step 303 The difference in distance between the fed 302 distance A2, A3 and the distance A1 to the determined 301 normal plane 140 is calculated.

I vissa utforingsformer dar fordonet 100 innefattar tva 3D-kameror 110-1, 110-2, och matningen av avstandet A2, A3 gjorts med respektive 3D-kamera 110-1, 12 kan skillnaden i avstand mellan det respektive uppmatta 302 avstandet A2, A3 och avstandet Al till det faststallda 301 normalplanet 140 beraknas. In some embodiments, where the vehicle 100 includes two 3D cameras 110-1, 110-2, and the feeding of the distance A2, A3 is done with the respective 3D camera 110-1, 12, the difference in distance between the respective fed 302 distance A2, A3 and the distance A1 to the determined 301 normal plane 140 is calculated.

Steg 304 Da den beraknade 303 skillnaden i avstand overskrider ett troskelvarde detekteras att fordonet 100 hailer pa att valta. 20 I vissa utfOringsformer dar fordonet 100 innefattar tva 3D-kameror 110-1, 110-2 och dar matningen av avstandet A2, A3 gjorts med respektive 3D-kamera 110-1, 110-2 samt skillnaden i avstand mellan det respektive uppmatta 302 avstandet A2, A3 och avstandet Al till det faststallda 301 normalplanet 140 har beraknats sa kan det detekteras att fordonet 100 hailer pa att valta da bagge dessa beraknade av- standsskillnader overskrider ett respektive troskelvarde samtidigt. Step 304 When the calculated 303 difference in distance exceeds a threshold value, it is detected that the vehicle 100 is about to roll over. In some embodiments, the vehicle 100 includes two 3D cameras 110-1, 110-2 and wherein the feeding of the distance A2, A3 is done with the respective 3D camera 110-1, 110-2 and the difference in distance between the respective fed 302 distances. A2, A3 and the distance A1 to the determined 301 normal plane 140 have been calculated, so it can be detected that the vehicle 100 is able to roll when the ram these calculated distances status differences exceed a respective threshold value at the same time.

I vissa utforingsformer dar matningen med 3D-kameran 110-1, 110-2 av avstandet A2, A3 har anvants f6r att berakna en vinkel a pa fordonets lutning i forhallande till 14 det faststallda normalplanet 140, kan detekteringen av att fordonet 100 hailer pa att valta goras dá vinkeln a pa fordonets lutning Overskrider ett troskelvarde. In some embodiments, the feed with the 3D camera 110-1, 110-2 of the distance A2, A3 has been used to calculate an angle α of the inclination of the vehicle in relation to 14 the determined normal plane 140, the detection that the vehicle 100 is about to roll can be made when the angle of inclination of the vehicle exceeds a threshold value.

Detektionen av att fordonet 100 hailer pa att valta kan i vissa utforingsformer anvandas for att utlosa en skyddsatgard for att skydda fordonets forare. The detection that the vehicle 100 is about to roll can in some embodiments be used to trigger a protective measure to protect the driver of the vehicle.

Steg 30 Detta steg kan utforas i vissa, men inte nodvandigtvis alla utforingsformer. 3D-kameran 110-1, 110-2 kan detektera ett foremal 150 pa underlaget 130 som bedoms traffa fordonets styrhytt 105 vid en valtning av fordonet 100. Step 30 This step can be performed in some, but not necessarily all, embodiments. The 3D camera 110-1, 110-2 can detect an object 150 on the ground 130 which is judged to hit the vehicle's wheelhouse 105 when overturning the vehicle 100.

Detektionen av att ett foremal 150 pa underlaget 130 bedoms traffa fordonets 10 styrhytt 105 vid en valtning av fordonet 100 kan i vissa utforingsformer anvandas for att utlosa en skyddsatgard f6r att skydda fordonets f6rare. The detection of an object 150 on the ground 130 being judged to hit the wheelhouse 105 of the vehicle 10 during a rollover of the vehicle 100 can in some embodiments be used to trigger a protective action to protect the driver of the vehicle.

