RU95100203A - Gear to study waters in boreholes - Google Patents

Gear to study waters in boreholes

Info

Publication number
RU95100203A
RU95100203A RU95100203/25A RU95100203A RU95100203A RU 95100203 A RU95100203 A RU 95100203A RU 95100203/25 A RU95100203/25 A RU 95100203/25A RU 95100203 A RU95100203 A RU 95100203A RU 95100203 A RU95100203 A RU 95100203A
Authority
RU
Russia
Prior art keywords
parameters
gear
unit
measurements
functional capabilities
Prior art date
Application number
RU95100203/25A
Other languages
Russian (ru)
Other versions
RU2084006C1 (en
Inventor
О.В. Августыняк
А.В. Зотов
Н.Д. Калинин
В.Я. Купер
О.А. Липатов
С.Н. Малыхин
А.А. Рот
М.Г. Рубцов
И.Н. Солодов
Original Assignee
Научно-производственный центр "ПАЛС"
Отделение геологии
Отделение геологии, редких металлов и радиогеоэкологии института геологии рудных месторождений, петрографии, минералогии и геохимии РАН
редких металлов и радиогеоэкологии института геологии рудных месторождений
петрографии
минералогии и геохимии РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-производственный центр "ПАЛС", Отделение геологии, Отделение геологии, редких металлов и радиогеоэкологии института геологии рудных месторождений, петрографии, минералогии и геохимии РАН, редких металлов и радиогеоэкологии института геологии рудных месторождений, петрографии, минералогии и геохимии РАН filed Critical Научно-производственный центр "ПАЛС"
Priority to RU9595100203A priority Critical patent/RU2084006C1/en
Publication of RU95100203A publication Critical patent/RU95100203A/en
Application granted granted Critical
Publication of RU2084006C1 publication Critical patent/RU2084006C1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

FIELD: remote measurement of parameters of aqueous medium. SUBSTANCE: invention is related to equipment for remote measurement of such parameters as temperature, hydrostatic pressure, specific conductance, hydrogen indicator pH, oxidation-reduction potential Eh, contents of solved oxygen, concentrations of various ions of aqueous medium in boreholes. Gear to study waters in boreholes has submersible probe and ground unit connected by means of logging cable. Submersible probe is inserted with unit of test formation and ground unit is supplemented with identification device, computer and parameter storage to increase accuracy of measurements and to expand functional capabilities of gear. Formulated problems are also solved thanks to performance of additional measurements of specially formed values- tests created by unit of test formation, thanks to determination of parameters of conversion function (linear or non-linear) of each measurement channel at present time moment with the aid of identification device and thanks to use of these parameters to compute values of all measured quantities with the use of computer. Besides it expansion of functional capabilities is also the us of computer. Besides it expansion of functional capabilities is also achieved due to insertion of parameter storage for all pickups used in gear which provides for fast change of set of measured quantities. EFFECT: increased accuracy of measurements, expanded functional capabilities of gear.

Claims (1)

