RU94025919A - Double-flow turbojet engine with heat exchanger - Google Patents

Double-flow turbojet engine with heat exchanger

Info

Publication number
RU94025919A
RU94025919A RU94025919/06A RU94025919A RU94025919A RU 94025919 A RU94025919 A RU 94025919A RU 94025919/06 A RU94025919/06 A RU 94025919/06A RU 94025919 A RU94025919 A RU 94025919A RU 94025919 A RU94025919 A RU 94025919A
Authority
RU
Russia
Prior art keywords
compressor
air
engine
heat exchanger
segments
Prior art date
Application number
RU94025919/06A
Other languages
Russian (ru)
Other versions
RU2094640C1 (en
Inventor
Н.Т. Бобоед
By]
Original Assignee
Н.Т. Бобоед
By]
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Н.Т. Бобоед, By] filed Critical Н.Т. Бобоед
Priority to RU94025919A priority Critical patent/RU2094640C1/en
Publication of RU94025919A publication Critical patent/RU94025919A/en
Application granted granted Critical
Publication of RU2094640C1 publication Critical patent/RU2094640C1/en

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

FIELD: heavy transport and passenger aircraft. SUBSTANCE: air pressure ratio in modern turbojet engines reaches 27-30. Further increase of air pressure ratio enhances economical efficiency of engine to insignificant level but specific thrust reduces considerably due to rise of temperature after compressor. Provision is made for intermediate cooling of air in compressor. As soon as air pressure ratio $$$ reaches approximately 10, air from compressor is fed to heat exchanger where it is cooled with cold air forced by second-loop fan. Heat is transferred from first-loop compressor to second-loop air heating it and increasing rate of flow, thus increasing the engine thrust. After heat exchanger cooled air enters the high-pressure compressor. Compression work in high-pressure compressor is reduced by 1/3 due to drop of temperature, thus increasing the free energy by two times. The bypass ratio "m" at $$$=1.42 of fan increases from 5 to 10, thus increasing the engine thrust by two times. Heat exchanger consists of segments twisted by Archimedean spiral which makes it possible to ensure even pitch of passages by engine diameter. Segments are made from light metal, for example, aluminium. Compressed air from compressor enters inner passages whose passage areas may be small. Outer passages have large areas and are provided with outer fins to ensure required heat exchange surface. Segments are supported by rests to ensure required rigidity and avoid vibrations. EFFECT: enhanced economical efficiency and specific power of engine.

Claims (1)

Двухконтурный турбореактивный двигатель с теплообменником предназначен для тяжелых транспортных и пассажирских самолетов. Для увеличения экономичности двигателя и его удельной мощности в компрессор введено промежуточное охлаждение воздуха. При достижении степень повышения давления (Пк) порядка 10 воздух из компрессора поступает в теплообменник, где охлаждается холодным воздухом, прокачиваемым вентилятором второго контура. Тепло, которое передается из компрессора первого контура в воздух второго контура, подогревает его и увеличивает скорость истечения, что повышает тягу двигателя. Охлажденный воздух после теплообменника поступает в компрессор высокого давления. Работа сжатия в компрессоре высокого давления за счет снижения температуры воздуха уменьшается на 1/3, а значит свободная энергия увеличивается в два раза. Степень двухконтурности m при Пк=1,42 вентилятора с 5 увеличивается до 10. Это позволяет увеличить тягу двигателя в два раза. Теплообменник выполнен из сегментов, которые закручены по спирали Архимеда, что позволяет обеспечить равномерный шаг каналов по диаметру двигателя. Сегменты выполняются из легкого металла, например, из алюминия. Сжатый воздух из компрессора поступает во внутренние каналы, проходные сечения которых могут быть небольшими. Наружные каналы имеют большие проходные сечения и наружное оребрение, что обеспечивает необходимую площадь теплообмена. Для обеспечения необходимой жесткости и устранения вибраций сегменты опираются на упоры.The dual-circuit turbojet engine with heat exchanger is designed for heavy transport and passenger aircraft. To increase the efficiency of the engine and its specific power, intermediate air cooling was introduced into the compressor. Upon reaching a degree of pressure increase (Pc) of the order of 10, air from the compressor enters the heat exchanger, where it is cooled by cold air pumped by a secondary fan. The heat that is transferred from the compressor of the primary circuit to the air of the secondary circuit heats it and increases the flow rate, which increases the thrust of the engine. The cooled air after the heat exchanger enters the high-pressure compressor. The compression work in the high-pressure compressor by reducing air temperature decreases by 1/3, which means that free energy is doubled. The bypass ratio m with П к = 1.42 fans increases from 5 to 10. This allows you to double the engine thrust. The heat exchanger is made of segments that are twisted in a spiral of Archimedes, which allows for uniform channel pitch along the diameter of the engine. Segments are made of light metal, for example, aluminum. Compressed air from the compressor enters the internal channels, the passage sections of which may be small. The outer channels have large passage sections and external fins, which provides the necessary heat transfer area. To provide the necessary rigidity and eliminate vibrations, the segments are supported by stops.
RU94025919A 1994-07-12 1994-07-12 Double-flow turbojet engine with heat exchanger RU2094640C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94025919A RU2094640C1 (en) 1994-07-12 1994-07-12 Double-flow turbojet engine with heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94025919A RU2094640C1 (en) 1994-07-12 1994-07-12 Double-flow turbojet engine with heat exchanger

