RU99124409A - ESTIMATION OF LAYERS WITH USE OF LASTING MEASUREMENTS BY THE METHOD OF MAGNETIC RESONANCE - Google Patents

ESTIMATION OF LAYERS WITH USE OF LASTING MEASUREMENTS BY THE METHOD OF MAGNETIC RESONANCE

Info

Publication number
RU99124409A
RU99124409A RU99124409/03A RU99124409A RU99124409A RU 99124409 A RU99124409 A RU 99124409A RU 99124409/03 A RU99124409/03 A RU 99124409/03A RU 99124409 A RU99124409 A RU 99124409A RU 99124409 A RU99124409 A RU 99124409A
Authority
RU
Russia
Prior art keywords
model
components
creating
obtaining
saturation
Prior art date
Application number
RU99124409/03A
Other languages
Russian (ru)
Other versions
RU2229594C2 (en
Inventor
Роберт Фридман
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/429,802 external-priority patent/US6229308B1/en
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of RU99124409A publication Critical patent/RU99124409A/en
Application granted granted Critical
Publication of RU2229594C2 publication Critical patent/RU2229594C2/en

Links

Claims (28)

1. Способ определения свойств земных пластов, окружающих ствол скважины, заключающийся в том, что (а) размещают каротажный прибор с возможностью перемещения по стволу скважины, (б) передают энергию электромагнитного поля от каротажного прибора в пласты и принимают спиновые эхо сигналы ядерно-магнитного резонанса в каротажном приборе, (в) выполняют шаг (б) много раз, с соответствующим множеством различных условий передачи и приема для получения множества измерений, (г) создают модель пласта, которая включает множество модельных составляющих для рапной фазы и множество модельных составляющих для фазы природной нефти, (д) модифицируют модельные составляющие для оптимизации модели относительно сигналов измерениями, и (е) выводят модельные составляющие для оптимизированной модели.1. A method for determining the properties of the earth formations surrounding a wellbore, namely (a) placing a logging tool with the ability to move along the wellbore, (b) transmitting electromagnetic field energy from the logging tool to the formations and receiving nuclear-magnetic spin echo signals resonance in the logging tool, (c) perform step (b) many times, with the corresponding set of different conditions of transmission and reception to obtain many measurements, (d) create a reservoir model that includes many model components for the brine phase and many model components for the natural oil phase, (e) modify the model components to optimize the model relative to the signals by measurements, and (e) derive model components for the optimized model. 2. Способ по п.1, в котором шаг модификации модельных составляющих содержит итеративную модификацию модельных составляющих для рапной фазы и модельных составляющих для фазы природной нефти для оптимизации соответствия между моделированными сигналами, полученными из модели, и сигналами измерений. 2. The method according to claim 1, wherein the step of modifying the model components comprises iteratively modifying the model components for the brine phase and the model components for the natural oil phase to optimize the correspondence between the simulated signals obtained from the model and the measurement signals. 3. Способ по п.1 или 2, в котором шаг создания модели пласта содержит создание модели, которая дополнительно включает составляющую фильтрата бурового раствора на углеводородной основе. 3. The method according to claim 1 or 2, in which the step of creating a model of the formation comprises creating a model that further includes a hydrocarbon-based drilling fluid filtrate component. 4. Способ по любому из пп.1-3, в котором шаг (г) создания модели пласта включает создание набора модельных амплитудных составляющих, которые определяют распределение времен поперечной релаксации рапной фазы, и дополнительно набора модельных амплитудных составляющих, которые определяют распределение времен поперечной релаксации природной нефти, и дополнительно набора модельных составляющих, которые определяют составляющие вязкости природной нефти. 4. The method according to any one of claims 1 to 3, in which step (d) of creating a reservoir model includes creating a set of model amplitude components that determine the distribution of transverse relaxation times of the brine phase, and additionally a set of model amplitude components that determine the distribution of transverse relaxation times natural oil, and optionally a set of model components that determine the viscosity components of natural oil. 5. Способ по любому из пп.1-4, в котором шаг (г) создания модели пласта дополнительно включает создание модельной составляющей, которая представляет кажущееся отношение времени продольной релаксации рапы к времени поперечной релаксации. 5. The method according to any one of claims 1 to 4, in which step (d) of creating a model of the reservoir further includes creating a model component that represents the apparent ratio of the longitudinal relaxation time of the brine to the transverse relaxation time. 6. Способ по любому из пп.1-3, в котором шаг (г) создания модели пласта включает создание набора модельных амплитудных составляющих, которые определяют распределение времен поперечной релаксации рапной фазы, дополнительно создание набора модельных амплитудных составляющих, которые определяют распределение времен поперечной релаксации природной нефти, и дополнительно создание набора модельных составляющих, которые определяют составляющие вязкости природной нефти, и модельной составляющей, которая определяет амплитуду фильтрата бурового раствора на углеводородной основе. 6. The method according to any one of claims 1 to 3, in which step (d) of creating a reservoir model includes creating a set of model amplitude components that determine the distribution of transverse relaxation times of the brine phase, additionally creating a set of model amplitude components that determine the distribution of transverse relaxation times natural oil, and in addition the creation of a set of model components that determine the viscosity components of natural oil, and a model component that determines the amplitude of the drilling fluid th solution based on hydrocarbon. 