SE123725C1 - - Google Patents
Info
- Publication number
- SE123725C1 SE123725C1 SE123725DA SE123725C1 SE 123725 C1 SE123725 C1 SE 123725C1 SE 123725D A SE123725D A SE 123725DA SE 123725 C1 SE123725 C1 SE 123725C1
- Authority
- SE
- Sweden
- Prior art keywords
- aluminum
- halide
- reaction
- temperature
- containing material
- Prior art date
Links
- 229910052782 aluminium Inorganic materials 0.000 claims description 113
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 106
- 150000004820 halides Chemical class 0.000 claims description 103
- 239000000463 material Substances 0.000 claims description 43
- 238000006243 chemical reaction Methods 0.000 claims description 42
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 16
- 238000009833 condensation Methods 0.000 claims description 11
- 230000005494 condensation Effects 0.000 claims description 11
- -1 aluminum halide Chemical class 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 10
- 238000001704 evaporation Methods 0.000 claims description 9
- 230000008020 evaporation Effects 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000007670 refining Methods 0.000 claims description 3
- 229920000742 Cotton Polymers 0.000 claims 1
- 239000007789 gas Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 12
- 238000004821 distillation Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 6
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910001610 cryolite Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 2
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 235000014548 Rubus moluccanus Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- HRLHOWWCFUKTIY-UHFFFAOYSA-L dichloroalumanylium Chemical compound Cl[Al+]Cl HRLHOWWCFUKTIY-UHFFFAOYSA-L 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UPFKFPDKDJPNJZ-UHFFFAOYSA-M fluoroalumane Chemical compound [AlH2]F UPFKFPDKDJPNJZ-UHFFFAOYSA-M 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000320 mechanical mixture Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B21/00—Obtaining aluminium
- C22B21/02—Obtaining aluminium with reducing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B21/00—Obtaining aluminium
- C22B21/06—Obtaining aluminium refining
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Uppfinnare: P. Gross. Inventor: P. Gross.
Prioritet begiird frdn den 19 april 1944 (Storbritannien). Priority requested from 19 April 1944 (Great Britain).
FOreliggande uppfinning avser ett forbattral clestillationsforfarande for framstallning eller raffinering av aluminium. The present invention relates to a supernatant clestillation process for the production or refining of aluminum.
Man har tidigare framkastat tanken, att aluminium, nar det ãr intimt blandat med en fast halogenid som t. ex. aluminiumfluorid, magnesiumfluorid eller kryolit, kan destilleras vid temperaturer, som ligga langt under den vid vilken det dr praktiskt mojligt aft destillera det med naninvard hastighet medelst varme enbart, d. v. s. Mir det icke är blandat med en halogenid. It has previously been suggested that aluminum, when intimately mixed with a solid halide such as e.g. Aluminum fluoride, magnesium fluoride or cryolite can be distilled at temperatures well below that at which it is practically possible to distill it at nanorvide rate by heat alone, i.e. it is not mixed with a halide.
Utgaende fran detta ant agande bar man fiireslagit ett fOrfaringssatt for framstallning eller raffinering av aluminium, vilket bestar i att en intim fast blandning, som innehaller en halogenid och aluminium eller aluminiumhaltigt material, bildas, att blandningen uppYarmes i en gentemot aluminium neutral atmosfar fOr att fOranga metalliskt aluminiuni och halogeniden, att angorna kondenseras och att aluminiet avskiljes frail kondensatet, som bestar av en blandning av halogenid och Iialogenicler, som aro instabila vid den anyanda arbetstemperaturen eller som forangas latt vid derma temperatur eller lagre temperaturer och darfor Ora reaktionszonen fattigare pa halogenid f8re den effektiva reaktionen, aro icke onskvarda vid utforandet av detta forfarande. Based on this assumption, a method for producing or refining aluminum was proposed, which consists in forming an intimate solid mixture containing a halide and aluminum or aluminum-containing material, heating the mixture in an aluminum-neutral atmosphere to evaporate metallic aluminum and the halide, that the vapors are condensed and that the aluminum is separated from the condensate, which consists of a mixture of halide and halogens, which are unstable at any other operating temperature or which evaporate easily at this temperature or lower temperatures and therefore make the reaction zone poorer in halide. the effective reaction is not inconvenient in carrying out this procedure.
Vidare liar man funnit (W. Klemm och E. Furthermore, it has been found (W. Klemm and E.
Voss, Zeitschrift fiir anorg. und allgemeine Chemie, vol. 251, sid. 232-40/1943), att niir det fran destillationen vid omkring 700° C ay aluminium blandat med aluminiumfluorid erballna kondensatet, vilket bestfir av en mycket intim blandning av aluminium och aluminiumfluorid, upprepade ganger underkastas en fornyad destination, kommer slutkondensatet att besta ay en molekylar blandning av 2A1 pa 1A1R. Haray bar man slutit sig till, att flyktigheten av aluminium, ndr det är blandat med aluminiurnfluorid, grundar sig pa bildningen ay en aluminium-monofluorid, som Or flyktigare On nagon av dem. Voss, magazine for anorg. and General Chemistry, vol. 251, p. 232-40 / 1943), that from the condensate obtained from the distillation at about 700 ° C ay aluminum mixed with aluminum fluoride, which consists of a very intimate mixture of aluminum and aluminum fluoride, repeatedly subjected to a renewed destination, the final condensate will consist of a molecules mixture of 2A1 on 1A1R. It has been concluded that the volatility of aluminum, when mixed with aluminum fluoride, is based on the formation of an aluminum monofluoride, which is more volatile on any of them.
