RU94045637A - Knolin quasioptimal method for obtaining image of dynamic object and determination of its orientation - Google Patents

Knolin quasioptimal method for obtaining image of dynamic object and determination of its orientation

Info

Publication number
RU94045637A
RU94045637A RU94045637/28A RU94045637A RU94045637A RU 94045637 A RU94045637 A RU 94045637A RU 94045637/28 A RU94045637/28 A RU 94045637/28A RU 94045637 A RU94045637 A RU 94045637A RU 94045637 A RU94045637 A RU 94045637A
Authority
RU
Russia
Prior art keywords
image
orientation
obtaining
field
resolution
Prior art date
Application number
RU94045637/28A
Other languages
Russian (ru)
Other versions
RU2085834C1 (en
Inventor
И.В. Холин
Original Assignee
И.В. Холин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by И.В. Холин filed Critical И.В. Холин
Priority to RU94045637A priority Critical patent/RU2085834C1/en
Publication of RU94045637A publication Critical patent/RU94045637A/en
Application granted granted Critical
Publication of RU2085834C1 publication Critical patent/RU2085834C1/en

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

FIELD: radio-, laser- and hydraulic detection and ranging of objects. SUBSTANCE: Knolin quasioptimal method for obtaining image of dynamic object and determination of its orientation consists in detection of field dissipated by the object in two points, measurement of velocity vectorof shift of amplitude-phase distribution of field, location of detection points along vector, formation at each detection point of complex distance-doppler image of object, but in point located along vector, with some delay for τ= a/v, where a is distance between the points; calculation of mutual correlation of complex envelops in corresponding members of resolution of two images; calculation of the sizes of resolution members in range and frequency in length units to obtain unknown equal-scale image by placing the found values of correlation factors in compliance with each member of resolution; orientation of the image plane so that direction of frequency axis is straight-opposite to vector, and orientation of the object is determined by obtained oriented image. EFFECT: extended range of technical facilities for obtaining the image of remote objects, higher signal/noise ratio, provision of obtaining equal-scale image and orientation of the object. 1 cl

Claims (1)

Квазиоптимальный способ Холина получения изображения динамического объекта и определения его ориентации относится к радио-, лазерной и гидролокации и состоит в том, что с целью расширения арсенала технических средств получения изображений удаленных объектов, а также повышения отношения сигнал/шум, получения равномасштабного изображения и определения ориентации объекта, осуществляют прием рассеянного объектом поля в двух пунктах, измеряют вектор скорости смещения амплитудно-фазового распределения поля, располагают приемные пункты вдоль него, в каждом пункте формируют комплексный дальностно-доплеровский образ объекта, вычисляют взаимную корреляцию комплексных огибающих в соответствующих элементах разрешения двух образов, вычисляют размеры элементов разрешения по дальности и частоте в единицах длины, получают искомое равномасштабное изображение, ставя в соответствие каждому элементу разрешения найденные значения коэффициентов корреляции, ориентируют плоскость изображения так, чтобы направление частотной оси было прямо противоположно вектору скорости смещения амплитудно-фазового распределения поля, после чего по полученному сориентированному изображению судят об ориентации объекта.Choline's quasi-optimal method of acquiring an image of a dynamic object and determining its orientation relates to radio, laser, and sonar, and consists in the fact that with the aim of expanding the arsenal of technical means for obtaining images of distant objects, as well as increasing the signal-to-noise ratio, obtaining a uniform image, and determining the orientation object, carry out the reception of the field scattered by the object at two points, measure the displacement velocity vector of the amplitude-phase field distribution, place the receiving points in along it, at each point a complex range-Doppler image of the object is formed, the cross-correlation of the complex envelopes in the corresponding resolution elements of the two images is calculated, the sizes of the resolution elements in range and frequency in units of length are calculated, the desired uniform image is obtained, matching each resolution element found the values of the correlation coefficients orient the image plane so that the direction of the frequency axis is directly opposite to the velocity vector I amplitude-phase distribution of the field, after which the resulting image to orient judge the orientation of the object.
RU94045637A 1994-12-30 1994-12-30 Method for generation of image of dynamic object and for detection of its orientation RU2085834C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94045637A RU2085834C1 (en) 1994-12-30 1994-12-30 Method for generation of image of dynamic object and for detection of its orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94045637A RU2085834C1 (en) 1994-12-30 1994-12-30 Method for generation of image of dynamic object and for detection of its orientation

Publications (2)

Publication Number Publication Date
RU94045637A true RU94045637A (en) 1996-10-10
RU2085834C1 RU2085834C1 (en) 1997-07-27

Family

ID=20163643

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94045637A RU2085834C1 (en) 1994-12-30 1994-12-30 Method for generation of image of dynamic object and for detection of its orientation

Country Status (1)

Country Link
RU (1) RU2085834C1 (en)

Also Published As

Publication number Publication date
RU2085834C1 (en) 1997-07-27

Similar Documents

Publication Publication Date Title
US10386462B1 (en) Systems and methods for stereo radar tracking
EP0362992A3 (en) Distance measuring method and apparatus therefor
RU2000126837A (en) METHOD AND SYSTEM FOR MEASURING RADAR REFLECTIVE ABILITY AND DOPPLER SHIFT BY MEANS OF A PULSE RADAR
DE68914360D1 (en) Transmitting and receiving device for microwave radiation for imaging hidden objects.
Chen et al. Resolution analysis of circular synthetic aperture radar noncoherent imaging
CN102141611B (en) Method for rapidly determining Doppler fuzzy number of squint synthetic aperture radar
RU94045637A (en) Knolin quasioptimal method for obtaining image of dynamic object and determination of its orientation
Frazier et al. Acoustic imaging of objects buried in soil
KR20010082366A (en) A passive technique for the remote detection of buried objects
RU2000124041A (en) METHOD FOR ESTIMATING CHARACTERISTICS OF A RADAR STATION UNDER THE ACTION OF ACTIVE NOISE INTERFERENCE
RU2191405C1 (en) Procedure determining radial velocity of object
Scherhäufl et al. Radar-based velocity estimation using three-dimensional cross-correlation
JPH0230674B2 (en)
Vesecky et al. On the ability of synthetic aperture radar to measure ocean waves
RU2217774C2 (en) Way to measure effective dispersion area of object and radar for its realization
RU2144209C1 (en) Data processing method for detection of radiation source
RU94025062A (en) Method of measurement of level by means of double frequency modulation radar
RU2003103657A (en) METHOD FOR DIRECTING THE RADIO SOURCE
RU95115737A (en) METHOD OF LASER MEASUREMENT OF THE SPEED VECTOR
Boscher et al. Wide band acoustic imaging of moving sources using synthetic aperture sonar, Application to transportation Noise
CN117420540A (en) MIMO radar speed angle measurement method based on rotation vector
RU2001103220A (en) METHOD FOR DETERMINING OBJECT COORDINATES IN PASSIVE BISTATIC RADAR
JPH0643748Y2 (en) Fish finder for fish length discrimination
Sato et al. Development of a ground-based synthetic aperture radar (GB-SAR) system and its applications to environment monitoring and disaster prevention
CN115508780A (en) Synthetic aperture acoustic imaging method