7. Способ определения свойств земных пластов, окружающих ствол скважины, заключающийся в том, что (а) размещают каротажный прибор с возможностью перемещения по стволу скважины, (б) передают энергию электромагнитного поля от каротажного прибора в пласты, и принимают спиновые эхо сигналы ядерно-магнитного резонанса в каротажном приборе, (в) выполняют шаг (б) много раз, с соответствующим множеством различных условии передачи и приема для получения множества измерений, (г) создают модель пласта, которая включает множество модельных составляющих для рапной фазы и также включает множество времен релаксации природной нефти для фазы природной нефти, (д) модифицируют модельные составляющие для оптимизации модели относительно сигналов измерения, и (е) выводят модельные составляющие оптимизированной модели. 7. A method for determining the properties of earth formations surrounding a wellbore, namely (a) placing a logging tool with the ability to move along the wellbore, (b) transmitting electromagnetic field energy from the logging tool to the formations, and receiving spin echo signals of nuclear magnetic resonance in a logging tool, (c) perform step (b) many times, with the corresponding many different conditions of transmission and reception to obtain many measurements, (d) create a reservoir model that includes many model components for the brine phase and also includes a plurality of native oil relaxation times for a native oil phase, (d) modifying the model components to optimize the model with respect to the measurement signals, and (e) output model components of the optimized model. 8. Способ по п.7, в котором шаг создания модели пласта содержит создание модели, которая дополнительно включает составляющую фильтрата бурового раствора на углеводородной основе. 8. The method according to claim 7, in which the step of creating a reservoir model comprises creating a model that further includes a hydrocarbon-based drilling fluid filtrate component. 9. Способ по любому из пп.1-8, в котором шаг создания модели пласта содержит создание модели, которая дополнительно включает составляющую газа. 9. The method according to any one of claims 1 to 8, in which the step of creating a reservoir model comprises creating a model that further includes a gas component. 10. Способ по любому из пп.1-9, в котором шаг передачи энергии электромагнитного поля от каротажного прибора и приема спиновых эхо сигналов ядерно-магнитного резонанса в каротажном приборе включает создание постоянного магнитного поля в области исследования и генерацию последовательностей импульсов радиочастотного магнитного поля в области исследования, а также прием последовательностей спиновых эхо сигналов ядерно-магнитного резонанса, причем Gp - градиент приложенного постоянного магнитного поля в области исследования, Wp - время ожидания между последовательностями, и ТЕр - временное разнесение эхо сигналов, Jр - число принятых спиновых эхо сигналов последовательности, а шаг (в) содержит выполнение шага (б) много раз с соответствующими различными значениями по меньшей мере одного условия, выбранного из группы, состоящей из Gр, Wр, TEр, Jр.10. The method according to any one of claims 1 to 9, in which the step of transferring electromagnetic field energy from the logging tool and receiving spin echoes of nuclear magnetic resonance signals in the logging tool includes creating a constant magnetic field in the field of study and generating pulse sequences of the radio frequency magnetic field in the field of study, as well as the reception of sequences of spin echo signals of nuclear magnetic resonance, with G p the gradient of the applied constant magnetic field in the study area, W p the waiting time between the sequences, and TE p is the temporal separation of the echo signals, J p is the number of received spin echoes of the sequence, and step (c) contains the execution of step (b) many times with corresponding different values of at least one condition selected from the group, consisting of G p , W p , TE p , J p . 11. Способ по любому из пп.1-10, в котором измерения шагов (б) и (в) выполняются в то время, когда каротажный прибор перемещается по стволу скважины со скоростью перемещения v, а модельные сигналы получаются из модели, основанной на вычисленных поляризационных функциях магнитного резонанса, которые зависят от времени ожидания Wр и скорости перемещения v.11. The method according to any one of claims 1 to 10, in which measurements of steps (b) and (c) are performed while the logging tool is moving along the wellbore with a speed of movement v, and model signals are obtained from a model based on calculated polarization functions of magnetic resonance, which depend on the waiting time W p and the speed of movement v. 12. Способ по п.11, в котором как функция продольной поляризации, так и времена поперечной релаксации модели пласта модифицируют как функция упомянутой скорости перемещения v. 12. The method according to claim 11, in which both the longitudinal polarization function and the transverse relaxation times of the formation model are modified as a function of said displacement velocity v. 13. Способ по п.10, в котором градиент магнитного поля в области измерения пластов включает составляющую градиента Gр приложенного поля и составляющую внутреннего градиента, существующего в упомянутой области измерения пластов, что является результатом контрастов магнитной восприимчивости в них.13. The method according to claim 10, in which the magnetic field gradient in the formation measurement region includes a gradient component G p of the applied field and an internal gradient component existing in said formation measurement region, which is the result of magnetic susceptibility contrasts in them. 14. Способ по любому из пп.1-13, в котором шаг (в) содержит выполнение шага (б) N раз для получения серии N измерений. 