RU96110757A - METHOD OF TECHNOGENIC ELECTRIC CHARGE - Google Patents

METHOD OF TECHNOGENIC ELECTRIC CHARGE

Info

Publication number
RU96110757A
RU96110757A RU96110757/25A RU96110757A RU96110757A RU 96110757 A RU96110757 A RU 96110757A RU 96110757/25 A RU96110757/25 A RU 96110757/25A RU 96110757 A RU96110757 A RU 96110757A RU 96110757 A RU96110757 A RU 96110757A
Authority
RU
Russia
Prior art keywords
rocks
anomaly
axes
electrodes
potential difference
Prior art date
Application number
RU96110757/25A
Other languages
Russian (ru)
Other versions
RU2105329C1 (en
Inventor
Н.В. Бобровников
Original Assignee
Институт геофизики Уральского отделения РАН
Filing date
Publication date
Application filed by Институт геофизики Уральского отделения РАН filed Critical Институт геофизики Уральского отделения РАН
Priority to RU96110757/25A priority Critical patent/RU2105329C1/en
Priority claimed from RU96110757/25A external-priority patent/RU2105329C1/en
Application granted granted Critical
Publication of RU2105329C1 publication Critical patent/RU2105329C1/en
Publication of RU96110757A publication Critical patent/RU96110757A/en

Links

Claims (2)

1. Способ техногенного электрического заряда с использованием скважины или профиля, пересекающего локальную зону аномальной проводимости горных пород, при которой по системе параллельных профилей измеряют компоненты электромагнитного поля промышленной частоты прибором, соединенным с двумя электродами, отличающийся тем, что один из электродов помещают в скважине или на профиле в месте пересечения в зоне аномальной проводимости горных пород, а другой электрод перемещают по системе параллельных профилей, измеряя разность потенциалов между вторым и первым электродами на промышленной частоте строя карту распределения разности потенциалов и по ней судят о местоположении зоны аномальной проводимости горных пород.1. A method of technogenic electric charge using a well or profile crossing a local zone of anomalous conductivity of rocks, in which the components of the electromagnetic field of industrial frequency are measured using a system of parallel profiles with a device connected to two electrodes, characterized in that one of the electrodes is placed in the well or on the profile at the intersection in the zone of abnormal conductivity of the rocks, and the other electrode is moved along a system of parallel profiles, measuring the potential difference m I forward the first and second electrodes on the system power frequency distribution map of the potential difference and it is judged on the location of the anomalous conduction band rocks. 2. Способ по п.1, отличающийся тем, что на карте проводят линии вдоль направлений наименьших градентов разности электрических потенциалов, считают эти линии "осями аномалии", определяют численные величины электрического потенциала на интервалах оси аномалии, а на профилях, в местах их пересечения с осями аномалий, дополнительно измеряют горизонтальную компоненту напряженности магнитного поля промышленной частоты в направлении перпендикулярном к простиранию оси аномалии, по известным величинам градиента электрического потенциала и напряженности магнитного поля определяют эффективность величины аномальной проводимости на интервалах осей аномалии, и по этим величинам судят об особенности строения зоны аномалии проводимости горных пород. 2. The method according to claim 1, characterized in that the map draws lines along the directions of the smallest gradients of the electric potential difference, consider these lines to be “axes of anomaly”, determine the numerical values of the electric potential at intervals of the anomaly axis, and on the profiles, at the points of intersection with the axes of the anomalies, the horizontal component of the magnetic field strength of industrial frequency is additionally measured in the direction perpendicular to the strike of the axis of the anomaly, according to the known values of the electric potential gradient and yazhennosti determine the effectiveness of the magnetic field magnitude at intervals anomalous conduction abnormalities axes, and these values are judged on the structural features of the conduction abnormality zone rocks.
RU96110757/25A 1996-05-28 1996-05-28 Method of man-made electric charge RU2105329C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96110757/25A RU2105329C1 (en) 1996-05-28 1996-05-28 Method of man-made electric charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96110757/25A RU2105329C1 (en) 1996-05-28 1996-05-28 Method of man-made electric charge

Publications (2)

Publication Number Publication Date
RU2105329C1 RU2105329C1 (en) 1998-02-20
RU96110757A true RU96110757A (en) 1998-09-20

Family

ID=20181196

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96110757/25A RU2105329C1 (en) 1996-05-28 1996-05-28 Method of man-made electric charge

Country Status (1)

Country Link
RU (1) RU2105329C1 (en)

Similar Documents

Publication Publication Date Title
ATE75055T1 (en) CROSS-SECTION MEASUREMENT PROCEDURE USING AN ELECTROMAGNETIC ARRANGEMENT.
US6314373B1 (en) Grid sensor for determining the conductivity distribution in flow media and process for generating measurement signals
Pettersson Principles in transmission line magnetic field reduction
DE69817355D1 (en) COLLECTORS FOR AN ELECTRIC VEHICLE SUPPLIED BY A SELF-INSULATED POWER LINE
RU96110757A (en) METHOD OF TECHNOGENIC ELECTRIC CHARGE
Maslouh et al. From Bean's model to the HM characteristic of a superconductor: Some numerical experiments
CN112067908B (en) Method and system for fitting distorted electric field during power frequency electric field measurement by substation robot
CN109088403A (en) Half wavelength line fault detection method, guard method and corresponding intrument
Fedotov et al. Detection of places of single-phase ground fault by frequency of the resonance
JPH07122672B2 (en) Magnetic field distribution measuring device
RU2002129552A (en) METHOD FOR DETERMINING THE SINGLE-PHASE LOCATION ON THE GROUND IN A BRANCHED AIR POWER LINE WITH ISOLATED NEUTRAL
CN111044436A (en) Magnetic field continuation technology applied to corrosion state diagnosis of transformer substation grounding grid
Ishibashi Eddy current analysis by integral equation method utilizing loop electric and surface magnetic currents as unknowns
CN212965456U (en) Protection device suitable for high density electricity method electrode and cable in municipal works
CN205941431U (en) Grounding body detecting system
CN1245295A (en) Detector for metal object
RU2226697C2 (en) Method of diagnostics of entirety of contact of vertical element with grounding grid
Namjoshi et al. Cross field heating of long plates by periodically placed magnets
Ruan et al. 3D transient eddy current calculation by the hybrid FE-BE method using magnetic field intensity H
RU2105329C1 (en) Method of man-made electric charge
RU2124212C1 (en) Method of measuring group grounding cable insulation resistance of contact-line supports
SU1267300A1 (en) Device for checking voltages of negative phase-sequence of non-symmetric voltage system
Renhart et al. The treatment of cracks in NDT problems using FEM
Li et al. New method for calculation of magnetic field in aluminium reduction cell
SU73757A1 (en) Electric logging probe