RU98116872A - METHOD FOR EXPLORATION AND CONTOURING OF HYDROCARBON DEPOSITS - Google Patents

METHOD FOR EXPLORATION AND CONTOURING OF HYDROCARBON DEPOSITS

Info

Publication number
RU98116872A
RU98116872A RU98116872/28A RU98116872A RU98116872A RU 98116872 A RU98116872 A RU 98116872A RU 98116872/28 A RU98116872/28 A RU 98116872/28A RU 98116872 A RU98116872 A RU 98116872A RU 98116872 A RU98116872 A RU 98116872A
Authority
RU
Russia
Prior art keywords
signals
geostructures
acoustic
reservoir
contouring
Prior art date
Application number
RU98116872/28A
Other languages
Russian (ru)
Other versions
RU2155976C2 (en
Inventor
А.И. Плугин
А.М. Азизов
И.М. Асланов
А.Г. Курицын
Original Assignee
А.И. Плугин
Filing date
Publication date
Application filed by А.И. Плугин filed Critical А.И. Плугин
Priority to RU98116872A priority Critical patent/RU2155976C2/en
Priority claimed from RU98116872A external-priority patent/RU2155976C2/en
Publication of RU98116872A publication Critical patent/RU98116872A/en
Application granted granted Critical
Publication of RU2155976C2 publication Critical patent/RU2155976C2/en

Links

Claims (1)

Способ разведки и оконтуривания залежи углеводородов, включающий прием и регистрацию сигналов электромагнитного и акустического излучений от исследуемых геоструктур, сравнение полученных величин со статистическими аналоговыми и построение карты залежи, отличающийся тем, что ведут прием и регистрацию указанных и дополнительных - тепловых и торсионных сигналов от исследуемых геоструктур в установленные фазы и периоды лунно-солнечных приливов, в эти же фазы и периоды на геоструктуры воздействуют акустическими сигналами в инфразвуковом диапазоне волн, передавая их одновременно в трех взаимно перпендикулярных направлениях с глубины 150-250 м от дневной поверхности грунта, при этом второе и третье акустические воздействия сдвигают по времени приложения на полупериод волны относительно первого воздействия и относительно друг друга, а наличие залежи определяют по совпадению во времени приема или максимумов, или минимумов величин указанных всех сигналов, по периметру контура залежи в продуктивный пласт вводят материал, обладающий характеристикой коэффициента набухания не менее 2,1 · 104 в качестве которого используют полиэлектролитный гидрогель, с помощью которого создают непроницаемый экран по высоте пласта, ограничивают и фиксируют площадь залежи, в пределах которой ведут подсчет запасов углеводородного сырья.A method for exploration and contouring of a hydrocarbon deposit, which includes receiving and recording electromagnetic and acoustic radiation signals from the studied geostructures, comparing the obtained values with statistical analogs and constructing a map of the deposit, characterized in that they receive and register the indicated and additional thermal and torsion signals from the studied geostructures in the established phases and periods of lunar-solar tides, in the same phases and periods, the geostructures are affected by acoustic signals in an infrasound m range of waves, transmitting them simultaneously in three mutually perpendicular directions from a depth of 150-250 m from the day surface of the soil, while the second and third acoustic impacts are shifted by the time of application for a half-period of the wave relative to the first impact and relative to each other, and the presence of deposits is determined by coincidence in the time of reception of either the maxima or minima of the values of all of the signals indicated, along the perimeter of the reservoir contour, a material with a characteristic of swelling coefficient n is introduced into the reservoir less than 2.1 × 10 4 which is used as a polyelectrolyte hydrogel through which create an impermeable layer screen adjustment limit and fixed reservoir area, within which the lead count of hydrocarbon reserves.
RU98116872A 1998-09-11 1998-09-11 Process of prospecting and mapping of hydrocarbon field RU2155976C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98116872A RU2155976C2 (en) 1998-09-11 1998-09-11 Process of prospecting and mapping of hydrocarbon field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98116872A RU2155976C2 (en) 1998-09-11 1998-09-11 Process of prospecting and mapping of hydrocarbon field

Publications (2)

Publication Number Publication Date
RU98116872A true RU98116872A (en) 2000-06-27
RU2155976C2 RU2155976C2 (en) 2000-09-10

Family

ID=20210317

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98116872A RU2155976C2 (en) 1998-09-11 1998-09-11 Process of prospecting and mapping of hydrocarbon field

Country Status (1)

Country Link
RU (1) RU2155976C2 (en)

Similar Documents

Publication Publication Date Title
Chinn et al. Accurate source depths and focal mechanisms of shallow earthquakes in western South America and in the New Hebrides island arc
Liu et al. The near-source ground motion of the 6 August 1979 Coyote Lake, California, earthquake
CN104533396A (en) Remote exploration sound wave processing method
DE2825396A1 (en) REVERSIBLE ELECTROACOUSTIC CONVERTER ARRANGEMENT
Carbonell et al. Large-scale anisotropy within the crust in the Basin and Range province
CN105044779B (en) Reflecting interface orientation quantitative decision method based on phased receiving directivity and device thereof
RU98116872A (en) METHOD FOR EXPLORATION AND CONTOURING OF HYDROCARBON DEPOSITS
De Miguel et al. 1–18 Hz L g attenuation in the Granada Basin (southern Spain)
Hussong et al. Compressional faulting of the oceanic crust prior to subduction in the Peru-Chile Trench
Stanic et al. High‐frequency bistatic reverberation from a smooth ocean bottom
Boehme et al. Acoustic backscattering at low grazing angles from the ocean bottom. I. Bottom backscattering strength
RU2155976C2 (en) Process of prospecting and mapping of hydrocarbon field
Martel Love wave propagation across a step by finite elements and spatial filtering
Pernod et al. Mini-sparker as a source in seismic models
Brönner et al. Crustal structure of the Libyan margin
D’Spain et al. Offshore geoacoustic inversions using sounds from land vehicle activity
Riznichenko et al. Model study of the upper mantle shadow zone
Chotiros et al. Acoustic backscatter at low grazing angle from the ocean bottom. II: Statistical characteristics of bottom backscatter at a shallow water site
Prasad et al. P‐wave travel‐times from the Tonga Subduction Zone to stations on the oceanic side of the Tonga‐Kermadec Trench
Shang et al. Scale‐model studies of normal mode field
Prikner Frequency band of mirroring and bands of increased transmissivity of ULF waves through the ionosphere
Felsen Hybrid ray‐mode methods for underwater acoustic propagation
BERGHULT et al. HYDROACOUSTICAL EXPERIMENTS IN KALMARSUND: MODAL STRUCTURE, SCHOLTE WAVE EXCITATION, AND TRANSMISSION LOSS AS FUNCTION OF FREQUENCY
ZAHRADNÍK et al. Seismic Microzoning of Prague. A Computational Approach Based on Geological Data
Yamamoto et al. Super crosswell tomography for imaging the hydraulic structure of the earth