14. The method according to any one of claims 1 to 13, in which step (c) comprises performing step (b) N times to obtain a series of N measurements. 15. Способ по п.14, в котором измерения выполняют на множестве соответственно выделенных слоев области измерения. 15. The method of claim 14, wherein the measurements are performed on a plurality of appropriately allocated layers of the measurement region. 16. Способ по п.15, в котором слои представляют собой по существу цилиндрические слои, имеющие радиальную протяженность приблизительно 1 мм. 16. The method according to clause 15, in which the layers are essentially cylindrical layers having a radial length of approximately 1 mm 17. Способ по любому из пп.1-16, который дополнительно содержит шаг получения из составляющих выходной модели по меньшей мере одной пористости из группы, состоящей из пористости пласта, заполненного водой, пористости пласта, заполненного нефтью и общей пористости пласта, найденной методом ЯМР. 17. The method according to any one of claims 1-16, which further comprises the step of obtaining from the components of the output model at least one porosity from the group consisting of the porosity of the formation filled with water, the porosity of the formation filled with oil and the total porosity of the formation found by NMR . 18. Способ по п.3 или 8, который дополнительно содержит шаг получения из составляющих выходной модели пористости пластов, заполненных фильтратом бурового раствора на углеводородной основе. 18. The method according to claim 3 or 8, which further comprises the step of producing, from the components of the output model, the porosity of formations filled with a hydrocarbon-based drilling mud filtrate. 19. Способ по п.9, который дополнительно содержит шаг получения из составляющих выходной модели пористости пластов, заполненных газом. 19. The method according to claim 9, which further comprises the step of obtaining from the components of the output model the porosity of the reservoirs filled with gas. 20. Способ по любому из пп.1-19, который дополнительно содержит шаг получения из составляющих выходной модели пористости пластов, заполненных свободными флюидами. 20. The method according to any one of claims 1 to 19, which further comprises the step of obtaining from the components of the output model the porosity of the formations filled with free fluids. 21. Способ по любому из пп.1-20, который дополнительно содержит шаг получения из составляющих выходной модели пористости пластов, заполненных связанными флюидами. 21. The method according to any one of claims 1 to 20, which further comprises the step of obtaining from the components of the output model the porosity of the formations filled with bound fluids. 22. Способ по любому из пп.1-21, который дополнительно содержит шаг получения из составляющих выходной модели по меньшей мере одной насыщенности из группы, состоящей из водонасыщенности и нефтенасыщенности пластов. 22. The method according to any one of claims 1 to 21, which further comprises the step of obtaining from the components of the output model at least one saturation from the group consisting of water saturation and oil saturation of the formations. 23. Способ по любому из пп.1-22, который дополнительно содержит шаг получения из составляющих выходной модели по меньшей мере одной насыщенности из группы, состоящей из водонасыщенности и нефтснасыщенности пластов. 23. The method according to any one of claims 1 to 22, which further comprises the step of obtaining from the components of the output model at least one saturation from the group consisting of water saturation and oil saturation of the formations. 24. Способ по п.3 или 8, который дополнительно содержит шаг получения из составляющих выходной модели насыщенности пластов фильтратом бурового раствора на углеводородной основе. 24. The method according to claim 3 or 8, which further comprises the step of obtaining hydrocarbon-based drilling mud filtrate from the components of the output model of formation saturation. 25. Способ по п.9, который дополнительно содержит шаг получения из составляющих выходной модели насыщенности пластов газом. 25. The method according to claim 9, which further comprises the step of producing gas saturation from the constituents of the output model. 26. Способ по пп.4 или 6, который дополнительно содержит шаг получения из составляющих выходной модели вязкости природной нефти пластов. 26. The method according to PP.4 or 6, which further comprises the step of obtaining from the components of the output model of the viscosity of natural oil reservoirs. 27. Способ по п. 26, который дополнительно содержит шаг получения из составляющих выходной модели коэффициентов диффузии составных частей природной нефти пластов. 27. The method according to p. 26, which further comprises the step of obtaining from the components of the output model the diffusion coefficients of the components of natural oil reservoirs. 28. Способ по любому из пп.1-28, который дополнительно содержит повторение упомянутого способа для различных выделенных зон исследования в пластах, и дополнительно содержащий шаг получения из составляющих выходной модели для различных выделенных зон исследования, профиля насыщенности пластов флюидами. 28. The method according to any one of claims 1 to 28, which further comprises repeating the aforementioned method for various distinguished research zones in the reservoirs, and further comprising the step of obtaining from the components of the output model for various distinguished research zones, a fluid saturation profile of the reservoirs.
RU99124409/03A 1998-11-19 1999-11-18 Layers evaluation with use of armored means measurements performed according to magnetic resonance method RU2229594C2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10925298P 1998-11-19 1998-11-19
US60/109,252 1998-11-19
US09/429,802 US6229308B1 (en) 1998-11-19 1999-10-29 Formation evaluation using magnetic resonance logging measurements
US09/429,802 1999-10-29

