RU95109960A - Method of dynamic tests of large-size structures and pulse force exciter for realization of this method - Google Patents

Method of dynamic tests of large-size structures and pulse force exciter for realization of this method

Info

Publication number
RU95109960A
RU95109960A RU95109960/28A RU95109960A RU95109960A RU 95109960 A RU95109960 A RU 95109960A RU 95109960/28 A RU95109960/28 A RU 95109960/28A RU 95109960 A RU95109960 A RU 95109960A RU 95109960 A RU95109960 A RU 95109960A
Authority
RU
Russia
Prior art keywords
natural
oscillations
exciters
force
points
Prior art date
Application number
RU95109960/28A
Other languages
Russian (ru)
Other versions
RU2104508C1 (en
Inventor
В.В. Бодров
Р.М. Багаутдинов
С.Л. Евстигнеев
Original Assignee
В.В. Бодров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by В.В. Бодров filed Critical В.В. Бодров
Priority to RU95109960A priority Critical patent/RU2104508C1/en
Publication of RU95109960A publication Critical patent/RU95109960A/en
Application granted granted Critical
Publication of RU2104508C1 publication Critical patent/RU2104508C1/en

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

FIELD: full-scale tests of dynamic strength of large-size structures in testing their seismic stability and estimation of quality of construction jobs. SUBSTANCE: force exciters 1 are placed on object under test at different levels corresponding to maximum calculated magnitudes of amplitudes of actual shape of natural oscillations. Vibration pick-ups 16 are mounted on object 9. For excitation of oscillations at natural frequencies, object 9 is acted on by shock pulse created by reactive force of force exciters 1 forming supersonic controlled gas jet. Velocity and pressure of this gas flow at exit section of nozzle 3 show the magnitude of reactive force acting on object 9 through bracket 10 and support 8. Actual shape of natural oscillations of object 9 under test is determined by means of automatic measurement system includes in control complex 14 by signals received from vibration pick-ups 16. This makes it possible to determine points of location of maximum magnitudes of amplitudes of actual shape of natural oscillations, i. e. points of application of shock pulses at high accuracy. Magnitude and shape of shock pulse proper is determined as well which is necessary for realization of actual shape of natural oscillations of object 9 under test. According to the results thus obtained, corrections are introduced in control program forming electric control signals for each force exciter 1. Then force exciters 1 are shifted to points of location of maximum magnitudes of amplitudes of actual shape of natural oscillations of object 9. Preferable version provides for motion of force exciters 1 with brackets 10 directly on support 8 over its grooves 11; they are secured by means of fasteners (not shown). After mounting force exciters 1, object 9 under test is acted on by series of shock pulses formed by reactive force from supersonic controlled gas jet according to preset control program. Pulses are applied at points in direction realizing the shape of natural oscillations in accordance with actual periods of natural oscillations. As a result, resonance oscillations of object 9 are excited at separate natural frequency. Dynamic characteristics of object 9 are judged from measured parameters of oscillations. EFFECT: enhanced efficiency, accuracy and reliability of tests. 3 cl, 1 dwg

Claims (1)