Figur 4 visar en utfOringsform av ett system 400 innefattande bland annat en berakningsenhet 120. Denna berakningsenhet 120 är konfigurerad att genomfora atminstone vissa av de tidigare beskrivna forfarandestegen 301-305, innefattade i beskrivningen av forfarandet 300 for att detektera valtning av ett fordon 100. Figure 4 shows an embodiment of a system 400 comprising, inter alia, a calculation unit 120. This calculation unit 120 is configured to perform at least some of the previously described method steps 301-305, included in the description of the method 300 for detecting management of a vehicle 100.

Berakningsenheten 120 kan enligt vissa utfOringsformer vidare anordnad att detektera ett foremal 150 pa underlaget 130 som bed6ms traffa fordonets styrhytt 105 vid en valtning, baserat pa matvarde mottaget fran 3D-kameran 110-1, 110-2. According to certain embodiments, the calculating unit 120 can further be arranged to detect an object 150 on the base 130 which is judged to hit the vehicle's wheelhouse 105 during a selection, based on the food value received from the 3D camera 110-1, 110-2.

F6r att pa ett korrekt satt kunna detektera valtning av fordonet 100 innehaller be- rakningsenhet 120 ett antal komponenter, vilka i den foljande texten beskrivs narmare. Vissa av de beskrivna delkomponenterna forekommer i en del, men inte nodvandigtvis samtliga utforingsformer. Det kan aven forekomma ytterligare elektronik i berakningsenheten 120, vilken inte är helt nodvandig for att forsta funktionen hos denna enligt uppfinningen. In order to be able to correctly detect the management of the vehicle 100 contains shaving unit 120 a number of components, which are described in more detail in the following text. Some of the described sub-components occur in some, but not necessarily all, embodiments. There may also be additional electronics in the calculating unit 120, which is not completely necessary to understand the function thereof according to the invention.

Berakningsenheten 120 innefattar en signalmottagare 410, anordnad att ta emot ett matvarde A2, A3 fran en 3D-kamera 110-1, 110-2 innefattad i fordonet 100. The calculating unit 120 comprises a signal receiver 410, arranged to receive a food value A2, A3 from a 3D camera 110-1, 110-2 included in the vehicle 100.

Matvardet A2, A3 kan skickas fran 3D-kameran 110-1, 110-2 till signalmottagaren 410 i berakningsenheten 120 via ett tradbundet eller tradlost granssnitt enligt vissa utforingsformer. The food value A2, A3 can be sent from the 3D camera 110-1, 110-2 to the signal receiver 410 in the calibration unit 120 via a wired or wireless interface according to certain embodiments.

Det tradlosa natverket kan exempelvis vara baserat pa flagon av foljande teknologier: Global System for Mobile Communications (GSM), Enhanced Data Rates for GSM Evolution (EDGE), Universal Mobile Telecommunications System (UMTS), Code Division Access (CDMA), (CDMA 2000), Time Division Synchronous CDMA (TD-SCDMA), Long Term Evolution (LTE); Wireless Fidelity (Wi-Fi), definierat av Institute of Electrical and Electronics Engineers (IEEE) standarder 802.11 a, ac, b, 10 g och/ eller n, Internet Protocol (IP), Bluetooth och/eller Near Field Communication, (NFC), eller liknande kommunikationsteknologi enligt olika utfOringsformer. For example, the wireless network may be based on the following technologies: Global System for Mobile Communications (GSM), Enhanced Data Rates for GSM Evolution (EDGE), Universal Mobile Telecommunications System (UMTS), Code Division Access (CDMA), (CDMA 2000 ), Time Division Synchronous CDMA (TD-SCDMA), Long Term Evolution (LTE); Wireless Fidelity (Wi-Fi), defined by the Institute of Electrical and Electronics Engineers (IEEE) standards 802.11 a, ac, b, 10 g and / or n, Internet Protocol (IP), Bluetooth and / or Near Field Communication, (NFC ), or similar communication technology according to different embodiments.