Publications (2)

Publication Number Publication Date
RU99124409A true RU99124409A (en) 2001-08-20
RU2229594C2 RU2229594C2 (en) 2004-05-27

Family

ID=26806792

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99124409/03A RU2229594C2 (en) 1998-11-19 1999-11-18 Layers evaluation with use of armored means measurements performed according to magnetic resonance method

Country Status (11)

Country Link
US (1) US6229308B1 (en)
EP (1) EP1003053A3 (en)
CN (1) CN1325940C (en)
AR (1) AR021326A1 (en)
AU (1) AU739052B2 (en)
CA (1) CA2288447C (en)
CO (1) CO5241371A1 (en)
EG (1) EG21984A (en)
ID (1) ID25743A (en)
NO (1) NO334229B1 (en)
RU (1) RU2229594C2 (en)

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956371B2 (en) * 1995-10-12 2005-10-18 Halliburton Energy Services, Inc. Method and apparatus for detecting diffusion sensitive phases with estimation of residual error in NMR logs
US6977499B2 (en) * 1999-02-09 2005-12-20 Baker Hughes Incorporated Formation-based interpretation of NMR data for carbonate reservoirs
WO2000050924A1 (en) * 1999-02-26 2000-08-31 Purdue Research Foundation Nuclear magnetic resonance analysis of multiple samples
US6316940B1 (en) * 1999-03-17 2001-11-13 Numar Corporation System and method for identification of hydrocarbons using enhanced diffusion
US6297632B1 (en) * 1999-07-19 2001-10-02 Schlumberger Technology Corporation Detecting tool motion effects on spin echoes obtained with nuclear magnetic resonance measurements
US6661226B1 (en) * 1999-08-13 2003-12-09 Halliburton Energy Services, Inc. NMR apparatus and methods for measuring volumes of hydrocarbon gas and oil
US6522136B1 (en) * 1999-12-10 2003-02-18 Schlumberger Technology Corporation Well logging technique and apparatus for determining pore characteristics of earth formations using magnetic resonance
US6646437B1 (en) * 2000-04-07 2003-11-11 Halliburton Energy Services, Inc. System and method for clay typing using NMR-based porosity modeling
US7526413B2 (en) * 2001-01-31 2009-04-28 Exxonmobil Upstream Research Company Volumetric laminated sand analysis
US6686738B2 (en) * 2001-04-17 2004-02-03 Baker Hughes Incorporated Method for determining decay characteristics of multi-component downhole decay data
US6525534B2 (en) 2001-06-15 2003-02-25 Halliburton Energy Services, Inc. System and methods for NMR signal processing without phase alternated pair stacking
US6603310B2 (en) * 2001-06-29 2003-08-05 Baker Hughes Incorporated Method for correcting downhole NMR data contaminated by borehole signals
US7301338B2 (en) * 2001-08-13 2007-11-27 Baker Hughes Incorporated Automatic adjustment of NMR pulse sequence to optimize SNR based on real time analysis
US6859032B2 (en) * 2001-12-18 2005-02-22 Schlumberger Technology Corporation Method for determining molecular properties of hydrocarbon mixtures from NMR data
US6838875B2 (en) * 2002-05-10 2005-01-04 Schlumberger Technology Corporation Processing NMR data in the presence of coherent ringing
US6714009B2 (en) * 2002-05-16 2004-03-30 Schlumberger Technology Corporation Method for the inversion of CPMG measurements enhanced by often repeated short wait time measurements
US6765380B2 (en) * 2002-05-23 2004-07-20 Schlumberger Technology Corporation Determining wettability of an oil reservoir using borehole NMR measurements
US6867589B2 (en) * 2002-08-09 2005-03-15 Schlumberger Technology Corporation Method for detecting hydrocarbons from NMR data
US6703832B2 (en) * 2002-08-12 2004-03-09 Schlumberger Technology Corporation Method for detecting hydrocarbons by comparing NMR response at different depths of investigation
US6859033B2 (en) * 2002-08-28 2005-02-22 Schlumberger Technology Corporation Method for magnetic resonance fluid characterization
US6781371B2 (en) * 2002-09-06 2004-08-24 Schlumberger Technology Corporation High vertical resolution antennas for NMR logging
CN1230496C (en) * 2002-10-28 2005-12-07 中国石油化工股份有限公司 Petroleum hydrocarbon cracking catalyst containing rare earthy type zeolite and its preparation method
US6960913B2 (en) * 2003-01-14 2005-11-01 Schlumberger Technology Corporation Multi-measurement NMR analysis based on maximum entropy
US7034528B2 (en) * 2003-02-27 2006-04-25 Schlumberger Technology Corporation Methods for formation evaluation based on multi-dimensional representation of nuclear magnetic resonance data
US6905241B2 (en) 2003-03-13 2005-06-14 Schlumberger Technology Corporation Determination of virgin formation temperature
US7463027B2 (en) * 2003-05-02 2008-12-09 Halliburton Energy Services, Inc. Systems and methods for deep-looking NMR logging
US6952096B2 (en) * 2003-09-05 2005-10-04 Schlumberger Technology Corporation Method and apparatus for determining speed and properties of flowing fluids using NMR measurements
US7199580B2 (en) * 2003-10-03 2007-04-03 Halliburton Energy Services, Inc. System and methods for T1-based logging
EP1702284A4 (en) * 2003-12-24 2012-09-05 Halliburton Energy Serv Inc Contamination estimation using fluid analysis models
US7053611B2 (en) * 2004-06-04 2006-05-30 Schlumberger Technology Corporation Method and apparatus for using pulsed field gradient NMR measurements to determine fluid properties in a fluid sampling well logging tool
US7317990B2 (en) * 2004-10-25 2008-01-08 Schlumberger Technology Corporation Distributed processing system for subsurface operations
US20060164084A1 (en) * 2005-01-21 2006-07-27 General Electric Company Method and system for enabling adaptive measurement of spin-lattice and spin-spin relaxation times
US7821260B2 (en) 2005-03-18 2010-10-26 Baker Hughes Incorporated NMR echo train compression using only NMR signal matrix multiplication to provide a lower transmission bit parametric representation from which estimate values of earth formation properties are obtained