Till skillnad fran det foregaende har del enligt foreliggande uppfinning faststallts, att angor av halogenider, som tidigare bringats i angfas, reagera med aluminium yid temperaturer, som ligga langt under de temperaturer, yid vilka aluminium skulle avdestillera till foljd ay sitt angtryck, under bildande av flyktiga reaktionsprodukter, som genom aykylning leda till kondensation av aluminium och den ursprungliga halogeniden. Aluminiet uppvarmes i en atmosfar, som antingen endast innehaller angan ay halogeniden eller halogeniderna (foretradesvis under reducerat tryck) eller dessa angor blandade med en gas eller gaser, yilka Oro neutrala gentemot aluminium, sasom I. ex. vale. P0 liknande satt forflyktigas aluminium fran material, som innehalla tillgangligt aluminium, &Isom AlFe eller aluminiumkarbid. In contrast to the foregoing, part of the present invention has been found that halides of halides previously introduced into the react phase react with aluminum at temperatures well below the temperatures at which aluminum would distill to follow its vapor pressure to form volatile reaction products, which by cooling lead to condensation of aluminum and the original halide. The aluminum is heated in an atmosphere which either contains only the halide or halides (preferably under reduced pressure) or these compounds mixed with a gas or gases which are neutral to aluminum, such as I. ex. vale. Similarly, volatile aluminum is made from materials that contain available aluminum, & Isom AlFe or aluminum carbide.
Enligt fOreliggande uppfinning och i motsats till vad som tidigare har larts kunna lOgkokande eller -sublimerande halogenider sasom t. ex. aluminiuniklorid (sublimationspunkt vid normalt tryck 180,2° C) eller aluminiumbromid (kokpunkt vid normalt tryck 256,4° C) med fOrdel anvandas, fastan hogkokande eller -sublimerande halogenider sa.- som t. ex. alurninitunfluorid (sublimationspunkt yid normalt tryck 1260° C) yisat sig vara effektiva. According to the present invention and in contrast to what has previously been learned, boiling or subliming halides such as e.g. aluminum chloride (sublimation point at normal pressure 180.2 ° C) or aluminum bromide (boiling point at normal pressure 256.4 ° C) with advantage is used, solid high-boiling or subliming halides such as e.g. Alurinitun fluoride (sublimation point at normal pressure 1260 ° C) has been found to be effective.
Beroende pa den anvanda halogeniden, saint pa upphettnings- och avlrylningsbetingelserna och det i systemet uppratthallna trycket kondenseras halogeniden antingen tillsammans !Tied aluminiet eller skill fran delta eller ej ails. Depending on the halide used, depending on the heating and cooling conditions and the pressure maintained in the system, the halide is condensed either together with the aluminum or separated from delta or not.
Om halogenidens forangningstemperatur yid det i systemet uppratthallna trycket ej Or under eller ej Or mycket under den praktiserbara reaktionstemperaturen, kondenseras aluminiet tillsammans med eller delvis tillsammans med halogeniden och maste efterat separeras frail denna. Om emellertid temperaturen I Or effektiy reaktion ligger tillraekligt Mgt Over halogenidens forangningstem- 2— — peratur under de i systemet radande forhallandena, kondenseras aluminiet vid en temperatur, sorn ligger tillrackligt hOgt Over halogenidens kondensationstemperatur och separeras darfor fullstandigt eller till storre delen fra.n halogeniden i kondensorns varmaste zon, eller um kondensorn och tillhorande delar av apparaten hallas mellan de hada kondensationstemperaturerna, kondenseras halogeniden ej ails, och stilunda Itimnas halogenidangan i systemet tillgiinglig far kontinuerlig reaktion. Helt skild eller ingen kondensation ails av halogeniden kan hitt ernas med aluminiumklorid eller -bromid. Dessa balogeniders reaktionstemperatur är mycket hogre an deras farangningstemperatur. If the evaporation temperature of the halide yid the pressure maintained in the system is not below or not or well below the practicable reaction temperature, the aluminum condenses together with or partially together with the halide and must subsequently be separated from it. However, if the temperature in the reaction is sufficiently high above the evaporation temperature of the halide below the prevailing conditions in the system, the aluminum condenses at a temperature which is sufficiently high above the condensation temperature of the halide and is therefore completely or largely separated from the halide. in the hottest zone of the condenser, or around the condenser and associated parts of the apparatus is kept between the hot condensation temperatures, the halide is not condensed ails, and thus the halide vapor in the system available is continuously reacted. Completely separate or no condensation ails of the halide can be found with aluminum chloride or bromide. The reaction temperature of these balogenides is much higher than their faranging temperature.