Publications (2)

Publication Number Publication Date
RU94025919A true RU94025919A (en) 1997-04-27
RU2094640C1 RU2094640C1 (en) 1997-10-27

Family

ID=20158365

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94025919A RU2094640C1 (en) 1994-07-12 1994-07-12 Double-flow turbojet engine with heat exchanger

Country Status (1)

Country Link
RU (1) RU2094640C1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488710C1 (en) * 2012-04-18 2013-07-27 Открытое акционерное общество "Авиадвигатель" Dual-flow turbojet engine
RU2617026C1 (en) * 2015-12-09 2017-04-19 Владимир Леонидович Письменный Double-flow jet turbine engine cooling method
RU2701034C1 (en) * 2019-02-15 2019-09-24 Владимир Леонидович Письменный Double-flow jet turbine engine
RU2704435C1 (en) * 2019-02-28 2019-10-29 Владимир Леонидович Письменный Double-circuit gas turbine unit

Also Published As

Publication number Publication date
RU2094640C1 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JP5336618B2 (en) Gas turbine engine assembly
US6569550B2 (en) Vehicle cooling/heating circuit
US7254947B2 (en) Vehicle cooling system
US5598697A (en) Double wall construction for a gas turbine combustion chamber
RU2005100708A (en) HOT COOLING SYSTEM OF THE AIRCRAFT ENGINE AND AIRCRAFT ENGINE SUPPLIED WITH SUCH COOLING SYSTEM
TW363301B (en) Device and method for cooling a motor
WO2011005858A2 (en) Compressor cooling for turbine engines
MXPA03011071A (en) Heat-exchanger assembly with wedge-shaped tubes with balanced coolant flow.
CN106958485A (en) Heat exchanger for embedded engine application:Curve ruler
US20180355887A1 (en) Centrifugal compressor cooling
SE458715B (en) AIR CONDITIONING AIR CONDITIONING SYSTEM
RU2764489C2 (en) Aircraft power plant containing heat exchangers of air-liquid type
US4785788A (en) Supercharger system for use with heat engines
RU94025919A (en) Double-flow turbojet engine with heat exchanger
GB2251031A (en) Cooling air pick up for gas turbine engine
US6422020B1 (en) Cast heat exchanger system for gas turbine
US3365121A (en) Pipeline flow boosting system
CN208026108U (en) A kind of FTGP finned heat exchangers
JPS58220945A (en) Heat energy recovery device in engine
FI60604C (en) SAETTING OVER ANGLING FOR UPPVAERMNING GENOM VAERMEPUMPNING
GB2074249A (en) Power Plant
JPS62279225A (en) Cooling device for internal combustion engine
RU2787443C1 (en) Deep charge air cooling system for combined engine
RU177542U1 (en) Air cooling heat exchanger
RU2142608C1 (en) Recuperation cooler