RU94027253A - Device to determine coefficient of thermal diffusivity - Google Patents

Device to determine coefficient of thermal diffusivity

Info

Publication number
RU94027253A
RU94027253A RU94027253/25A RU94027253A RU94027253A RU 94027253 A RU94027253 A RU 94027253A RU 94027253/25 A RU94027253/25 A RU 94027253/25A RU 94027253 A RU94027253 A RU 94027253A RU 94027253 A RU94027253 A RU 94027253A
Authority
RU
Russia
Prior art keywords
input
output
counter
differentiator
key
Prior art date
Application number
RU94027253/25A
Other languages
Russian (ru)
Other versions
RU2090872C1 (en
Inventor
В.В. Медведев
Original Assignee
Томский политехнический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Томский политехнический университет filed Critical Томский политехнический университет
Priority to RU94027253A priority Critical patent/RU2090872C1/en
Publication of RU94027253A publication Critical patent/RU94027253A/en
Application granted granted Critical
Publication of RU2090872C1 publication Critical patent/RU2090872C1/en

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

FIELD: measurement of thermophysical characteristics of solid materials, thermal non-destructive testing. SUBSTANCE: pulse heating source 1 is optically coupled to register 18 of heat pulses and examined sample 2 which rear surface temperature is measured by temperature-sensitive element 3. Output of temperature-sensitive element 3 is connected to input of first key 16. Controlling input of first key 16, first inputs of first 9 and second 10 coincidence circuits are connected to first output of RS flip-flop 7. Output of register 18 of heat pulses is linked to input of second key 17. Controlling input of second key 17 and first input of third coincidence circuit 11 are connected to second output of RS flip-flop 7. Outputs of first 16 and second 17 keys are connected to input of first differentiator 4. Output of first differentiator 4 is connected to input of second differentiator 5. Output of second differentiator 5 is connected to input of null detector 6. Output of null detector 6 is linked to R input of RS flip-flop 7 and to second input of second coincidence circuit 10. Second input of first coincidence circuit 9 is connected through second counter-frequency divider 15 to output of pulse generator 8. Second input of first coincidence circuit 11 is connected through first counter-frequency divider 14 to output of pulse generator 8. Output of first coincidence circuit 9 is connected to first information input of reversible counter 12. Output of third coincidence circuit 11 is connected to second information input of reversible counter 12. Output of second coincidence circuit 10 is connected to controlling input of reversible counter 12. Output of reversible counter 12 is connected to input of digital indicator 13. Input for setting of initial state of reversible counter 12, S input of flip-flop 7, inputs of pulse generator 8 and pulse heating source 1 are connected to start terminal 19. EFFECT: simplified design, increased accuracy of measurement are achieved thanks to use of one measurement channel and optimization of functioning algorithm. 1 cl, 1 dwg

Claims (1)