Изобретение относится к устройствам для дистанционного измерения параметров водной среды, в частности, для измерений температуры, гидростатического давления, удельной электропроводности, водородного показателя pH, окислительно-восстановительного потенциала Eh, содержания растворенного кислорода, концентраций различных ионов водной среды в скважинах. Устройство содержит погружной зонд и наземный блок, соединенные каротажным кабелем. С целью повышения точности измерений и расширения функциональных возможностей устройства в погружной зонд введен блок формирования тестов, а в наземный блок введены блок идентификации, вычислительное устройство и блок хранения параметров. Поставленная цель достигается за счет проведения дополнительных измерений специально сформированных величин - тестов, создаваемых блоком формирования тестов, определения параметров функции преобразования (линейной или нелинейной) каждого измерительного канала в текущий момент времени с помощью блока идентификации и использования этих параметров для вычисления значений всех измеряемых величин с помощью вычислительного устройства. Кроме того, расширение функциональных возможностей достигается за счет введения блока хранения параметров всех применяемых датчиков, что обеспечивает возможность быстрого изменения набора измеряемых величин.The invention relates to devices for remote measurement of the parameters of the aquatic environment, in particular, for measuring temperature, hydrostatic pressure, electrical conductivity, pH, redox potential Eh, dissolved oxygen, concentrations of various ions of the aquatic environment in the wells. The device contains an immersion probe and a ground unit connected by a logging cable. In order to increase the accuracy of measurements and expand the functionality of the device, a test generation unit was introduced into the immersion probe, and an identification unit, a computing device, and a parameter storage unit were introduced into the ground unit. This goal is achieved through additional measurements of specially formed quantities - tests created by the test generation unit, determining the parameters of the conversion function (linear or nonlinear) of each measuring channel at the current time using the identification unit and using these parameters to calculate the values of all measured values with using a computing device. In addition, the expansion of functionality is achieved through the introduction of a storage unit for the parameters of all the sensors used, which makes it possible to quickly change the set of measured values.
RU9595100203A 1995-01-06 1995-01-06 Device for analysis of waters in boreholes RU2084006C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU9595100203A RU2084006C1 (en) 1995-01-06 1995-01-06 Device for analysis of waters in boreholes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU9595100203A RU2084006C1 (en) 1995-01-06 1995-01-06 Device for analysis of waters in boreholes

Publications (2)

Publication Number Publication Date
RU95100203A true RU95100203A (en) 1997-01-27
RU2084006C1 RU2084006C1 (en) 1997-07-10

Family

ID=20163792

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9595100203A RU2084006C1 (en) 1995-01-06 1995-01-06 Device for analysis of waters in boreholes

Country Status (1)

Country Link
RU (1) RU2084006C1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0611527D0 (en) * 2006-06-10 2006-07-19 Intelisys Ltd In-borehole gas monitoring apparatus and method

Also Published As

Publication number Publication date
RU2084006C1 (en) 1997-07-10

Similar Documents

Publication Publication Date Title
AU2013366039B2 (en) Soil chemistry sensor
Rhoades et al. An electrical conductivity probe for determining soil salinity
CN104380094B (en) Analyte sensing device
MX148623A (en) IMPROVEMENTS TO A DEVICE TO MEASURE PH IN A BLOOD SAMPLE
Willoughby et al. Comparison of simultaneous pH measurements made with 8-hydroxypyrene-1, 3, 6-trisulphonic acid (HPTS) and pH-sensitive microelectrodes in snail neurones
RU95100203A (en) Gear to study waters in boreholes
Garske et al. An inexpensive flow‐through cell and measurement system for monitoring selected chemical parameters in ground water
CN109884134A (en) A kind of electric pole type crude oil water content real-time detector
Topp et al. Evaluation of shaft-mounted TDT readings in disturbed and undisturbed media
Li et al. Development and performance test of a portable soil EC detector
US5490916A (en) Capillary reference half-cell
Oldham A fast‐response oxygen sensor for use on fine‐scale and microstructure CTD profilers
Li et al. A new probe for the investigation of soil corrosivity
Atkinson et al. Effects of pressure on oxygen sensors
RU2335789C1 (en) Well geophysical investigation assembly
Ben‐Yacikov et al. An improved in situ pH sensor for oceanographic and limnological applications
RU2045027C1 (en) Method for determining moisture content in soil
De Jong et al. Construction and calibration of a rapidly responding pH mini-electrode: Application to intertidal sediments.
Shoemaker et al. Continuous, short-interval redox data loggers: verification and setup considerations
SU1078288A1 (en) Method of determination of water-salt mode of soils and grounds
Yang et al. An apparatus for measuring water content of unsaturated soil based on the van der Pauw principle
SU779871A1 (en) Soil moisture-content sensor
Itoga et al. Gas-phase optrode measurements of oxygen in calorimetric vessels
Tan et al. Accurate pH measurement and determination in deep-sea environments by an in-situ pH sensor calibration device
AU670593B2 (en) Capillary reference half-cell