Enligt vissa andra utf6ringsformer är 3D-kameran 110-1, 110-2 och signalmottagaren 410 anordnade fOr kommunikation och informationsOverfOring Over ett tradbundet granssnitt. Sadant tradbundet granssnitt kan innefatta ett kommunikations- bussystem bestaende av en eller flera konnmunikationsbussar fOr att sammankoppla ett antal elektroniska styrenheter (ECU:er), eller kontrollenheter/controllers, och olika pa fordonet 100 lokaliserade komponenter och sensorer. Fordonets kommunikationsbuss kan utgoras av en eller flera av en kabel; en databuss, sasom en CAN-buss (Controller Area Network buss), en MOST-buss (Media Orien- ted Systems Transport), eller nagon annan busskonfiguration; eller av en tradlos anslutning exempelvis enligt flagon av de ovan uppraknade teknologierna fOr tadlos kommunikation. According to certain other embodiments, the 3D camera 110-1, 110-2 and the signal receiver 410 are arranged for communication and information transmission over a wired interface. Such a wired interface may include a communication bus system consisting of one or more communication buses for connecting a number of electronic control units (ECUs), or control units / controllers, and various components and sensors located on the vehicle 100. The communication bus of the vehicle may be one or more of a cable; a data bus, such as a CAN bus (Controller Area Network bus), and a MOST bus (Media Orient- ted Systems Transport), or any other bus configuration; or by a wireless connection, for example according to the flag of the above-mentioned technologies for wireless communication.

Vidare innefattar berakningsenheten 120 en processorkrets 420, anordnad att faststalla ett normalplan 140, baserat pa matning av ett avstand Al i fordonets hojdriktning mellan en 3D-kamera 110-1, 110-2 innefattad i fordonet 100 och ett underlag 130 da fordonet 100 är i horisontell position. Processorkretsen 420 är aven anordnad att berakna skillnaden i avstand, mellan uppmatt avstand A2, A3 till underlaget 130 och avstandet Al till det faststallda normalplanet 140. Dessutom är processorkretsen 420 anordnad att detektera att fordonet 100 hailer pa att valta da den beraknade skillnaden i avstand overskrider ett troskelvarde. 16 Processorkretsen 420 kan utg6ras av exempelvis en eller flera Central Processing Unit (CPU), mikroprocessor eller annan logik utformad att tolka och utfOra instruktioner och/eller att som att lasa och skriva data. Processorkretsen 420 kan hantera data for inflode, utflode eller databehandling av data innefattande aven buffring av data, kontrollfunktioner och liknande. Further, the calculating unit 120 comprises a processor circuit 420, arranged to determine a normal plane 140, based on feeding a distance A1 in the vehicle height direction between a 3D camera 110-1, 110-2 included in the vehicle 100 and a base 130 when the vehicle 100 is in a horizontal position. The processor circuit 420 is also arranged to calculate the difference in distance, between the measured distance A2, A3 to the base 130 and the distance A1 to the determined normal plane 140. In addition, the processor circuit 420 is arranged to detect that the vehicle 100 is select when the calculated difference in distance exceeds a threshold value. 16 The processor circuit 420 may be, for example, one or more Central Processing Unit (CPU), microprocessor or other logic designed to interpret and execute instructions and / or to read and write data. The processor circuit 420 may handle data for inflow, outflow or data processing of data including also buffering of data, control functions and the like.

Vidare kan utfOringsformer av berakningsenheten 120 innefatta en minnesenhet 4vilken kan i vissa utfOringsformer kan utgoras av ett lagringsmedium fOr data. Minnesenheten 425 kan utgOras av exempelvis ett minneskort, flashminne, USBminne, harddisk eller annan liknande datalagringsenhet, till exennpel flagon ur 10 gruppen: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash-minne, EEPROM (Electrically Erasable PROM), etc. i olika utforingsformer. Furthermore, embodiments of the computing unit 120 may comprise a memory unit 4 which in some embodiments may be constituted by a storage medium for data. The memory unit 425 can be constituted by, for example, a memory card, flash memory, USB memory, hard disk or other similar data storage device, for example flake from 10 group: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically Erasable PROM), etc. in various embodiments.