NOr halogenidangan ledes Over det upphettade aluminiet eller material innehallande tillgangligt aluminium kunna hastigheten ()eh partialtrycket av halogeniden samt arean och temperaturen av materialet s regleras, att synbarligen en maximimangd av aluminiet i forhallande till den anvanda halogeniden avdestilleras. Aluminiets forangningshastighet inom dessa granser — d. v. s. sâ hinge som den är under maximimangden i forhallande till hastigheten av halogenidangstrommen, alias i hog grad, medan andra forhallanden forbliva konstantagenom att det alumi- nium innehallande materialets speeifika area och temperatur Det forefaller som urn denim foreteelse — ehuru foljande forklaring 5r teoretisk och uppfinningen icke begransas &raykan far- klaras genom antagandet, att vid reaktionens temperatur upprattas en jamvikt mellan aluminiet eller det tillgOngligt aluminium innehallande materialet, angorna av den ursprungliga halogeniden och angorna av en 'Ogre aluminiumhalogenid, vilken vid avItylning gradvis overgax till den ursprungliga halogeniden och aluminiummetall, ehuru genom hastig avkylning bar erhallits inyeket litet av ett kondensat tillsammans med aluminium, vilket icke kunde identifieras som sadant och vilket visade sig vara instabilt och att undergO en forandring, efter vilken analysen visade endast aluminium och halogenid. When the halide vapor is passed over the heated aluminum or material containing available aluminum, the velocity () or partial pressure of the halide and the area and temperature of the material can be controlled so that apparently a maximum amount of the aluminum is distilled off relative to the halide used. The rate of evaporation of aluminum within these limits - i.e. as low as it is below the maximum amount in relation to the velocity of the halide current, alias to a high degree, while other conditions remain constant due to the specific area and temperature of the aluminum-containing material. The following explanation is theoretical and the invention is not limited by the assumption that at the temperature of the reaction an equilibrium is established between the aluminum or the available aluminum-containing material, the angles of the original halide and the angles of an Ogre aluminum halide, which upon cooling gradually overgax to the original halide and aluminum metal, although by rapid cooling little was obtained of a condensate together with aluminum, which could not be identified as such and which proved to be unstable and to undergo a change, after which the analysis showed only t aluminum and halide.
Med anvandning ay aluminiumklorid, som liar visat sig vara mycket tillfredsstiillande, skulle alltsa reaktionen fOrlOpa salunda: 2A1AICI, (anga) -->- 3A1C1 (anga). Med anvandning av en komplex halogenid, sasorn kryolit, skulle reaktionen bliva: 5A1(3NaF, AlF,) (sasom anga)-->- 6AIF (anga)3Na (Anga). Using aluminum chloride, which has been found to be very satisfactory, the reaction would thus proceed as follows: 2A1AlCl3 (anga) -> - 3A1C1 (anga). Using a complex halide, such as cryolite, the reaction would be: 5A1 (3NaF, AlF,) (as indicated) -> - 6AIF (indicated) 3Na (indicated).
Da bildningen av aluminium-monolialogeniden forbrukar varme och forloper under volymokning, kommer reaktionen att bliva desto fullstandigare, ju hogre temperaturen och ju lagre trycket Or eller, em halogeniden är blandad rated en neutral gas sasom vale, ju hOgre dess partialtryck (koncentration) dr. Den absoluta mingden monobalogenid per volymenhet i gasblandningen (d. v. s. koncentrationen av forangat aluminium) minskas med minskande koncentration av den ursprungliga halogeniden. En praktisk undre grans far dess tryek (koncentration) Or given av de alltfor sma mangder aluminium, som avdestilleras vid alltfor lagt halogenidtryck. Den praktiska undre gransen for temperaturen beror i overensstammelse med dessa jamviktsbetingelser pa beskaffenheten av den anvanda halogeniden och det aluminiet innehallande materialet samt inskrankes ytterligare av den alltfor laga reaktionshastigheten yid for laga temperaturer. As the formation of the aluminum monolialogenide consumes heat and proceeds during volume increase, the reaction will be more complete, the higher the temperature and the lower the pressure Or or, if the halide is mixed rated a neutral gas as vale, the higher its partial pressure (concentration) dr. The absolute amount of monobalogenide per unit volume in the gas mixture (i.e. the concentration of evaporated aluminum) decreases with decreasing concentration of the original halide. A practical lower limit is given by its pressure (concentration) Or given by the too small amounts of aluminum, which are distilled off at too high a halide pressure. The practical lower limit of the temperature depends, in accordance with these equilibrium conditions, on the nature of the halide used and the aluminum-containing material and is further limited by the excessively low reaction rate yid for low temperatures.
Dâ reaktionen nOrmar sig fullbordan on salunda ger hogre effekt yid &ad reaktionstemperatur och minskat haIogenidtryck och da. reaktionshastigheten 'Ras med temperaturen, Or det radligt aft halla reaktionstemperaturen hagre On halogenidens forangningstemperatur under de i systemet radande farhalIandena. Denna skillnad mellan forangningstemperaturen och den temperatur, vid vilken reaktionen lampligen utfores, Or siisoni redan anffirts mycket slur yid aluminiumklorid eller -bromid, men Or Oven hell avseviird i andra fall, t. ex. 300-400° C beroende pa forlitillandena, vid natriumklorid. Det Or emellertid i allinanhet med hansyn till jamvikten mest ekonomiskt aft yam . tillfredsstalld med en effektivitet av mindre On 90 %. Om forsOk gams med hogre effektivitet, astadkomTiler en relativt stor ökning av temperaturen endast en relativt ringa oltning av effektiviteten. Likaledes beror den undre praktiska gr5nsen far temperaturen pa den anvinda halogenidens natur och del material, sum innehailer det tillgangliga aluminiet begransas av den alltfor laga effektiviteten och den ARM.- Figa reaktionshastigheten vid alltfor 14 reaktionstemperatur. When the reaction is nearing completion it thus gives higher effect yid & ad reaction temperature and reduced halide pressure and then. the reaction rate 'Ras with the temperature, Or it radially aft halla the reaction temperature hagre On the evaporation temperature of the halide below the farhalIande radan in the system. This difference between the evaporation temperature and the temperature at which the reaction is suitably carried out, Or siisoni already stated very slur yid aluminum chloride or bromide, but Or Oven well avseviird in other cases, e.g. 300-400 ° C depending on the requirements, for sodium chloride. It Or, however, alone with hansyn to jamweight most economically aft yam. satisfied with an efficiency of less On 90%. If higher efficiency experiments were attempted, a relatively large increase in temperature would result in only a relatively small increase in efficiency. Likewise, the lower practical limit of temperature depends on the nature and part of the halide used, the amount of available aluminum being limited by the excessively low efficiency and the ARM.-Fig. Reaction rate at too high a reaction temperature.