Использование: средства измерения теплофизических характеристик твердых материалов, тепловой неразрушающий контроль. Импульсный источник нагрева 1 оптически связан с регистратором импульсов нагрева 18 и исследуемым образцом 2, температура тыльной поверхности которого измеряется датчиком температуры 3. Выход датчика температуры 3 соединен с входом первого ключа 16. Управляющий вход первого ключа 16, первые входы первой 9 и второй 10 схем совпадения соединены с первым выходом RS-триггера 7. Выход регистратора импульсов нагрева 18 соединен с входом второго ключа 17. Управляющий вход второго ключа 17 и первый вход третьей схемы совпадения 11 соединены с вторым выходом RS-триггера 7. Выходы первого 16 и второго 17 ключей соединены с входом первого дифференциатора 4. Выход первого дифференциатора 4 соединен с входом второго дифференциатора 5. Выход второго дифференциатора 5 соединен с входом нуль-органа 6. Выход нуль-органа 6 соединен с К-входом RS- триггера 7 и вторым входом второй схемы совпадения 10. Второй вход первой схемы совпадения 9 через второй счетчик-делитель частоты 15 соединен с выходом генератора импульсов 8. Второй вход третьей схемы совпадения 11 через первый счетчик-делитель частоты 14 соединен с выходом генератора импульсов 8. Выход первой схемы совпадения 9 соединен с первым информационным входом реверсивного счетчика 12. Выход третьей схемы совпадения 11 соединен с вторым информационным входом реверсивного счетчика 12. Выход второй схемы совпадения 10 соединен с управляющим входом реверсивного счетчика 12. Выход реверсивного счетчика 12 соединен с входом цифрового индикатора 13. Вход установки исходного состояния реверсивного счетчика 12, S-вход RS-триггера 7, входы генератора импульсов 8 и импульсного источника нагрева 1 соединены с пусковой клеммой 19. Упрощение устройства и повышенная точность измерения достигаются за счет использования одного измерительного канала и оптимизации алгоритма функционирования. 1 з. п. ф-лы, 1 ил.Usage: means of measuring the thermal characteristics of solid materials, thermal non-destructive testing. The pulse heating source 1 is optically coupled to a heat pulse recorder 18 and a test sample 2, the back surface temperature of which is measured by a temperature sensor 3. The output of the temperature sensor 3 is connected to the input of the first key 16. The control input of the first key is 16, the first inputs of the first 9 and second 10 circuits matches are connected to the first output of the RS flip-flop 7. The output of the heating pulse recorder 18 is connected to the input of the second key 17. The control input of the second key 17 and the first input of the third match circuit 11 are connected to the second output RS-flip-flop 7. The outputs of the first 16 and second 17 keys are connected to the input of the first differentiator 4. The output of the first differentiator 4 is connected to the input of the second differentiator 5. The output of the second differentiator 5 is connected to the input of null-organ 6. The output of null-organ 6 is connected to K the RS input of flip-flop 7 and the second input of the second matching circuit 10. The second input of the first matching circuit 9 through the second counter-frequency divider 15 is connected to the output of the pulse generator 8. The second input of the third matching circuit 11 through the first counter-frequency divider 14 is connected to the output ohm of the pulse generator 8. The output of the first matching circuit 9 is connected to the first information input of the reversing counter 12. The output of the third matching circuit 11 is connected to the second information input of the reversing counter 12. The output of the second matching circuit 10 is connected to the control input of the reversing counter 12. Output of the reversing counter 12 connected to the input of the digital indicator 13. The input of the installation of the initial state of the reverse counter 12, the S-input of the RS-trigger 7, the inputs of the pulse generator 8 and the pulse heating source 1 are connected to the trigger th terminal 19. Simplification of the device and increased measurement accuracy are achieved through the use of a single measuring channel and optimization of the functioning algorithm. 1 s P. f-ly, 1 ill.
RU94027253A 1994-07-18 1994-07-18 Device determining coefficient of thermal diffusivity RU2090872C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94027253A RU2090872C1 (en) 1994-07-18 1994-07-18 Device determining coefficient of thermal diffusivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94027253A RU2090872C1 (en) 1994-07-18 1994-07-18 Device determining coefficient of thermal diffusivity

Publications (2)

Publication Number Publication Date
RU94027253A true RU94027253A (en) 1996-06-27
RU2090872C1 RU2090872C1 (en) 1997-09-20

Family

ID=20158698

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94027253A RU2090872C1 (en) 1994-07-18 1994-07-18 Device determining coefficient of thermal diffusivity

Country Status (1)

Country Link
RU (1) RU2090872C1 (en)

Also Published As

Publication number Publication date
RU2090872C1 (en) 1997-09-20

Similar Documents

Publication Publication Date Title
US4432232A (en) Device and method for measuring the coefficient of performance of a heat pump
CA2011659A1 (en) Measuring sensor for fluid state determination and method for measurement using such sensor
US4333332A (en) Differential scanning microcalorimeter
RU94027253A (en) Device to determine coefficient of thermal diffusivity
US7031861B2 (en) Apparatus and method for calibrating a resistance thermometer and gas analyzer employing same
RU2125258C1 (en) Method and device for identification of complex of thermophysical properties of solid materials
SU1711052A1 (en) Method of testing heat-insulating material thermophysical characteristics
RU2255330C1 (en) Device for measuring characteristics of materials
SU1040352A1 (en) Device for measuring thermoelectric converter thermal lag index
SU1718078A1 (en) Method and device for complex determination of thermophysical characteristics
SU1545149A1 (en) Device for measuring coefficient of thermal diffusity of materials
JPH0523710B2 (en)
SU463047A1 (en) Device for determining the coefficient of thermal diffusivity of materials
SU1173206A1 (en) Method of checking thermoelectric transducers
SU1318886A1 (en) Device for measuring thermal diffusivity of materials
SU1649584A1 (en) Multichennal meter
RU2261418C2 (en) Calorimeter
SU911280A1 (en) Device for measuring thermal emf
SU1422037A1 (en) Thermal-conductivity vacuum gauge
SU1741036A1 (en) Device for determination of thermal conductivity of materials
SU427242A1 (en) DEVICE FOR CALIBRATION OF HEAT MONETRIC SYSTEMS
SU1216678A1 (en) Apparatus for measuring thermal lag index of resistance thermal converter
SU1712849A1 (en) Method for determination of thermophysical characteristics of materials
SU1150484A1 (en) Thermal flowmeter
SU705380A1 (en) Digital resistance meter