RU95107096A - Wind-electric power plant - Google Patents

Wind-electric power plant

Info

Publication number
RU95107096A
RU95107096A RU95107096/06A RU95107096A RU95107096A RU 95107096 A RU95107096 A RU 95107096A RU 95107096/06 A RU95107096/06 A RU 95107096/06A RU 95107096 A RU95107096 A RU 95107096A RU 95107096 A RU95107096 A RU 95107096A
Authority
RU
Russia
Prior art keywords
power
wind
frame
gondola
flows
Prior art date
Application number
RU95107096/06A
Other languages
Russian (ru)
Other versions
RU2075641C1 (en
Inventor
А.И. Забегаев
Ю.Н. Горбунов
Ю.А. Закревский
Original Assignee
Товарищество с ограниченной ответственностью Фирма "Общемаш-Инжиниринг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Товарищество с ограниченной ответственностью Фирма "Общемаш-Инжиниринг" filed Critical Товарищество с ограниченной ответственностью Фирма "Общемаш-Инжиниринг"
Priority to RU9595107096A priority Critical patent/RU2075641C1/en
Publication of RU95107096A publication Critical patent/RU95107096A/en
Application granted granted Critical
Publication of RU2075641C1 publication Critical patent/RU2075641C1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

FIELD: wind-electric power engineering; wind- electric power plants generating electricity in low-speed wind flows. SUBSTANCE: wind-electric power plant has tower, gondola with supporting and turning gear, windwheel with shaft passed into gondola, frame with longitudinal beam mounting inside gondola a step-up gear drive with slow-speed input shaft coupled with large gear wheel, disengageable coupling, and generator. It is also provided with dispensing device in the form of integral dispensing multiple-flow step-up gear drive that has slow-speed input shaft with large central gear wheel, and a number of high-speed output shafts with small gear wheels mounted on periphery relative to longitudinal axis of windwheel at distances depending on radius of large input gear wheel and radii of small output gear wheels and coupled with mechanisms and units, each forming several power flows inscribed by their longitudinal axes in edges of rectangular prism, oriented in parallel to windwheel axis; frame is multi-tier beam structure built up of a number of longitudinal parallel beams rigidly coupled with cross power mount; frame is U-shaped as viewed from top and has central bore at bottom; mechanisms and units forming power flows are arranged on frame in separate rows to form central service passage in gondola between flows; passage communicates through frame bore with inner space of tower; there are also peripheral passages between power flows and gondola walls. Windwheel shaft inside gondola is installed in front part of power frame between windwheel and step-up gear drive by means of power unit made of two bearing supports spaced apart from power flanges of windwheel shaft. Front power flange of windwheel shaft has guide with even number of power flows is U-shaped in each tier and with odd number of power flows, it is L-shaped and has manhole on frame at its central bore. Central and peripheral service passages have detachable floor at bottom which is secured on frame; on top, they are covered with gondola ceiling; transverse dimensions of central service passage depend on diameter of large central gear wheel and transverse dimensions of mechanisms and units making up separate power flows; diameter of central gear wheel should be large enough to allow servicing personnel to enter the passage. Transverse dimensions of peripheral service passages should be large enough for attending personnel to move in them during servicing procedures. EFFECT: improved reliability of plant, reduced size of gondola, reduced material input due to multiple-flow and compact arrangement of transmission and power-generating equipment in gondola, improved service life of plant due to proper use of flows for power generation under variable- demand conditions, reduced loads acting on plant transmission parts and units, and on power structure, improved safety, reduced labour consumption for plant installation and maintenance. 12 cl, 4 dwg

Claims (1)