EP1795921B1 (en) * 2005-12-06 2013-01-23 Services Petroliers Schlumberger Determination of porosity and fluid saturation of underground formations
US8504341B2 (en) * 2006-01-31 2013-08-06 Landmark Graphics Corporation Methods, systems, and computer readable media for fast updating of oil and gas field production models with physical and proxy simulators
WO2008031021A2 (en) * 2006-09-08 2008-03-13 Chevron U.S.A., Inc. A telemetry apparatus and method for monitoring a borehole
CN1987438B (en) * 2006-12-22 2011-06-29 上海神开石油化工装备股份有限公司 Method of label sample recipe for nuclear magnetic resonant rock sample analyzer
US7538547B2 (en) * 2006-12-26 2009-05-26 Schlumberger Technology Corporation Method and apparatus for integrating NMR data and conventional log data
US7768260B2 (en) * 2007-02-23 2010-08-03 Baker Hughes Incorporated Methods for identification and quantification of multicomponent-fluid and estimating fluid gas/ oil ratio from NMR logs
US7511487B2 (en) * 2007-02-27 2009-03-31 Schlumberger Technology Corporation Logging method for determining characteristic of fluid in a downhole measurement region
US7511488B2 (en) * 2007-05-01 2009-03-31 Baker Hughes Incorporated Viscosity determination from logarithmic mean ratio of relaxation times
US8093056B2 (en) * 2007-06-29 2012-01-10 Schlumberger Technology Corporation Method and apparatus for analyzing a hydrocarbon mixture using nuclear magnetic resonance measurements
CA2694196C (en) * 2007-07-26 2016-05-17 Schlumberger Canada Limited System and method for estimating formation characteristics in a well
FR2920876B1 (en) * 2007-09-07 2009-12-04 Inst Francais Du Petrole METHOD FOR RAPID MEASUREMENT OF SATURATION AND RESISTIVITY OF A POROUS MEDIUM.
US8593140B2 (en) * 2007-11-02 2013-11-26 Schlumberger Technology Corporation Formation testing and evaluation using localized injection
US8269501B2 (en) * 2008-01-08 2012-09-18 William Marsh Rice University Methods for magnetic imaging of geological structures
AU2009244627A1 (en) * 2008-04-17 2009-11-12 Richard H. Hardman Methods for producing a log of material properties
US7924001B2 (en) * 2008-05-23 2011-04-12 Schlumberger Technology Corp. Determination of oil viscosity and continuous gas oil ratio from nuclear magnetic resonance logs
US9052409B2 (en) * 2008-07-11 2015-06-09 Schlumberger Technology Corporation Monte Carlo method for laplace inversion of NMR data
US8670966B2 (en) * 2008-08-04 2014-03-11 Schlumberger Technology Corporation Methods and systems for performing oilfield production operations
CN101413389B (en) * 2008-12-02 2012-05-23 中国海洋石油总公司 Graduation apparatus of magnetic nuclear resonance logger
US8278922B2 (en) * 2009-03-23 2012-10-02 Schlumberger Technology Corporation Continuous wettability logging based on NMR measurements
US8076933B2 (en) 2009-04-29 2011-12-13 Schlumberger Technology Corporation Method for determining wettability of an oil reservoir
US8427145B2 (en) 2010-03-24 2013-04-23 Schlumberger Technology Corporation System and method for emulating nuclear magnetic resonance well logging tool diffusion editing measurements on a bench-top nuclear magnetic resonance spectrometer for laboratory-scale rock core analysis
US8970217B1 (en) 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
WO2011133859A1 (en) * 2010-04-23 2011-10-27 The Boards of Regents of the University of Oklahoma Nmr quantification of the gas resource in shale gas reservoirs
CN102042011B (en) * 2010-10-13 2014-10-01 中国石油化工集团公司 Method for constructing pseudo nuclear magnetic T2 spectrum by using conventional logging data
US10429535B2 (en) 2011-10-31 2019-10-01 Schlumberger Technology Corporation Statistical analysis of combined log data
CN102608664B (en) * 2012-02-17 2015-06-24 中国石油大学(北京) Method and device for obtaining transverse relaxation time spectrum by depth-dimension nuclear magnetic resonance inversion
EP2859385A4 (en) * 2012-06-08 2015-12-23 Services Petroliers Schlumberger Methods of investigating formation samples using nmr data
GB2503220B (en) 2012-06-19 2017-11-29 Schlumberger Holdings Sample holder for use in NMR
CA2879537A1 (en) 2012-07-24 2014-01-30 Halliburton Energy Services, Inc. Apparatus and methods of data inversion
US10138724B2 (en) 2012-07-31 2018-11-27 Landmark Graphics Corporation Monitoring, diagnosing and optimizing gas lift operations by presenting one or more actions recommended to achieve a GL system performance
US9261097B2 (en) 2012-07-31 2016-02-16 Landmark Graphics Corporation Monitoring, diagnosing and optimizing electric submersible pump operations
GB2505232B (en) 2012-08-23 2018-08-01 Schlumberger Holdings Magnetic resonance examination of porous samples
US9678185B2 (en) 2013-03-15 2017-06-13 Pepsico, Inc. Method and apparatus for measuring physico-chemical properties using a nuclear magnetic resonance spectrometer
US9513398B2 (en) * 2013-11-18 2016-12-06 Halliburton Energy Services, Inc. Casing mounted EM transducers having a soft magnetic layer
EP2895892A4 (en) 2013-12-12 2015-11-11 Halliburton Energy Services Inc Modeling subterranean fluid viscosity
US10197697B2 (en) 2013-12-12 2019-02-05 Halliburton Energy Services, Inc. Modeling subterranean formation permeability
US9733383B2 (en) 2013-12-17 2017-08-15 Schlumberger Technology Corporation Methods for compositional analysis of downhole fluids using data from NMR and other tools
US9715033B2 (en) * 2013-12-17 2017-07-25 Schlumberger Technology Corporation Methods for compositional analysis of downhole fluids using data from NMR and other tools
US9703003B2 (en) 2013-12-17 2017-07-11 Schlumberger Technology Corporation Methods for compositional analysis of downhole fluids using data from NMR and other tools