Berakningsenheten 120 kan vidare innefatta en signalsandare 430, anordnad att skicka en styrsignal fOr att utlosa en skyddsatgard f6r att skydda fordonets forare, da detektion av att fordonet 100 hailer pa att valta och/eller av ett fOrernal 150 som bedoms traffa fordonets styrhytt 105 vid en valtning har gjorts. The calibration unit 120 may further comprise a signal transmitter 430, arranged to send a control signal to trigger a protection measure to protect the driver of the vehicle, then detection that the vehicle 100 is about to roll over and / or of a vehicle 150 which is judged to hit the vehicle's wheelhouse 105 at a management has been done.

Vidare innefattar uppfinningen enligt vissa utfOringsformer ett datorprogram fOr detektion av valtning av ett fordon 100. Datorprogrammet är anordnat att uffora fOrfarandet 300 enligt atminstone nagot av de tidigare beskrivna stegen 301-305, da programmet exekveras i en processorkrets 420 i berakningsenheten 120. Furthermore, according to certain embodiments, the invention comprises a computer program for detecting selection of a vehicle 100. The computer program is arranged to perform the method 300 according to at least some of the previously described steps 301-305, when the program is executed in a processor circuit 420 in the calculation unit 120.

FOrfarandet 300 enligt atminstone nagot av stegen 301-305 fOr detektion av valtning av fordonet 100 kan implementeras genom en eller flera processorkretsar 420 i berakningsenheten 120 tillsammans med datorprogramkod fOr att utfOra flagon, nagra, vissa eller alla av de steg 301-305 som beskrivits ovan. Darigenom kan ett datorprogram innefattande instruktioner for att utfora stegen 301-305 da programmet laddas i processorkretsen 420. The method 300 according to at least some of the steps 301-305 for detecting control of the vehicle 100 may be implemented by one or more processor circuits 420 in the calculation unit 120 together with computer program code for performing the flag, some, some or all of the steps 301-305 described above. . Darigenom may be a computer program including instructions for performing steps 301-305 when the program is loaded into the processor circuit 420.

Detta ovan beskrivna datorprogram i fordonet 100 ar i vissa utfOringsformer anordnat att installeras i minnesenheten 425 i berakningsenheten 120, exempelvis Over ett tradlost granssnitt. 17 De ovan beskrivna och diskuterade signalmottagare 410, och/ eller signalsandare 430 kan i vissa utforingsformer utgoras av separata sandare och nnottagare. Emellertid kan signalmottagare 410 och signalsandare 430 i berakningsenheten 120 i vissa utforingsformer utgoras av en sandtagare, eller transceiver, som är anpassad att sanda och ta emot radiosignaler, och dar delar av konstruktionen, exempelvis antennen, är gemensam for sandare och nnottagare. Namnda kommunikation kan vara anpassad for tradlOs informationsOverfOring, via radiovagor, WLAN, Bluetooth eller infrarod sandare/mottagarmodul. Dock kan signalmottagare 410, och/eller signalsandare 430 i vissa utforingsformer alternativt vara sarskilt anpas10 sade f6r tradbundet informationsutbyte, eller alternativt for bade tradlos och tadbunden kommunikation enligt vissa utforingsformer. This above-described computer program in the vehicle 100 is in certain embodiments arranged to be installed in the memory unit 425 in the computing unit 120, for example over a wireless interface. 17 The signal receivers 410 described and discussed above, and / or signal transmitters 430 may in some embodiments be separate transmitters and transceivers. However, in some embodiments, signal receivers 410 and signal transmitters 430 in the calibration unit 120 may be a sand receiver, or transceiver, adapted to transmit and receive radio signals, where parts of the structure, such as the antenna, are common to transmitters and receivers. The said communication can be adapted for wireless information transmission, via radio waves, WLAN, Bluetooth or infrared transmitter / receiver module. However, signal receivers 410, and / or signal transmitters 430 in certain embodiments may alternatively be specially adapted for wired information exchange, or alternatively for both wireless and wired communication according to certain embodiments.