Farfaringssattet for framstallning eller ralfinering av aluminium enligt Hireliggande uppfinning hestar i att uppyhrmda aluminiumhaltiga material bringas att reagera med en halogenid, som overforts i angfas innan den bringas i kontakt och reaktion med materialet, varigenom aluminiet forflyktigas fran materialet under bildning av aluminiumhalogenforeningsangor, och att dessa angor avkylas for aft kondensera aluminiet. Det Or fordelaktigt att lata reaktionen aga rum vid temperaturer, vid vilka halogenidangan icke Or mattad. The process for producing or ralfinating aluminum according to the present invention involves reacting heated aluminum-containing materials with a halide which is transferred to the gas before being contacted and reacting with the material, thereby volatilizing the aluminum from the material to form aluminum halide compound vapors. angor is cooled to aft condense the aluminum. It is advantageous to allow the reaction to proceed at temperatures at which the halide vapor is not slowed.
Uttrycket »aluminiumhaltigt material» Or avsett att innefatta orent aluminium eller aluminiumlegeringar shsom I. ex. aluminiumkisel, avensom sa.dana foreningar som ferroaluminium (AlFe) och aluminiumkarbid samt blandningar av dessa fareningar med aluminium och aluminiumlegeringar. Det kan Oven innefatta ren eller râ aluminiumoxid eller annan aluntiniummalm tillsammans med lampliga reduktionsmedel sasom kol eller kisel el- — — ler blandningar av sadana aluminiumhaltiga material som forut namnts och deras mekaniska blandningar med andra material. The term «aluminum material» Or is intended to include impure aluminum or aluminum alloys such as I. ex. aluminum silicon, as well as compounds such as ferroaluminum (AlFe) and aluminum carbide and mixtures of these compounds with aluminum and aluminum alloys. It may also comprise pure or crude alumina or other aluminum ore together with suitable reducing agents such as carbon or silicon or mixtures of such aluminum materials as previously mentioned and their mechanical mixtures with other materials.
Uttry&et »halogenid» innefattar enkla eller sammansatta aluminiumhalogenider, halogeniderna av jordalkalimetallerna och av alkalimetallerna eller de f8reningar, som bilda halogenider med de aluminiumhaltiga materialen, sasom klor eller klorvate eller blandningar av tva eller flera siidana material med varandra. The term "halide" includes simple or complex aluminum halides, the halides of the alkaline earth metals and of the alkali metals or the compounds which form halides with the aluminum-containing materials, such as chlorine or chlorine, or mixtures of two or more identical materials with each other.
Lagkokande eller -sublimerande halogenider, silsom aiuminiumbromid och pa grand av sift lagre pris sarskilt alunainiumklorid, hava visat sig effektiva och fordelaktiga, bland annat emedan de, om de overhuvud taget kondenseras, kondenseras skilda frau aluminiet. Halogeniden eller halogeniderna kunna avdunstas i de kamrar, som innehalla det aluminiumhaltiga materialet, eller i olika kamrar, och avdunstningen kan utforas under nor-malt, reducerat eller nagot Okat tryck eller genom att en inert gas eller gasblandning le-des genom eller Over halogeniden. Boiling or subliming halides, such as aluminum bromide and, in particular, lower alumina chloride, have been found to be effective and advantageous, inter alia because, if they are condensed at all, they are condensed from the aluminum. The halide or halides can be evaporated in the chambers containing the aluminum-containing material, or in different chambers, and the evaporation can be carried out under normal, reduced or slightly Okat pressure or by passing an inert gas or gas mixture through or over the halide.
Alit after arten av det almniniumhaltiga materialet och halogeniden, soin anvandas, komma halogenidforeningens angor antingen att vara de enda gasformiga reaktionsprodukterna eller att bildas tillsammans med andra gaser eller angor, sasom t. ex. natriumanga eller koloxid. Sattet att utvinna aluminiet maste valjas i Overensstammelse harmed. Depending on the nature of the aluminum-containing material and the halide used, the halides of the halide compound will either be the only gaseous reaction products or be formed together with other gases or angles, such as e.g. sodium vapor or carbon monoxide. The method of extracting the aluminum must be chosen in accordance with this.
Om aluminiumhalogenforeningsangorna Aro de enda gasformiga produkterna, eller om de bildas tillsammans med andra gaser eller angor, som ej aro potentiellt reoxiderande, foredrages direkt och gradvis skeende kylning. Om potentiellt reoxiderande angor bildas tillsammans med aluminiumhalogenforeningsangorna (t. ex. koloxid om det aluminiumhaltiga materialet ar en blandning av kol och aluminium eller aluminiumhaltigt material) maste snabbaykylning eller alternativt absorption atfoIjd av omdestillation och kylfling valjas i overensstaminelse med foreskrifterna pa omradet for den karbotermiska reduktionen av magnesiumoxid. If the aluminum halide compound vapors are the only gaseous products, or if they are formed together with other gases or vapors which are not potentially reoxidizing, direct and gradual cooling is preferred. If potentially reoxidizing fumes are formed together with the aluminum halide compound fumes (eg carbon monoxide if the aluminum-containing material is a mixture of carbon and aluminum or aluminum-containing material), rapid cooling or alternative absorption due to redistillation and cooling must be chosen in accordance with carbothermic regulations. of magnesium oxide.