Использование: при натурных испытаниях динамической прочности крупномасштабных конструкций при исследовании их сейсмостойкости, а также при оценке качества строительных работ на возводимых объектах и качества конструкций. Цель: создание способа динамических испытаний крупномасштабных конструкций, который позволял бы выделить отдельный (искомый) собственный тон колебаний испытуемого объекта за счет многократного воздействия ударными импульсами в точках с большими амплитудами колебаний по форме исследуемого тона, что позволило бы, повысить эффективность, точность, достоверность испытаний и снизить их трудоемкость, создание импульсного силовозбудителя для осуществления способа. Сущность изобретение: cиловозбудители размещают на испытуемом объекте на разных уровнях, соответствующих наибольшим расчетным значениям амплитуд фактической формы собственных колебаний. Вибродатчики устанавливают на объекте. Для возбуждения колебаний на собственных частотах первоначально на испытуемый объект воздействуют калиброванным ударным импульсом. создаваемым реактивной силой силовозбудителей, формирующих сверхзвуковой управляемый газовый поток. При этом скорость и давление газового потока на срезе сопла определяют величину реактивной силы, воздействующей через кронштейн и опору на объект. С помощью системы автоматического измерения, входящей в управляющий комплекс; по сигналам с вибродатчиков определяют фактическую форму собственных колебании испытуемого объекта. Это позволяет с высокой точностью определить точки расположения наибольших значений амплитуд фактической формы собственных колебаний, т.е. точки приложения ударных импульсов. Определяется также величина и форма самого ударного импульса что необходимо для реализации фактической формы собственных колебаний испытуемого объекта 9. В соответствии с полученными результатами вносятся коррективы в управляющую программу, формирующую электрические сигналы управления для каждого силовозбудителя. Затем силовозбудители перемещают в точки расположения наибольших значений-амплитуд фактической формы собственных колебаний объекта. В предпочтительном варианте выполнения перемещение силовозбудителей с кронштейнами может осуществляться непосредственно на опоре по ее пазам и фиксироваться с помощью креплений. После установки силовозбудителей осуществляют воздействие на испытуемый объект последовательностью ударных импульсов, нормируемых реактивной силой от сверхзвуковой управляемой газовой струи по заданной управляющей программе. Импульсы прикладываются в указанных точках в направлении, реализующем форму собственных колебании, в соответствии с фактическими периодами собственных колебаний. В результате возбуждаются резонансные колебания испытуемого объекта на отдельной собственной частоте. По измеренным параметрам колебаний судят о динамических характеристиках объекта.Usage: in full-scale tests of the dynamic strength of large-scale structures in the study of their seismic resistance, as well as in assessing the quality of construction work on facilities under construction and the quality of structures. Purpose: to create a method for dynamic testing of large-scale structures, which would allow to distinguish a separate (desired) intrinsic tone of the test object’s vibrations due to repeated exposure to shock pulses at points with large oscillation amplitudes in the form of the studied tone, which would allow to increase the efficiency, accuracy, reliability of the tests and reduce their complexity, the creation of a pulsed exciter for the implementation of the method. The inventive force exciters are placed on the test object at different levels corresponding to the largest calculated values of the amplitudes of the actual form of natural vibrations. Vibration sensors are installed on the site. To excite oscillations at natural frequencies, the calibrated shock pulse is initially applied to the test object. created by the reactive force of the exciters forming a supersonic controlled gas flow. In this case, the velocity and pressure of the gas flow at the nozzle exit determine the magnitude of the reactive force acting through the bracket and support on the object. Using an automatic measurement system included in the control complex; the signals from the vibration sensors determine the actual shape of the natural vibrations of the test object. This allows one to determine with high accuracy the location points of the largest amplitudes of the actual form of natural vibrations, i.e. points of application of shock pulses. The magnitude and shape of the shock pulse itself is also determined, which is necessary to implement the actual form of the natural vibrations of the test object 9. In accordance with the results obtained, adjustments are made to the control program, which generates electrical control signals for each exciter. Then the exciters are moved to the location of the largest values-amplitudes of the actual form of the natural vibrations of the object. In a preferred embodiment, the movement of exciters with brackets can be carried out directly on the support along its grooves and fixed using fasteners. After the installation of force exciters, the test object is affected by a sequence of shock pulses normalized by reactive force from a supersonic controlled gas stream according to a given control program. Impulses are applied at the indicated points in the direction realizing the form of natural oscillations, in accordance with the actual periods of natural oscillations. As a result, the resonant vibrations of the test object are excited at a separate natural frequency. The measured parameters of the oscillations judge the dynamic characteristics of the object.
RU95109960A 1995-06-16 1995-06-16 Process of dynamic test of large-scale structures RU2104508C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95109960A RU2104508C1 (en) 1995-06-16 1995-06-16 Process of dynamic test of large-scale structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95109960A RU2104508C1 (en) 1995-06-16 1995-06-16 Process of dynamic test of large-scale structures