US10401340B2 (en) * 2014-01-31 2019-09-03 Honeywell International Inc. Measurement of hazardous gases in hydraulic fracking sites
US9771789B2 (en) 2014-04-11 2017-09-26 Schlumberger Technology Corporation Asymmetric excluder for downhole logging tool
US20160047936A1 (en) * 2014-08-12 2016-02-18 Schlumberger Technology Corporation Systems and methods for formation evaluation using magnetic resonance logging measurements
US9951601B2 (en) 2014-08-22 2018-04-24 Schlumberger Technology Corporation Distributed real-time processing for gas lift optimization
US10443358B2 (en) 2014-08-22 2019-10-15 Schlumberger Technology Corporation Oilfield-wide production optimization
RU2560813C1 (en) * 2014-09-02 2015-08-20 Общество с ограниченной ответственностью "ВЗОР" Forecast device of measurement results
US10302796B2 (en) 2014-11-26 2019-05-28 Halliburton Energy Services, Inc. Onshore electromagnetic reservoir monitoring
RU2580177C1 (en) * 2014-12-30 2016-04-10 Шлюмберже Текнолоджи Б.В. Method of determining changes in parameters of porous medium under action of contaminant
CN104732562A (en) * 2015-03-24 2015-06-24 中国石油集团川庆钻探工程有限公司 Electric imaging logging image similarity degree comparison method
US10359537B2 (en) 2015-06-02 2019-07-23 Schlumberger Technology Corporation Determination of fluid saturation in shale reservoirs using NMR
WO2017023460A1 (en) * 2015-07-31 2017-02-09 Halliburton Energy Services, Inc. Apparatus and method for determining earth fluid formation
CN105352847B (en) * 2015-09-28 2018-11-02 中国石油大学(北京) Viscosity of crude method for fast measuring
CN108138563B (en) * 2015-10-01 2021-09-21 斯伦贝谢技术有限公司 Active damping for NMR logging tools
CN105240006B (en) * 2015-10-28 2018-07-10 陈国军 A kind of oil-water layer identification method suitable for volcanic rock reservoir
GB2560840B (en) * 2016-03-04 2021-10-13 Halliburton Energy Services Inc Multiple depth of investigation nuclear magnetic resonance logging for determining the porosity and pore type of subterranean formations
CN105757711B (en) * 2016-03-18 2018-05-08 国家电投集团河南电力有限公司技术信息中心 A kind of wide load main steam pressure control method of cogeneration units
CN107229076B (en) * 2016-03-25 2019-10-29 中国石油化工股份有限公司 A method of temperature-responsive signature analysis is carried out based on well-log information
WO2017180123A1 (en) * 2016-04-14 2017-10-19 Halliburton Energy Services, Inc. Apparatus and method for obtaining t2 distribution
CN105863625B (en) * 2016-04-27 2020-02-14 中国石油天然气股份有限公司 Compact oil reservoir five-element coefficient classification evaluation method
US10267946B2 (en) 2016-06-01 2019-04-23 Baker Hughes, A Ge Company, Llc Magnetic resonance pulse sequences having wait times based on carrier speed
US20190234891A1 (en) * 2016-07-01 2019-08-01 NMR Services Australia Pty Ltd Downhole diffusion coefficient measurement
US20180024215A1 (en) * 2016-07-21 2018-01-25 Yudong Zhu Signal coding and structure modeling for imaging
US10690642B2 (en) 2016-09-27 2020-06-23 Baker Hughes, A Ge Company, Llc Method for automatically generating a fluid property log derived from drilling fluid gas data
WO2018075007A1 (en) 2016-10-18 2018-04-26 Halliburton Energy Services, Inc. Improved mcilogging for processing downhole measurements
WO2018101966A1 (en) * 2016-12-02 2018-06-07 Halliburton Energy Services, Inc. Determining frequency for achieving a high signal-to-noise ratio in low impedance receivers
DE102017210309A1 (en) * 2017-06-02 2018-12-06 Universität Ulm Method and apparatus for generating a nuclear magnetic resonance spectrum of nuclear magnetic moments of a sample
FR3075524B1 (en) * 2017-12-15 2020-01-03 Alessandro Manneschi DOUBLE TECHNOLOGY DETECTOR WITH TRANSVERSE REELS
FR3075397B1 (en) * 2017-12-15 2020-09-18 Alessandro Manneschi DUAL TECHNOLOGY DETECTOR INCLUDING INDUCTIVE SENSOR AND RADAR
CN109142150B (en) * 2018-09-11 2021-03-30 中国石油天然气股份有限公司 Method and device for detecting flowability of crude oil
US11047228B2 (en) 2018-10-19 2021-06-29 Saudi Arabian Oil Company Predicting carbonate porosity based on petrographic data
RU2704671C1 (en) * 2018-12-28 2019-10-30 Общество с ограниченной ответственностью «НТЦ Татнефть» Method of determining viscosity of heavy oil by nuclear magnetic resonance in porous space of a collector and free volume
CN110596772B (en) * 2019-09-10 2021-02-05 中国海洋石油集团有限公司 Correction method and device for diffusion T2 relaxation two-dimensional spectrum
CN112630831B (en) * 2019-10-08 2024-04-09 中国石油化工股份有限公司 Carbonate karst cave longitudinal scale calculation method and system
CN111236934B (en) * 2020-02-25 2021-10-08 中国石油大学(北京) Method and device for determining flooding level
US11467080B2 (en) 2020-08-10 2022-10-11 Saudi Arabian Oil Company Estimating permeability of reservoir rocks using mercury injection capillary pressure
US11543556B2 (en) * 2020-08-17 2023-01-03 Schlumberger Technology Corporation NMR characterization and monitoring of drilling fluids
CN113029908B (en) * 2021-03-16 2021-11-26 中国石油大学(华东) Laboratory measurement method for compact reservoir saturation index
US11821862B2 (en) 2021-11-12 2023-11-21 Saudi Arabian Oil Company Method for measuring the spatial water permeability profile of porous media by using non-destructive nuclear magnetic resonance technique
US11788978B2 (en) 2021-11-12 2023-10-17 Saudi Arabian Oil Company Method and system for determining geological models using spatial properties based on nuclear magnetic resonance data
CN114167333B (en) * 2021-12-06 2022-07-22 无锡鸣石峻致医疗科技有限公司 Longitudinal relaxation time measuring method and device, computer equipment and storage medium
CN114217025B (en) * 2021-12-17 2024-01-23 哈尔滨工业大学 Analysis method for evaluating influence of meteorological data on air quality concentration prediction