Vid utovandet av uppfinningen bringas det aluminiumhaltiga materialet lampligen i ett tillstand, i vilket det erbjuder en stor specifik yta at halogenidangan eller den halogenidhaltiga angan. I small tillstand kan del upptagas i uppyarinda flata behallare eller skit-Tar eller spridas over uppyarmda, krossade material, vilka aro anbragta i kamrar, som aro fyllda med halogenidangan (foretradesvis under reducerat tryck) eller med en blandning av halogenidangan och inerta gaser sasom irate, varvid namnda kamrar aro forhundna med lampliga kondensorer for att kondensera aluminiet eller aluminiet tillsammans med halogeniden. Aluminiet kan droppa genom torn fylida med krossat material eller plattorn eller Dar, som aro forbun.dna med en kondensor, genom vilka torn halogenidiingan eller gasblandningen ledes under normalt, nagot forhOjt eller reducerat tryck. Halogenidanga eller sadan anga innehallande gas kan aven bubblas genom det flytande aluminiumhaltiga materialet, varvid den darefter passerar genom kondensorn for att kondensera aluminiet eller aluminiet tillsammans med halogenid. In the practice of the invention, the aluminum-containing material is suitably brought into a state in which it offers a large specific surface area of the halide vapor or the halide-containing vapor. In the small state, the part can be taken up in superheated flat containers or dirt or spread over heated, crushed materials, which are placed in chambers, which are filled with halide vapor (preferably under reduced pressure) or with a mixture of halide vapor and inert gases such as irate. , said chambers being precluded with suitable condensers for condensing the aluminum or the aluminum together with the halide. The aluminum may drip through towers filled with crushed material or plates or Dar, which are connected to a condenser, through which towers the halide or gas mixture is passed under normal, slightly elevated or reduced pressure. Halide vapor or such gas containing gas can also be bubbled through the liquid aluminum-containing material, then passing through the condenser to condense the aluminum or aluminum together with halide.
Om det aluminiumhaltiga materialet Or fast vid reaktionstemperaturen, brytes det lanapIigen i sma styclien eller krossas till ett grovt pulver, -varvid det i senare fallet lompligen pressas till porosa briketter och anbringas i namnda reaktionskammare (eller torn), Or det bringas i beroring med eller bespolas av halogenidanga eller sadan anga innehallande gas. If the aluminum-containing material Or is fixed at the reaction temperature, it is broken into small pieces or crushed into a coarse powder, in which case it is clumsily pressed into porous briquettes and applied to said reaction chamber (or tower), Or it is brought into contact with or flushed with halide vapor or such vapor containing gas.
Alternativt kan del aluminiumhaltiga materialet blasas in i reaktionskammaren som ett skum medelst halogenidangan eller den halogenidanga innehallande gasen, varigenom fasta eller flytande aterstoder avsatta sig pa bottnen av reaktionskammaren eller sarskilda kamrar, som hallas pa lampliga temperaturer, medan reaktionsangorna ledas till lampliga kondensorer liir kondensering av aluminiet. NOr lagkokande eller lagsublimerande halogenider anvandas, behover halogenidangan Overhuvud taget icke kondenseras. mar da reaktionen agar ruin i ett statiskt system (lampligen under reducerat tryck), kan detta uppnas helt enkelt genom att hOila varje del av hela systemet, inbegripet kondensorn for aluminiet, Over halogenidens kondensationstemperatur. Emellertid kan en strom av halogenidangan eller den halogenid innehallande gasen ledas genom kondensorerna fOr att kondensera endast aluminiet och sedan cirkuleras pa nytt medeIst lampliga pumpanordningar Over det aluminiumhaltiga materialet. Mir lagkokande eller -sublimerande halogenider anvandas och halogenklangan kondenseras under loppet av processen, Or det Iiimpligt att anvanda mina tva halogenidkondensorer, VII-ha hada kunna anylindas vaxelvis som kondensor och som trvdunstare. Genom alt samtidigt den ena (eller den ena gruppen) anvandes sasom kondensor och den andra (eller den andra gruppen) sasorn avdunstare kan en stor mangd aluminium destilleras eller kan t. o. In. en oavbruten destillation av aluminium utforas med en mycket begransad mangd halogenid. Alternatively, some of the aluminum-containing material may be blown into the reaction chamber as a foam by means of the halide vapor or the halide vapor containing gas, whereby solid or liquid residues are deposited at the bottom of the reaction chamber or separate chambers kept at suitable temperatures while conducting the reaction vapors. aluminum. NO low-boiling or low-sublime halides are used, the halide vapor does not need to be condensed at all. Since the reaction is in ruins in a static system (preferably under reduced pressure), this can be achieved simply by holding each part of the whole system, including the condenser for the aluminum, above the condensation temperature of the halide. However, a stream of the halide vapor or the halide-containing gas can be passed through the condensers to condense only the aluminum and then recirculated by means of suitable pumping devices over the aluminum-containing material. Low-boiling or subliming halides are used and the halogen sound is condensed during the process. If it is possible to use my two halide condensers, VII-ha could be anylindled alternately as a condenser and as a vapor evaporator. By all at the same time one (or one group) is used as a condenser and the other (or the other group) as an evaporator, a large amount of aluminum can be distilled or can even be added. an uninterrupted distillation of aluminum is carried out with a very limited amount of halide.
I varje fall kan mid anvandning av lagkokande eller -sublimerande halogenider det genom kondensationen av aluminiet alstrade varmet utnyttjas for att foranga halogeniden, om den kondenseras, och/eller for att forvarma halogenidangan. In any case, using low-boiling or subliming halides, the heat generated by the condensation of the aluminum can be used to vaporize the halide, if it is condensed, and / or to preheat the halide vapor.