Uppfinningen innefattar vidare ett system 400 for detektion av valtning av ett for-don 100. Detta system 400 innefattar atminstone en 3D-kamera 110-1, 110-2 och en berakningsenhet 120, som beskrivits ovan. The invention further comprises a system 400 for detecting selection of a vehicle 100. This system 400 comprises at least one 3D camera 110-1, 110-2 and a calculating unit 120, as described above.

Systemet 400 kan vidare innefatta tva 3D-kameror 110-1, 110-2 monterade i eller pa fordonet 100. The system 400 may further include two 3D cameras 110-1, 110-2 mounted in or on the vehicle 100.

Sadan 3D-kamera 110-1, 110-2 kan innefatta exempelvis en ToF kamera, en stereokamera och/eller ljusfaltskamera enligt olika utforingsformer. Such a 3D camera 110-1, 110-2 may comprise, for example, a ToF camera, a stereo camera and / or a light field camera according to various embodiments.

Somliga utforingsformer av uppfinningen inbegriper aven ett fordon 100, vilket in-nefattar ett i fordonet 100 installerat system 400 for detektion av valtning av fordo-net 100. 18 Some embodiments of the invention also include a vehicle 100, which includes a system 400 installed in the vehicle 100 for detecting vehicle management 100. 18

Claims (16)

