RU95108176A - Nuclear reactor - Google Patents

Nuclear reactor

Info

Publication number
RU95108176A
RU95108176A RU95108176/25A RU95108176A RU95108176A RU 95108176 A RU95108176 A RU 95108176A RU 95108176/25 A RU95108176/25 A RU 95108176/25A RU 95108176 A RU95108176 A RU 95108176A RU 95108176 A RU95108176 A RU 95108176A
Authority
RU
Russia
Prior art keywords
reactor
nuclear
nuclear power
fuel elements
claddings
Prior art date
Application number
RU95108176/25A
Other languages
Russian (ru)
Inventor
В.А. Ильичев
Original Assignee
В.А. Ильичев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by В.А. Ильичев filed Critical В.А. Ильичев
Priority to RU95108176/25A priority Critical patent/RU95108176A/en
Publication of RU95108176A publication Critical patent/RU95108176A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

FIELD: nuclear power engineering. SUBSTANCE: reactor has fuel elements assembled in thermoelectric banks and collector electrically connected to bank leads. Thermoelectric banks are placed between claddings and cans of fuel elements. Claddings are made of beryllium ceramic noted for high heat conductance and heat resistance, as well as high insulating properties. Cans are made of corundum ceramic possessing, apart from above-mentioned properties, high stability in water coolant. EFFECT: improved efficiency of reactor due to better utilization of nuclear power plant auxiliary supplies for a certain time after reactor shutdown.

Claims (1)

Изобретение относится к ядерной технике. Сущность изобретения: ядерный реактор содержит ТВЭЛы, объединенные с термоэлектрическими батареями, и коллектор, электрически соединенный с выводами термобатарей. Термобатареи размещены между внутренними и наружными оболочками ТВЭЛов. Внутренние оболочки ТВЭЛов изготовлены из бериллиевой керамики, отличающейся высокой теплопроводностью и жаростойкостью, а также высокими электроизоляционными свойствами. Наружные оболочки - из корундовой керамики, которая кроме перечисленных свойств обладает высокой стойкостью в водном теплоносителе. В реакторе можно достичь более высокого КПД за счет более полного использования теплоты ядерной реакции деления. Другим преимуществом такого ядерного реактора является то, что после остановки реактора термобатареи некоторое время дают электрический ток, используемый для собственных нужд ядерной энергетической установки.The invention relates to nuclear technology. The inventive nuclear reactor contains fuel elements combined with thermoelectric batteries, and a collector electrically connected to the terminals of the thermal batteries. Thermal batteries are placed between the inner and outer shells of the fuel rods. The inner shells of the fuel rods are made of beryllium ceramics, characterized by high thermal conductivity and heat resistance, as well as high electrical insulation properties. The outer shells are made of corundum ceramics, which, in addition to the listed properties, has high resistance in an aqueous coolant. A higher efficiency can be achieved in the reactor due to a more complete use of the heat of the nuclear fission reaction. Another advantage of such a nuclear reactor is that after shutting down the reactor, the thermopile gives an electric current for some time, used for the internal needs of the nuclear power plant.
RU95108176/25A 1995-05-19 1995-05-19 Nuclear reactor RU95108176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95108176/25A RU95108176A (en) 1995-05-19 1995-05-19 Nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95108176/25A RU95108176A (en) 1995-05-19 1995-05-19 Nuclear reactor

Publications (1)

Publication Number Publication Date
RU95108176A true RU95108176A (en) 1997-05-10

Family

ID=48433604

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95108176/25A RU95108176A (en) 1995-05-19 1995-05-19 Nuclear reactor

Country Status (1)

Country Link
RU (1) RU95108176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649417C1 (en) * 2017-01-24 2018-04-03 Общество с ограниченной ответственностью "Научно-технический центр инноваций" System and method of removing heat from nuclear reactor case

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649417C1 (en) * 2017-01-24 2018-04-03 Общество с ограниченной ответственностью "Научно-технический центр инноваций" System and method of removing heat from nuclear reactor case
WO2018139957A1 (en) * 2017-01-24 2018-08-02 Общество с ограниченной ответственностью "Научно-технический центр инноваций" System and method for removing heat from a nuclear reactor vessel

Similar Documents

Publication Publication Date Title
RU95108176A (en) Nuclear reactor
Laing et al. Sodium heat pipe solar receiver for a SPS V-160 Stirling engine-Development, laboratory and on-sun test results
Green et al. Recent advances in high efficiency silicon solar cells
Minh et al. Fabrication and characterization of monolithic solid oxide fuel cells
Pauwels et al. Determination and thermodynamics of the maximum efficiency photovoltaic device
Matsuura et al. Thermoelectric generation by direct heat exchange in ocean thermal energy conversion
RU95101553A (en) Thermal emission reactor for power production
Sidortsev Barogalvanic converter of solar energy into electricity and heat
RU2070752C1 (en) Flat-cylinder thermionic power-generating element
Olsen et al. Regenerative pyroelectric heat engine
Wrighton et al. Photoassisted electrolysis of water-Conversion of optical to chemical energy
Karl Photovoltaic hybrid collectors
Hunt et al. Test results on kilowatt-scale sodium heat engine
Goradia et al. Recent experimental results on high intensity/HI/edge-illuminated multijunction silicon solar cells
Nyren et al. Design and testing of a combustion-heated nineteen-converter SAVTEC array
Dick et al. Collector temperature effects on the performance of advanced thermionic converters and nuclear electric propulsion systems
ELLIOTT et al. Night storage and backup generation with electrochemical engines(study of electric generators for electrochemical engines using photovoltaic energy conversion)
RU2000127290A (en) THERMOEMISSION ELECTRIC GENERATING ASSEMBLY WITH FLAT ELECTRODE CONFIGURATION
Hsu et al. High-efficiency electrochemical plant
Bronca Superconducting magnets-Present status and problems
Schuemann Solar generators-Utilization of solar energy for supply of electric power
Camani et al. Integration of new hybrid flat concentrating solar modules into the experimental photovoltaic power plant TISO
RU94025694A (en) METHOD OF TRANSFORMING HEAT ENERGY TO ELECTRIC ENERGY
Doenitz et al. Concept and design of solid oxide electrolyte cell-modules for high temperature water vapour electrolysis
Steinberg Thermoelectrochemical cycles for power and hydrogen production