Halogenidangorna kunna forvarmas genom att anvanda den som kylmedium for alumniniumkondensorn, eller ocksa kan nagot annat kylmedium, t. ex, on gas, bringas att cir- 4— — kulera Indian aluminiumkondensorn och -Ormevaxiaren, genom vilken halogenidangan passe:ear. Man kan anviinda det slutligen àterstnce varmet i kylmediet for att Minna forangningsvarmet fOr halogeniden. Bada metodenna, direkt och indirekt upphettning av balogeniden genom almniniets kondensationsvarme, kunna kombineras. The halide vapors can be preheated by using it as a refrigerant for the aluminum condenser, or also some other refrigerant, for example, on gas, can be caused to circulate the Indian aluminum condenser and the worm wax through which the halide vapor passes. Finally, the residual heat in the refrigerant can be used to reduce the evaporation heat of the halide. Both methods, direct and indirect heating of the balogenide by the condensation heat of the ordinary, can be combined.
En fordel med foreliggande upplinning ar, att mekaniska bearbetningar av halogeniden sa.som mining ()eh pressning till briketter aro onodiga. Till oeh med det altiminiumhaltiga materialet kan i malign fall inforas i destillittionskammaren i sin ursprungliga styekeform. An advantage of the present winding is that mechanical processing of the halide such as mining () or pressing into briquettes is unnecessary. In addition, in the case of malignant material, the distillation chamber may be introduced into the distillation chamber in its original form.
En annan fordel med foreliggande uppfin- ning Or, att den inedfor en avseyard besparing i den miingd halogenid, som maste avdunstas for varje del aluminium. Mr t. ex. angtal av aluminiumfluorid (som IOU kan aydunslas yid omkring 750' G under reducerat tryek) leddes Over sma droppar (trent aluminium, som befann sig i ett torn med kristallinisi; lerjord yid en temperatur ay omkring 1000' C, var den mangd aluminitunfluorid, seem anvandes for att avdestillera en del aluminium, omkring 1,6 delar, under det att, nar man -rid (lestillationen utgick ifran en brikett, som pressats av orent aluminium twit fast fluorid, tie delar ay fluoriden erfordrades fOr varje del aluminium. Another advantage of the present invention is that it provides a considerable saving in the amount of halide which must be evaporated for each part of aluminum. Mr e.g. number of aluminum fluoride (which IOU can aydunslas yid about 750 'G under reduced pressure) was led Over small drops (trained aluminum, which was in a tower with crystalline initials; clay soil yid at a temperature ay about 1000' C, was the amount of aluminum fluoride, seem was used to distill off one part of aluminum, about 1.6 parts, while, when the reaction was started from a briquette pressed from crude aluminum twit solid fluoride, ten parts of the fluoride were required for each part of aluminum.
Ytterligare fordelar med fOreliggande upp- finning, nar lagkokande eller -sublimerande haIngenider anvandas, grunda sig diirpii, att halogeniden kondenseras skild frith aluminiet, och dessa fordelar Oro: iu Ingen avskiljning, mckanisk eller tty annat slag, Or nodvantlig eller deslillationen. Spillvarmet, som atervinnes fran alumniratmaikondensorn, kan anyandas till att avdunsla eventuellt kondenserad halogenid och till att foryarma angan. c) Den mangd halogenid, som befinner sig I systemet, kan i lulig grad forminskas i forhallande till det i ett arbetsforlopp avdunstade nhuniniet, vilket liar till faljd en minskning i storleken ay apparaturen fOr destination av en given mangd aluminium eller till ()eh med mojliggiir en kontinnerlig destination. andamal att upprepade ganger anvanda en lagkokande eller sublimerande halogenid titan at avbryta destillationen Italics halogeniden antingen i det angformiga tilistandet eller kondensation av aluminiet och bringas upprepade ganger i kontakt med det aluminium- , haltiga materialet eller ocksa kan den kondenseras i en, tva eller flera kondensorer, 'vii- kaanvandas som forangare. Om balogenidangan icke kondenseras kan den atereirkuleras Iran aluminiumkondensorn till reaktionskammaren med hjalp av en cirkulationspump, som liimpar sig for att arbeta vid forhojda temperaturer, sag Over 120° C, nar aluminiumklorid anyandes vid O,om atmosfar, , eller ockii kan cirkulationen av halogenidiingan itstadkommas genom konvektion och diffusion inom reaktionskammaren. For detta iindamat kan destillationen utforas i satser genom upphettning av det aluminiumhaltiga materialet (elektriskt) inom reaktionskarlet, yam's vaggar avkylas, men ej under kondensationstempexaturen for halogeniden vid ett Iiimpligt tryck, och vilket tillslutes hell, sedan det almniniumhaltiga materialet och halogeniden anbrinqats ditri och sedan luft och and- ! ra permanenta gaser avlagsnats. Additional advantages of the present invention, when law-boiling or subliming halides are used, are based on the fact that the halide is condensed separately from the aluminum, and these advantages are not separated, mechanical or otherwise, or necessary or the distillation. The waste heat, which is recovered from the aluminate ma condenser, can be used to evaporate any condensed halide and to preheat the vapor. c) The amount of halide present in the system can be slightly reduced in relation to the nhunin evaporated in the course of a work, which results in a reduction in the size of the apparatus for the destination of a given amount of aluminum or to () eh with mojliggiir a continental destination. to repeatedly use a boiling or subliming halide titanium to interrupt the distillation Italics halide either in the angular state or condensation of the aluminum and be repeatedly contacted with the aluminum, containing material or it can be condensed in one, two or more condensers , 'viikaaanvandas som forangare. If the balogenide vapor is not condensed, it can be recirculated to the reaction chamber of the aluminum condenser by means of a circulation pump which adjusts to operate at elevated temperatures, say above 120 ° C, when aluminum chloride is otherwise at 0, about atmospheres, or the circulation of the halogenide vapor can be effected. by convection and diffusion within the reaction chamber. For this purpose, the distillation can be carried out in batches by heating the aluminum-containing material (electrically) within the reaction vessel, the rockers are cooled, but not below the condensation temperature of the halide at a suitable pressure, and which is sealed, after the aluminum-containing material and halide have been applied air and duck! permanent gases have been removed.