PATENTKRAVPATENT REQUIREMENTS 1. Forfarande (300) i en berakningsenhet (120) for detektion av valtning av ett fordon (100), dar forfarandet (300) kannetecknas av: faststallande (301) av ett normalplan (140), genom matning av ett aystand (Al) i fordonets hojdriktning mellan en 3D-kamera (110-1, 110-2) innefattad i fordonet (100) och ett underlag (130) da fordonet (100) är i horisontell position; matning (302) med 3D-kameran (110-1, 110-2) av aystandet (A2, A3) melIan 3D-kameran (110-1, 110-2) och fordonets underlag (130); berakning (303) av skillnaden i aystand, mellan det uppmatta (302) av10 standet (A2, A3) och aystandet (Al) till det faststallda (301) normalplanet (140); detektering (304) av att fordonet (100) hailer pa att valta da den beraknade (303) skillnaden i avstand overskrider ett troskelvarde.A method (300) in a calculating unit (120) for detecting the steering of a vehicle (100), the method (300) being characterized by: determining (301) a normal plane (140), by feeding an aystand (A1) in the vertical direction of the vehicle between a 3D camera (110-1, 110-2) included in the vehicle (100) and a base (130) when the vehicle (100) is in a horizontal position; feeding (302) with the 3D camera (110-1, 110-2) the position (A2, A3) between the 3D camera (110-1, 110-2) and the vehicle base (130); calculating (303) the difference in aystand, between the fed (302) of the stand (A2, A3) and the aystand (A1) to the fixed (301) normal plane (140); detecting (304) that the vehicle (100) is about to roll over when the calculated (303) difference in distance exceeds a threshold value. 2. Forfarandet (300) enligt krav 1, vidare innefattande detektering (305) med 3D-kameran (110-1, 110-2) av ett forernal (150) pa underlaget (130) som bed6ms traffa fordonets styrhytt (105) vid en valtning.The method (300) of claim 1, further comprising detecting (305) with the 3D camera (110-1, 110-2) a forernal (150) on the ground (130) which is judged to hit the vehicle cab (105) at a management. 3. Forfarandet (300) enligt nagot av krav 1 eller krav 2, dar fordonet (100) innefattar tva 3D-kameror (110-1, 110-2), och dar matningen (302) av aystandet (A2, A3) och berakningen (303) gors for respektive 3D-kamera (110-1, 110-2), och dar detekteringen (304) innefattar att den beraknade (303) skillnaden i aystand Overskrider trOskelvardet fOr [Dada matningarna samtidigt.The method (300) of any of claims 1 or 2, wherein the vehicle (100) comprises two 3D cameras (110-1, 110-2), and wherein the feed (302) of the aystand (A2, A3) and the calculation (303) is made for the respective 3D camera (110-1, 110-2), and where the detection (304) comprises that the calculated (303) difference in aystand Exceeds the threshold value for [Dada feeds simultaneously. 4. Forfarandet (300) enligt nagot av krav 1-3, dar matningen (302) med 3Dkameran (110-1, 110-2) av aystandet (A2, A3) mellan 3D-kameran (110-1, 110-2) och fordonets underlag (130) innefattar aystandsmatning till ett flertal punkter pa underlaget (130).The method (300) of any of claims 1-3, wherein the feeding (302) with the 3D camera (110-1, 110-2) of the aystand (A2, A3) between the 3D camera (110-1, 110-2) and the vehicle substrate (130) includes stand feed to a plurality of points on the substrate (130). 5. Forfarandet (300) enligt nagot av krav 1-4, dar matningen (302) med 3D- kameran (110-1, 110-2) av avstandet (A2, A3) anyands for att berakna en vinkel 19 (a) pa fordonets lutning i forhallande till det faststallda normalplanet (140), och dar detekteringen (304) av att fordonet (100) hailer pa att valta g6rs dá vinkeln (a) pa fordonets lutning overskrider ett troskelvarde.The method (300) of any of claims 1-4, wherein the feed (302) with the 3D camera (110-1, 110-2) of the distance (A2, A3) is anyands for calculating an angle 19 (a) of the inclination of the vehicle in relation to the determined normal plane (140), and where the detection (304) that the vehicle (100) is about to tip is made then the angle (a) of the inclination of the vehicle exceeds a threshold value. 6. Forfarandet (300) enligt nagot av krav 1-5, dar 3D-kameran (110-1, 110-2) utgors av: en Time of Flight, ToF, kamera; en stereokamera; och/ eller en ljusfaltskamera.The method (300) of any of claims 1-5, wherein the 3D camera (110-1, 110-2) is comprised of: a Time of Flight, ToF, camera; a stereo camera; and / or a light field camera. 7. Forfarandet (300) enligt nagot av krav 1-6, dar detektionen (304) av att fordonet (100) hailer pa att valta och/ eller detektionen (305) av ett forernal (150) som bedoms traffa fordonets styrhytt (105) vid en valtning anvands for att utlosa en skyddsatgard for att skydda fordonets forare.The method (300) of any of claims 1-6, wherein the detection (304) of the vehicle (100) is capable of overturning and / or the detection (305) of a forernal (150) judged to hit the vehicle's wheelhouse (105) during a rollover is used to trigger a protective guard to protect the driver of the vehicle. 8. Forfarandet (300) enligt nagot av krav 1-7, dar matningen (302) med 3D- kameran (110-1, 110-2) av avstandet (A2, A3) mellan 3D-kameran (110-1, 110-2) och fordonets underlag (130) Ors kontinuerligt.The method (300) of any of claims 1-7, wherein the feed (302) with the 3D camera (110-1, 110-2) of the distance (A2, A3) between the 3D camera (110-1, 110- 2) and vehicle base (130) Ors continuously. 