Publications (2)

Publication Number Publication Date
RU95109960A true RU95109960A (en) 1997-05-10
RU2104508C1 RU2104508C1 (en) 1998-02-10

Family

ID=20168889

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95109960A RU2104508C1 (en) 1995-06-16 1995-06-16 Process of dynamic test of large-scale structures

Country Status (1)

Country Link
RU (1) RU2104508C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA026225B1 (en) * 2014-08-28 2017-03-31 Общество с ограниченной ответственностью "Центр Комплексно-Сейсмических Испытаний" Method for conducting seismic tests of electricity transmission towers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007067084A1 (en) * 2005-12-06 2007-06-14 Otkrytoe Akzionernoe Obschestvo 'moscow Committee Of Science And Technologies' Method and system for determining a stability of constructions
RU2569636C2 (en) * 2014-03-04 2015-11-27 Публичное акционерное общество "Нижегородский авиастроительный завод "Сокол" (ПАО "НАЗ "Сокол") Method of dynamic testing of structures and systems on mechanical and electronic effects
RU2658125C1 (en) * 2017-06-02 2018-06-19 Федеральное государственное унитарное предприятие "Сибирский научно-исследовательский институт авиации им. С.А. Чаплыгина" Method for determining parameters of natural tones of structure vibrations in resonant tests
RU2701476C1 (en) * 2018-10-05 2019-09-26 Максим Юрьевич Нестеренко Method for non-destructive testing of carrying capacity of structural systems of buildings and structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA026225B1 (en) * 2014-08-28 2017-03-31 Общество с ограниченной ответственностью "Центр Комплексно-Сейсмических Испытаний" Method for conducting seismic tests of electricity transmission towers

Also Published As

Publication number Publication date
RU2104508C1 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
CN109506874B (en) Impact response spectrum test device and test method based on elastic stress wave loading
KR0170544B1 (en) Non-destructive examination device
CN103344324B (en) Vibration excitation equipment for entire acoustic vibration of violin and system and method for measuring frequency spectrum
WO1997011344A1 (en) Vibrating table system and control method therefor
EP0501976A1 (en) Rheometer.
CN111323111B (en) Modal test system suitable for film antenna under vacuum environment
RU95109960A (en) Method of dynamic tests of large-size structures and pulse force exciter for realization of this method
CN108594294B (en) System and method for testing steady-state excitation shear wave in hole
CN110022522B (en) System and method for measuring resonant frequency of loudspeaker vibrating component excited by vibration exciter
JP3166499B2 (en) Bridge Exciter
JPH10253490A (en) Vibrational stress measuring device
JP4329008B2 (en) Concrete pole crack evaluation system
Rouse et al. Vibration studies of Monticello dam
JP6605246B2 (en) A method for checking the filling rate of an adhesive used for installing a bolt in a structure using sound waves, and a non-contact acoustic detection system for performing the method
SU1392429A1 (en) Method of determining tension in samples
RU2714535C1 (en) Method of vibration testing of large-size parts of a turbomachine
JPH11337654A (en) Seismic-wave measurement device
RU2037819C1 (en) Method for carrying out quality control of articles made of reinforced material
SU1086389A1 (en) Acceleration meter sensitivity vector measuring method
SU1668931A1 (en) Method of measuring ultrasonic oscillation inlet angle of inclined transducers
CN209446000U (en) A kind of exciting device suitable for the detection of column buried depth
KR100294384B1 (en) Synthesis methode of shock waveform for shock response spectrum test
SU1569698A1 (en) Method of vibration acoustic inspection of articles
SU1490533A1 (en) Device for vibration testing of a structure with beams and fixed beam ends
SU918921A1 (en) Device for investigating constructions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140617