FOljande exempel pa utforandet av Codaringssaltet givas: Exempel I. The following examples of the embodiment of the Coding Salt are given: Example I.
Ett torn fyllt med kristalliserad lerjord an' vandes som reaktionskanunare, varvid alumninlet !tolls i flytande form eller som smalla sma droppar pa lerjorden och langsamt rorde sig friin toppen till bottnen. Tornet bringades upp till de onskade temperaturerna medelst elektriska strommar, som indueerades i en mantel fIX kolfattigt jam. Den undre anden av tornet var fOrbunden med en halogenidavdunstare, yilken inneholl halogeniden, som skittle anvandas, °eh uppvarmdes elektriskt och (less owe ande var fOrbunden med en kondensor, som var vattenkyld vid sin ovre ande och forbunden med en vakuumpump. .Aluminiet kondenseras vanligen i en zon nara reaktionskainmaren vid en temperatur, som uppskattas till ungefar 700 G, medan den anviinda halogeniden kondenseras i den vattenkylda zonen av kondensorn. Det aterstaelide trycket var j varje fall mindre On 0,5 inm FIg ()eh for det mesta betydligt mindre. Destillationstiden var mellan en och fyra tint-nine. A tower filled with crystallized clay soil was used as a reaction cannon, the alumina being spun in liquid form or as narrow droplets on the clay soil and slowly moving freely from the top to the bottom. The tower was brought up to the desired temperatures by means of electric currents, which were induced in a jacket fIX carbon-poor jam. The lower spirit of the tower was connected to a halide evaporator, which contained the halide used in the skittle, was electrically heated and the lower spirit was connected to a condenser which was water cooled at its upper spirit and connected to a vacuum pump. The aluminum is condensed. usually in a zone near the reaction chamber at a temperature estimated to be about 700 G, while the halide used is condensed in the water-cooled zone by the condenser.The residual pressure was in any case less On 0.5 inm Figs () eh for the most part considerably The distillation time was between one and four tint-nine.
I en serie forsok, som gjordes i derma apparat, bestod det altuniniumhaltiga materialet aY orent aluminium innehallande 8,86 Cu, 0,75 t Ni, lenFe, 1,n cn', Si och 0, Mn, men fOroreningarna i destillatet utgjorde i nenomsnitt mindre On 0n-,3 % Cu, mindre On 00.3 Fe, mindre On 0,61 t Si och spar av upp till 0,o5 c;, mangan. Den anvanda halogeniden var aluminiumklorid, som avduastades yid ungeffir 120° C. In a series of tests carried out on this apparatus, the aluminum-containing material consisted of crude aluminum containing 8.86 Cu, 0.75 t of Ni, lenFe, 1, n cn ', Si and 0, Mn, but the impurities in the distillate were averages less On 0n-, 3% Cu, less On 00.3 Fe, less On 0.61 t Si and saves up to 0, o5 c ;, manganese. The halide used was aluminum chloride, which was evaporated at about 120 ° C.
Niir reaktionstornets temperatur bOils yid 900 till 1000° C var fOrhallandet median vikten alumininniklorid, soni bade passerat genom det aluminiumhaltiga materialet och vikten avdestillerat aluminium omkring 2,3 till 2,6 oeh steg till ungefar 2,8 till 3,o, nar realmlionstemnperaturen sanktes till ungefar 800° C samt blev ogynnsammare med varden mellan 4 och 7, nar reaktionstemperaturen reducers-des till ungefar 700° G eller nar aluminiumkloridens farangningstemperatur hiijdes till 130° C eller mera. At the temperature of the reaction tower bOils yid 900 to 1000 ° C, the ratio of the median weight of aluminum dichloride, soni bath passed through the aluminum-containing material and the weight of distilled aluminum was about 2.3 to 2.6 oeh, rose to about 2.8 to 3, o, when the realmillion temperature dropped. to about 800 ° C and became more unfavorable with the value between 4 and 7, when the reaction temperature was reduced to about 700 ° C or when the precipitation temperature of the aluminum chloride was raised to 130 ° C or more.
Vid anvandning av A1Br3 i samma apparat destillerades aluminium med halogenidavdunstaren hallen vid en temperatur av unge- — — far 100° C och reaktionstornet vid omkring 1000° C. Using A1Br3 in the same apparatus, aluminum was distilled with the halide evaporator in the hall at a temperature of about 100 ° C and the reaction tower at about 1000 ° C.
Exempel II. Example II.