Изобретение относится к ветроэнергетике, конкретно к ветроэнергетическим установкам (ВЭУ), вырабатывающим электроэнергию в низкоскоростных ветропотоках. Целью изобретения является повышение надежности ВЭУ, уменьшение габаритов гондолы и снижение материалоемкости ВЭУ за счет многопоточного построения и плотной компоновки трансмиссии и электросилового оборудования в гондоле ВЭУ, повышение ресурса ВЭУ за счет рационального использования рабочих потоков для выработки мощности в условиях переменного потребления, уменьшение нагрузок, действующих на узлы и агрегаты трансмиссии ВЭУ и силовую конструкцию, повышение безопасности и снижение трудоемкости работ по монтажу и обслуживанию ВЭУ. Ветроэнергетическая установка содержит башню, гондолу с опорно-поворотным устройством, ветроколесо с валом, пропущенным внутрь гондолы, раму с продольной балкой и монтированными на ней внутри гондолы мультипликаторы с входным тихоходным валом, соединенным с большим зубчатым колесом, выключаемой муфтой для сцепления и генератором. Она снабжена раздаточным устройством в виде единого раздаточного многопоточного мультипликатора, включающего входной тихоходный вал с центрально расположенным большим зубчатым колесом и ряды выходных быстроходных валов с малыми зубчатыми колесами, периферийно установленных относительно продольной оси ветроколеса на расстояниях, определяемых радиусом большого входного и радиусами малых выходных зубчатых колес, и связанных с механизмами и агрегатами, составляющими каждый из нескольких энергетических потоков, вписанных своими продольными осями в ребра прямоугольной призмы, ориентированные параллельно оси ветроколеса, рама выполнена многоярусной балочной конструкцией, образованной рядом продольно, параллельно расположенных балок, жестко связанных поперечной силовой стойкой, и имеющей в плане П-образную форму в основании с центральным проемом, механизмы и агрегаты, составляющие энергетические потоки, размещены на раме в виде отдельных рядов с образованием в гондоле между потоками центрального коридора обслуживания, связанного через проем рамы с внутренним объемом башни, и периферийных коридоров между энергетическими потоками и стенками гондолы. Вал ветроколеса внутри гондолы установлен в передней части силовой рамы между ветроколесом и мультипликатором при посредстве силового узла из двух подшипниковых опор, разнесенных к силовым фланцам вала ветроколеса. Передний силовой фланец вала ветроколеса выполнен с направляющими и стыковочными узлами для закрепления втулки ветроколеса. Силовая многоярусная рама балочной конструкции при четном числе энергетических потоков выполнена П-образной формы в каждом ярусе, а при нечетном числе энергетических потоков выполнена Г-образной формы и снабжена люком, установленным на раме по месту ее центрального проема. Центральный и периферийные коридоры обслуживания ограничены снизу съемным полом, закрепленным на раме, а сверху - потолком гондолы, а поперечные размеры центрального коридора обслуживания определены диаметром центрально расположенного большого зубчатого колеса и поперечными размерами механизмов и агрегатов, составляющих отдельные энергетические потоки, при этом диаметр центрального зубчатого колеса выбраны из условия прохода человека при обслуживании. Поперечные размеры периферийных коридоров обслуживания определены с возможностью перемещения человека при обслуживании.The invention relates to wind energy, specifically to wind power plants (wind turbines), generating electricity in low-speed wind flows. The aim of the invention is to increase the reliability of wind turbines, reduce the dimensions of the nacelle and reduce the material consumption of wind turbines due to multi-threaded construction and tight layout of transmission and electric power equipment in the nacelle of wind turbines, increase the life of wind turbines due to the rational use of work flows to generate power in conditions of variable consumption, reduce the loads operating on components and assemblies of a wind turbine transmission and power structure, increasing safety and reducing the complexity of installation and maintenance of wind turbines. The wind power installation includes a tower, a nacelle with a slewing rotary device, a wind wheel with a shaft passing inside the gondola, a frame with a longitudinal beam and mounted on it inside the gondola multipliers with an input low-speed shaft connected to a large gear wheel, a clutch for switching off the clutch and a generator. It is equipped with a distributing device in the form of a single multi-threaded multiplier, including an input low-speed shaft with a centrally located large gear wheel and rows of high-speed output shafts with small gears, peripherally mounted relative to the longitudinal axis of the wind wheel at distances determined by the radius of the large input gear and the radii of the small output gears , and associated with the mechanisms and aggregates that make up each of several energy flows inscribed by their products with linear axes in the ribs of a rectangular prism, oriented parallel to the axis of the wind wheel, the frame is made up of a multi-tier beam structure formed alongside longitudinally parallel parallel beams rigidly connected by a transverse power strut and having a U-shaped plan at the base with a central opening, mechanisms and assemblies, components of energy flows are placed on the frame in separate rows with the formation in the gondola between the flows of the central service corridor connected through the frame opening with the internal volume th tower and peripheral corridors between energy flows and the walls of the gondola. The wind wheel shaft inside the nacelle is installed in front of the power frame between the wind wheel and the multiplier by means of a power unit of two bearing bearings spaced from the power flanges of the wind wheel shaft. The front power flange of the wind wheel shaft is made with guides and docking nodes for fixing the wind wheel sleeve. The power multi-tier frame of the beam structure with an even number of energy flows is made U-shaped in each tier, and with an odd number of energy flows it is made L-shaped and equipped with a hatch installed on the frame in the place of its central opening. The central and peripheral service corridors are bounded from below by a removable floor fixed to the frame, and from above by the nacelle ceiling, and the transverse dimensions of the central service corridor are determined by the diameter of the centrally located large gear wheel and the transverse dimensions of the mechanisms and assemblies that make up individual energy flows, while the diameter of the central gear wheels are selected from the condition of passage of a person during maintenance. The transverse dimensions of the peripheral service corridors are determined with the possibility of moving a person during maintenance.
RU9595107096A 1995-04-20 1995-04-20 Wind-electric power plant RU2075641C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU9595107096A RU2075641C1 (en) 1995-04-20 1995-04-20 Wind-electric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU9595107096A RU2075641C1 (en) 1995-04-20 1995-04-20 Wind-electric power plant