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597681A (en) 1957-01-30 1971-08-03 Chevron Res Nuclear magnetic well logging
US4710713A (en) 1986-03-11 1987-12-01 Numar Corporation Nuclear magnetic resonance sensing apparatus and techniques
US5055788A (en) 1986-08-27 1991-10-08 Schlumberger Technology Corporation Borehole measurement of NMR characteristics of earth formations
US5041975A (en) 1988-09-06 1991-08-20 Schlumberger Technology Corporation Borehole correction system for an array induction well-logging apparatus
DK0581666T3 (en) * 1992-07-30 1997-10-27 Schlumberger Ltd Pulse-modulated nuclear magnetic tool for formation evaluation during drilling
US5291137A (en) 1992-11-02 1994-03-01 Schlumberger Technology Corporation Processing method and apparatus for processing spin echo in-phase and quadrature amplitudes from a pulsed nuclear magnetism tool and producing new output data to be recorded on an output record
US5497087A (en) * 1994-10-20 1996-03-05 Shell Oil Company NMR logging of natural gas reservoirs
EP0815474B1 (en) 1995-03-20 2000-09-27 Shell Internationale Researchmaatschappij B.V. Determining a parameter in a physical system
CN1179213A (en) * 1995-03-20 1998-04-15 国际壳牌研究有限公司 Determining parameter in physical system
AU711508B2 (en) * 1995-03-23 1999-10-14 Schlumberger Technology B.V. Nuclear magnetic resonance borehole logging apparatus and method
US5663499A (en) 1995-10-20 1997-09-02 Semmelbeck; Mark E. Method for estimating permeability from multi-array induction logs
MY122012A (en) 1996-03-14 2006-03-31 Shell Int Research Determining a fluid fraction in an earth formation
US6109368A (en) * 1996-03-25 2000-08-29 Dresser Industries, Inc. Method and system for predicting performance of a drilling system for a given formation
US6069477A (en) * 1997-09-05 2000-05-30 Western Atlas International, Inc. Method for improving the accuracy of NMR relaxation distribution analysis with two echo trains