9. Berakningsenhet (120) for detektion av valtning av ett fordon (100), dar berakningsenheten (120) kannetecknad av: en signalmottagare (410), anordnad att ta emot ett matvarde (A2, A3) fran en 3D-kannera (110-1, 110-2) innefattad i fordonet (100); en processorkrets (420), anordnad att faststalla ett normalplan (140), baserat pa matning av ett avstand (Al) i fordonets hojdriktning mellan en 3D-kamera (110-1, 110-2) innefattad i fordonet (100) och ett underlag (130) da fordonet (100) är i horisontell position, sannt anordnad att berakna skillnaden i avstand, mellan uppmatt avstand (A2, A3) till underlaget (130) och avstandet (Al) till det faststallda nornnalplanet (140), och dessutom anordnad att detektera att fordonet (100) hailer pa att valta da den beraknade skillnaden i avstand overskrider ett troskelvarde.A calculating unit (120) for detecting the steering of a vehicle (100), the calculating unit (120) being characterized by: a signal receiver (410), arranged to receive a food value (A2, A3) from a 3D canning (110). 1, 110-2) included in the vehicle (100); a processor circuit (420), arranged to determine a normal plane (140), based on feeding a distance (A1) in the height direction of the vehicle between a 3D camera (110-1, 110-2) included in the vehicle (100) and a ground (130) when the vehicle (100) is in a horizontal position, true arranged to calculate the difference in distance, between the measured distance (A2, A3) to the ground (130) and the distance (A1) to the fixed normal plane (140), and further arranged to detect that the vehicle (100) is about to roll over when the calculated difference in distance exceeds a threshold value. 10. Berakningsenheten (120) enligt krav 9, vidare anordnad att detektera ett forernal (150) pa underlaget (130) som bedoms traffa fordonets styrhytt (105) vid en valtning, baserat pa matvarde mottaget Iran 3D-kameran (110-1, 110-2).The calculating unit (120) according to claim 9, further arranged to detect a forernal (150) on the ground (130) which is judged to hit the wheelhouse (105) of the vehicle during a selection, based on the food received by the Iran 3D camera (110-1, 110 -2). 11. Berakningsenheten (120) enligt krav 9-10, vidare innefattande en signalsandare (430), anordnad att skicka en styrsignal f6r att utlosa en skyddsatgard f6r att skydda fordonets forare, da detektion av att fordonet (100) hailer pa att valta och/ eller av ett foremal (150) som bedoms traffa fordonets styrhytt (105) vid en valtning har gjorts.The calibration unit (120) according to claims 9-10, further comprising a signal transmitter (430), arranged to send a control signal to trigger a protection measure to protect the driver of the vehicle, when detecting that the vehicle (100) is about to roll and / or or by an object (150) which is judged to hit the vehicle's wheelhouse (105) during a rollover. 12. Datorprogram f6r detektion av valtning av ett fordon (100), genom ett f6rfarande (300) enligt nagot av krav 1-8, da datorprogrammet exekveras i en processorkrets (420) i en berakningsenhet (120) enligt nagot av krav 9-11.A computer program for detecting the management of a vehicle (100), by a method (300) according to any one of claims 1-8, wherein the computer program is executed in a processor circuit (420) in a calculation unit (120) according to any one of claims 9-11 . 13. System (400) for detektion av valtning av ett fordon (100), varvid systemet 10 (400) innefattar: en 3D-kamera (110-1, 110-2); och en berakningsenhet (120) enligt nagot av krav 9-11.A system (400) for detecting the steering of a vehicle (100), the system 10 (400) comprising: a 3D camera (110-1, 110-2); and a calculating unit (120) according to any one of claims 9-11. 14. Systemet (400) enligt krav 13, vidare innefattande tva 3D-kameror (110-1, 110-2).The system (400) of claim 13, further comprising two 3D cameras (110-1, 110-2). 15. Systemet (400) enligt nagot av krav 13-14, dar 3D-kameran (110-1, 110-2) innefattar: Time of Flight, ToF, kamera; stereokamera; och/ eller ljusfaltskamera.The system (400) of any of claims 13-14, wherein the 3D camera (110-1, 110-2) comprises: Time of Flight, ToF, camera; stereo camera; and / or light field camera. 16. Fordon (100) innefattande ett system (400) enligt nagot av krav 13-15, anordnat att utfora ett forfarande (300) enligt nagot av krav 1-8 for detektion av valtning av fordonet (100). 1/ 101 L 1A vehicle (100) comprising a system (400) according to any one of claims 13-15, arranged to perform a method (300) according to any one of claims 1-8 for detecting steering of the vehicle (100). 1/101 L 1
SE1350902A 2013-07-18 2013-07-18 Roll-over warning in vehicles SE538987C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1350902A SE538987C2 (en) 2013-07-18 2013-07-18 Roll-over warning in vehicles
PCT/SE2014/050818 WO2015009222A1 (en) 2013-07-18 2014-06-30 Overturn warning in vehicles
DE112014002961.0T DE112014002961B4 (en) 2013-07-18 2014-06-30 Rollover warning for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1350902A SE538987C2 (en) 2013-07-18 2013-07-18 Roll-over warning in vehicles