Publications (2)

Publication Number Publication Date
RU95107096A true RU95107096A (en) 1997-01-27
RU2075641C1 RU2075641C1 (en) 1997-03-20

Family

ID=20167371

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9595107096A RU2075641C1 (en) 1995-04-20 1995-04-20 Wind-electric power plant

Country Status (1)

Country Link
RU (1) RU2075641C1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD671Z (en) * 2012-09-05 2014-03-31 Технический университет Молдовы Wind-driven electric plant with horizontal axis
MD1126Z (en) * 2016-09-12 2017-09-30 Технический университет Молдовы Wind turbine (embodiments)

Also Published As

Publication number Publication date
RU2075641C1 (en) 1997-03-20

Similar Documents

Publication Publication Date Title
CN102052262B (en) Configuration of a wind turbine nacelle
KR101376326B1 (en) Nacelle of wind energy converter
US20090250939A1 (en) Wind-driven generation of power
CN1818377B (en) Wind-power apparatus, its energy-storing and wind-power generating
US4074951A (en) Wind power converter
CA2735809A1 (en) System and assembly for power transmission and generation in a wind turbine
JP2000337246A (en) Power transmission used for wind power generating device
CN111648920B (en) Ultra-compact medium-speed permanent magnet wind generating set
ATE489759T1 (en) GENERATOR FOR A WIND TURBINE, STATOR ASSEMBLY FOR THE GENERATOR AND USE OF THE GENERATOR
EP3421778B1 (en) Hydropower generation device
CA2792693C (en) Wind energy turbine shell station
US20170175717A1 (en) Wind turbine with a modular drive train
US20100127503A1 (en) Generator, nacelle, and mounting method of a nacelle of a wind energy converter
US4207015A (en) Self-stabilized hydromotive assembly
RU95107096A (en) Wind-electric power plant
EP1552144A1 (en) Modular wind turbine transmission
CN104895743B (en) Stacked solid wind-driven generator
MXPA01010914A (en) Powertrain for power generator.
DE4313509A1 (en) Water power generation plant - has water-wheel bolted onto gearbox input shaft flange with gearbox casing bolted to strut on wall
CN113803216A (en) Wind generating set
CN220551203U (en) Nacelle assembly and wind turbine generator system
SU1796044A3 (en) Multiflow double-stage reduction gear of bearing transmission unit of wind-driven power plant
CN114109706B (en) Bionic eel type wave energy power generation device capable of being integrated with multifunctional ocean platform
CN219412789U (en) Wind generating set
CN117145690A (en) Multi-axis output wind power generation system and power generation method