Similar Documents

Publication Publication Date Title
RU99124409A (en) ESTIMATION OF LAYERS WITH USE OF LASTING MEASUREMENTS BY THE METHOD OF MAGNETIC RESONANCE
US6972564B2 (en) Objective oriented methods for NMR log acquisitions for estimating earth formation and fluid properties
CO5241371A1 (en) TRAINING EVALUATION USING MAGNETIC RESONANCE PROBE MEASUREMENTS
RU2187132C2 (en) Procedure and device to measure full porosity by method of nuclear magnetic resonance
US6933719B2 (en) Fluid flow properties from acoustically stimulated NMR
US20040090230A1 (en) Method and apparatus for subterranean formation flow imaging
RU98106856A (en) METHOD AND DEVICE FOR MEASURING TOTAL POROSITY BY THE NUCLEAR MAGNETIC RESONANCE METHOD
RU2475782C2 (en) Nondestructive determination of pore size distribution and distribution of fluid flow velocities
CA2172424A1 (en) Nuclear magnetic resonance borehole logging apparatus and method
US10539705B2 (en) Formation evaluation utilizing dual wait time nuclear magnetic resonance
WO2017112055A1 (en) Selective saturation pulse for downhole measurements
AU2002351916B2 (en) Method and apparatus for subterranean formation flow imaging
CA2528472C (en) Nmr flow measurement while drilling
RU2414595C1 (en) Method to determine relative permeability ratios of formation
AU2002351916A1 (en) Method and apparatus for subterranean formation flow imaging
US9013954B2 (en) Method for determining properties of a formation
US11493461B1 (en) Wettability estimation using T2 distributions of water in wetting and non-wetting phases
Kozlowski et al. An Integrated Petrophysical Workflow for Fluid Characterization and Contacts Identification Using NMR Continuous and Stationary Measurements in High-Porosity Sandstone Formation, Offshore Norway
US20220365241A1 (en) Intelligent data acquisition for wireline logging
Siqveland et al. Aging time control by NMR relaxation
AU2004258093B2 (en) Fluid flow properties from acoustically stimulated NMR
Lehne et al. Comparison between Stoneley, NMR, and core-derived permeabilities
MY129455A (en) Formation evaluation using magnetic resonance logging measurements