I en annan fOrsoksserie i en liknande apparat anvandes aluminiumkisel innehallande 46,% Si sasom aluminiurnhaltigt material. Den infordes i reaktionskainmaren som ett grovt pulver, och inget understOdjande material anvandes. AlCL avdunstad yid ungefar 120° C anvandes sasom halogenid. Destillatet inneholl vid alla tillfallen mindre an. 0,03 % kisel. Forhallandet mellan aluminiumkloridens vikt och det avdestillerade aluminiets vikt var i genomsnitt 2,7 vid reaktionstemperaturer p omkring 930° C och steg till varden av omkring 7 och hogre -vid temperaturer ph 8° C och lagre. In another series of experiments in a similar apparatus, aluminum silicon containing 46% Si was used as the aluminum-containing material. It was introduced into the reaction chamber as a coarse powder, and no supporting material was used. AlCL evaporated to about 120 ° C was used as halide. The distillate contained in all cases less. 0.03% silicon. The ratio between the weight of the aluminum chloride and the weight of the distilled aluminum was on average 2.7 at reaction temperatures of about 930 ° C and rose to the value of about 7 and higher - at temperatures of 8 ° C and lower.
Exempel I en tredje forsOksserie anvandes ferroaluminium av olika sammansattningar. Dessa material infordes i reaktionskammaren sasom ett grovt pulver, utan att nagot understodjande material begagnades. De nedan angivna resultaten uppnaddes med anvandning av aluminiumklorid sasom halogenid och en avdunstningstemperatur av 120° C. Example In a third series of experiments, ferroaluminum of different compositions was used. These materials were introduced into the reaction chamber as a coarse powder, without the use of any underlying material. The results given below were obtained using aluminum chloride as halide and an evaporation temperature of 120 ° C.
Nar ferro-aluminium innehallande 45,2 % jam och i huvudsak bestaende av foreningen ALFe,, eller fOreningarna ALFe .och Al2Fe bringades att reagera med aluminiumkloridangan -vid omkring 9° C, maste omkring 2,5 till 2,7 delar aluminiumklorid ledas igenom ferro-aluminiet for att avdestillera en del aluminium, under det att vid omkring 8° C approximativt 8 delar AICI maste destilleras for varje del aluminium under de givna betingelserna. Destillatets jarnhalt var av storleksordningen 0,1 eller mindre. When ferro-aluminum containing 45.2% of iron and consisting essentially of the compound ALFe 2 or the compounds ALFe 2 and Al 2 Fe 4 was reacted with the aluminum chloride vapor at about 9 ° C, about 2.5 to 2.7 parts of aluminum chloride must be passed through. the ferro-aluminum to distill off one part of aluminum, while at about 8 ° C approximately 8 parts of AICI must be distilled for each part of aluminum under the given conditions. The iron content of the distillate was of the order of 0.1 or less.
Nar ferro-aluminium innehallande 71,4 % jarn och i huvudsak bestaende av foreningen AlFe infOrdes i reaktionskammaren -vid ungefor 1000° C, blev forhallandet mellan avdestillerat aluminium och aluminiumklorid ungefar 2,5 till 2,7. Vid ungefir 950° C blev forhallandet mellan 3 och 8 beroende pa och minskande med hoj den av ferroaluminiumbeskickningen. En temperatur av 800° C visade sig (med detta aluminiumhaltiga material) vara for lag for en tillfredsstallande destillation. When ferro-aluminum containing 71.4% iron and consisting mainly of the compound AlFe was introduced into the reaction chamber at about 1000 ° C, the ratio of distilled aluminum to aluminum chloride was about 2.5 to 2.7. At about 950 ° C the ratio between 3 and 8 became dependent on and decreasing with height of the ferroaluminum charge. A temperature of 800 ° C (with this aluminum-containing material) was found to be too low for a satisfactory distillation.
Claims (8)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE123725T |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| SE123725C1 true SE123725C1 (en) | 1948-01-01 |
Family
ID=38399503
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SE123725D SE123725C1 (en) |
Country Status (1)
| Country | Link |
|---|---|
| SE (1) | SE123725C1 (en) |
-
0
- SE SE123725D patent/SE123725C1/sv unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2470305A (en) | Process for the production and refining of aluminium | |
| US2607675A (en) | Distillation of metals | |
| US2744060A (en) | Process for separating hafnium tetrachloride from zirconium tetrachloride | |
| Rhamdhani et al. | Alternative Al production methods: Part 1–a review of indirect carbothermal routes | |
| JP3838717B2 (en) | Magnesium purification method | |
| US2470306A (en) | Process for the production and refining of metals | |
| US2443253A (en) | Process for producing zirconium chloride | |
| US3938988A (en) | Method for producing aluminum metal from its salts | |
| SE123725C1 (en) | ||
| US3853541A (en) | Method for producing aluminum metal directly from ore | |
| Carlson et al. | Preparation and Refining of Yttrium Metal by Y‐Mg Alloy Process | |
| Jeoung et al. | An electrolytic process using an Ag cathode and vacuum distillation for Mg metal production from MgO | |
| US2783142A (en) | Method of producing titanium | |
| Kroll | Vacuum metallurgy: its characteristics and its scope | |
| NO124001B (en) | ||
| Li et al. | Vacuum carbothermal reduction for treating tin anode slime | |
| CA2358070C (en) | Carbothermic aluminium production using scrap aluminium as coolant | |
| US3856511A (en) | Purification of crude aluminum | |
| US2069705A (en) | Process of manufacture of metallic glucinum and its alloys | |
| US3836357A (en) | Direct reduction process for production of aluminium | |
| Akhmetova et al. | Achievements in the titanium production development | |
| US4349516A (en) | Process for treating the gas stream from an aluminum value chlorination process | |
| US2764480A (en) | Production and purification of titanium | |
| US2867527A (en) | Process of simultaneously producing calcium metal and a silicon-aluminum alloy | |
| Wang et al. | Highly Efficient and Environmental Process for Removing Alkali Metals from Aluminum Melt |