Publications (2)

Publication Number Publication Date
SE1350902A1 true SE1350902A1 (en) 2015-01-19
SE538987C2 SE538987C2 (en) 2017-03-14

Family

ID=52346547

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1350902A SE538987C2 (en) 2013-07-18 2013-07-18 Roll-over warning in vehicles

Country Status (3)

Country Link
DE (1) DE112014002961B4 (en)
SE (1) SE538987C2 (en)
WO (1) WO2015009222A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107187443B (en) * 2017-05-02 2020-08-11 吉林大学 Vehicle instability early warning system and method
JP6885361B2 (en) * 2018-03-07 2021-06-16 株式会社オートネットワーク技術研究所 Processing equipment and processing method
CN113911582B (en) * 2021-10-11 2023-02-28 深圳市保国特卫安保技术服务有限公司 Storage tank car with storage tank monitoring system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080147280A1 (en) * 1995-06-07 2008-06-19 Automotive Technologies International, Inc. Method and apparatus for sensing a rollover
DE19650629C2 (en) 1996-12-06 1999-02-25 Telefunken Microelectron Method for measuring the inclination of a vehicle and its use, and arrangement for carrying out the method
DE10204128B4 (en) 2002-02-01 2011-06-22 Robert Bosch GmbH, 70469 Device for rollover detection
DE10242687B4 (en) 2002-09-13 2010-04-22 Robert Bosch Gmbh Device for rollover detection in a vehicle
EP1698521A1 (en) * 2005-03-04 2006-09-06 Mazda Motor Corporation Occupant protection device and method for a vehicle
JP5202993B2 (en) 2008-02-29 2013-06-05 ヤンマー株式会社 Work vehicle
WO2010125492A1 (en) 2009-04-29 2010-11-04 Koninklijke Philips Electronics N.V. A laser diode based multiple-beam laser spot imaging system for characterization of vehicle dynamics
DE102011055795A1 (en) 2011-11-29 2013-05-29 Continental Automotive Gmbh Method for determining an imminent rollover of a vehicle

Also Published As

Publication number Publication date
SE538987C2 (en) 2017-03-14
WO2015009222A1 (en) 2015-01-22
DE112014002961B4 (en) 2019-02-07
DE112014002961T5 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
US9457763B2 (en) Collision detection apparatus
US10416676B2 (en) Obstacle monitoring device, vehicle control device and work machine
RU2666010C2 (en) Method and device for determining traffic density using electronic controller installed in vehicle
EP3379363B1 (en) Device for sensing faults in localization device, and vehicle
CN104943694A (en) System and method for determining of and compensating for misalignment of sensor
US10919475B2 (en) Use of vehicle dynamics to determine impact location
SE1351043A1 (en) Detection of objects using a 3D camera and a radar
CN104925064A (en) Vehicle, vehicle system and method for increasing safety and/or comfort during autonomous driving
CN106233159A (en) The false alarm using position data reduces
JP2022003578A (en) Operation vehicle
SE1350898A1 (en) Determination of lane position
US20170106857A1 (en) Vehicle collision system and method of using the same
CN108955584B (en) Pavement detection method and device
GB2435536A (en) Vehicle safely system that tries to prevent and reduce the severity of an accident or crash, then sends an emergency message after a crash.
SE1350902A1 (en) Roll-over warning in vehicles
SE1350897A1 (en) Sensor detection management
US11640172B2 (en) Vehicle controls based on reliability values calculated from infrastructure information
KR102601168B1 (en) Vehicle and method for determining overturning of vehicle
US10262539B2 (en) Inter-vehicle warnings
EP1998981B1 (en) System for triggering of elements protecting front passengers in case of lateral collision of a vehicle
CN112977370A (en) Automatic emergency braking system and method
WO2020100451A1 (en) Information processing device and driving assistance device
CN112349093A (en) Vehicle early warning method and device fused with V2X sensor
CN111619557A (en) Dangerous road vehicle control method and device, electronic equipment and storage medium
US11535245B2 (en) Systems and methods for reducing a severity of a collision