RU93042145A - METHOD OF GRADIENT HIGHLY EFFICIENT MEMBRANE CHROMATOGRAPHY (VAMH) OF POLYMERS - Google Patents

METHOD OF GRADIENT HIGHLY EFFICIENT MEMBRANE CHROMATOGRAPHY (VAMH) OF POLYMERS

Info

Publication number
RU93042145A
RU93042145A RU93042145/25A RU93042145A RU93042145A RU 93042145 A RU93042145 A RU 93042145A RU 93042145/25 A RU93042145/25 A RU 93042145/25A RU 93042145 A RU93042145 A RU 93042145A RU 93042145 A RU93042145 A RU 93042145A
Authority
RU
Russia
Prior art keywords
eluent
composition
vamh
peaks
polymers
Prior art date
Application number
RU93042145/25A
Other languages
Russian (ru)
Inventor
Б.Г. Беленький
М.Б. Тенников
Original Assignee
Институт аналитического приборостроения РАН
Filing date
Publication date
Application filed by Институт аналитического приборостроения РАН filed Critical Институт аналитического приборостроения РАН
Publication of RU93042145A publication Critical patent/RU93042145A/en

Links

Claims (1)

Предлагаемое техническое решение относится к методам ВЭМХ и найдет широкое применение для фракционирования сложных смесей биополимеров, особенно в препаративном масштабе, в фармацевтической и медицинской промышленности, биоорганической химии, биотехнологии. Изобретение позволяет разделить сложные смеси неизвестного состава практически до базовой линии и оптимальным образом отбирать фракции в препаративном выделении, т.е. повысить эффективность ВЭМХ и чистоту получаемых препаратов. Это достигается за счет того, что в известном методе, основанном на программировании состава элюента путем подачи в ячейку раствора вытеснителя заданной концентрации, используют мультиступенчатый режим изменения состава элюента, при котором предварительно разбивают весь рабочий интервал концентраций вытеснителя Δφ на n равных шагов - ступеней
Figure 00000001

где δφo не превышает разности критических концентраций двух ближайших пиков Δφcmin, а объем подачи элюента данного состава
δvo=δto•F,
где Δto - продолжительность подачи для каждой ступени, F - расход элюента не меньше, чем 4σmax наибольшего значения ширины зоны компонентов, а затем по результирующей хроматограмме задают оптимальное количество ступеней N, равное числу пиков, где высоту каждой ступени δφi определяют по формуле:
δφi=(Ki+1)δφo
где Кi - число пустых интервалов δφo между i и i + 1 пиками, а объем подачи элюента данного состава φi определяют по формуле:
δvi=4δi
The proposed solution relates to methods VAMH and will be widely used for the fractionation of complex mixtures of biopolymers, especially on a preparative scale, in the pharmaceutical and medical industry, bioorganic chemistry, biotechnology. The invention allows the separation of complex mixtures of unknown composition to almost the baseline and the optimal way to select fractions in the preparative selection, i.e. to increase the effectiveness of VAMH and the purity of the preparations obtained. This is achieved due to the fact that in the well-known method, based on programming the composition of the eluent by feeding a predetermined concentration to the cell of the propellant solution, a multistep mode of changing the composition of the eluent is used, at which the whole working interval of the propellant Δφ is divided into n equal steps
Figure 00000001

where δφ o does not exceed the difference of critical concentrations of the two nearest peaks Δφ cmin , and the volume of the eluent feed of a given composition
δv o = δt o • F,
where Δt o is the duration of supply for each stage, F is the eluent flow rate not less than 4σ max of the largest width of the component zone, and then using the resulting chromatogram set the optimal number of steps N equal to the number of peaks, where the height of each step δφ i is determined by the formula :
δφ i = (K i + 1 ) δφ o
where K i - the number of empty intervals δφ o between i and i + 1 peaks, and the amount of eluent flow of a given composition φ i is determined by the formula:
δv i = 4δ i
RU93042145/25A 1993-08-24 METHOD OF GRADIENT HIGHLY EFFICIENT MEMBRANE CHROMATOGRAPHY (VAMH) OF POLYMERS RU93042145A (en)

Publications (1)

Publication Number Publication Date
RU93042145A true RU93042145A (en) 1996-02-20

Family

ID=

Similar Documents

Publication Publication Date Title
US4274967A (en) Chromatographic apparatus and method
Foley Optimization of micellar electrokinetic chromatography
Mazzeo et al. Novel chiral surfactant for the separation of enantiomers by micellar electrokinetic capillary chromatography
US4204952A (en) Chromatographic apparatus and method
Row et al. Separation of modified nucleic acid constituents by micellar electrokinetic capillary chromatography
Strausbauch et al. Sensitivity enhancement and second‐dimensional information from solid phase extraction‐capillary electrophoresis of entire high‐performance liquid chromatography fractions
ATE107534T1 (en) SEPARATION OF CHARGED MOLECULES.
JP2003156482A (en) Preparative chromatograph and separation and refining method using it
Hodges et al. Preparative purification of peptides by reversed-phase chromatography: Sample displacement mode versus gradient elution mode
FR2552231B1 (en) PROCESS FOR CONCENTRATING THE SOLUTE DURING INJECTION INTO A GAS PHASE CHROMATOGRAPHY COLUMN
Euerby et al. Step-gradient capillary electrochromatography
US5004547A (en) Method and apparatus for bioaffinity separation
Sun et al. Enhanced chiral separation of dansylated amino acids with cyclodextrin‐dextran polymer network by capillary electrophoresis
RU93042145A (en) METHOD OF GRADIENT HIGHLY EFFICIENT MEMBRANE CHROMATOGRAPHY (VAMH) OF POLYMERS
Hodges et al. Multi-column preparative reversed-phase sample displacement chromatography of peptides
EP1044716A1 (en) Micropreparative isoelectric focussing
Tehrani et al. Capillary electrophoresis: An integrated system with a unique split‐flow sample introduction mechanism
Sun et al. Comparison of micellar electrokinetic capillary chromatography and high-performance liquid chromatography on the separation and determination of caffeine and its analogues in pharmaceutical tablets
Burke et al. A novel approach to reversed-phase preparative high-performance liquid chromatography of peptides
Rathore Resin screening to optimize chromatographic separations
Fiedler et al. Separation of amino acids and antibiotics by narrow-bore and normal-bore high-performance liquid chromatography with pre-column derivatization
Caslavska et al. Purification of ovalbumin and lysozyme from a commercial product by recycling isotachophoresis
Jorgenson Trends in analytical scale separations
Burke et al. Preparative Reversed-Phase Shallow Gradient Approach to the Purification of Closely-Related Peptide Analogs on Analytical Instrumentation
Raymond et al. Separation and Recovery of Proteins by Elution-Convection