RU93011866A - ULTRASONIC GAP METER IN MULTILAYER STRUCTURES - Google Patents

ULTRASONIC GAP METER IN MULTILAYER STRUCTURES

Info

Publication number
RU93011866A
RU93011866A RU93011866/28A RU93011866A RU93011866A RU 93011866 A RU93011866 A RU 93011866A RU 93011866/28 A RU93011866/28 A RU 93011866/28A RU 93011866 A RU93011866 A RU 93011866A RU 93011866 A RU93011866 A RU 93011866A
Authority
RU
Russia
Prior art keywords
multilayer structures
waveguides
receiver
gap meter
ultrasonic gap
Prior art date
Application number
RU93011866/28A
Other languages
Russian (ru)
Other versions
RU2084821C1 (en
Inventor
П.Н. Ермолаев
А.И. Трофимов
М.С. Гаджиев
Original Assignee
Обнинский институт атомной энергии
Filing date
Publication date
Application filed by Обнинский институт атомной энергии filed Critical Обнинский институт атомной энергии
Priority to RU93011866A priority Critical patent/RU2084821C1/en
Priority claimed from RU93011866A external-priority patent/RU2084821C1/en
Publication of RU93011866A publication Critical patent/RU93011866A/en
Application granted granted Critical
Publication of RU2084821C1 publication Critical patent/RU2084821C1/en

Links

Claims (1)

Изобретение относится к контрольно-измерительной технике и может быть использовано в технических средствах неразрушающего контроля многослойных конструкций в атомной энергетике, машиностроении, авиакосмической промышленности, экспериментальной технике для измерения зазоров в многослойных конструкциях. Цель изобретения - повышение точности измерения и расширение функциональных возможностей устройств измерения. Для этого измеритель содержит систему из двух волноводов, акустически согласованных между собой по волновому сопротивлению и геометрически сопряженных по форме контактирующей поверхности так, что совместно со сферическим пьезоэлектрическим излучателем-приемником образуют центрирующую акустическую систему, компенсирующую рассеивающее действие объекта измерения, причем один из волноводов имеет коническую форму и акустически соединен с пьезоэлектрическим излучателем-приемником.The invention relates to measuring technique and can be used in the technical means of non-destructive testing of multilayer structures in the nuclear power industry, mechanical engineering, aerospace industry, experimental techniques for measuring gaps in multilayer structures. The purpose of the invention is to improve the measurement accuracy and expand the functionality of the measurement devices. For this, the meter contains a system of two waveguides, acoustically matched to each other in wave impedance and geometrically conjugated in shape to the contacting surface so that, together with the spherical piezoelectric emitter-receiver, they form a centering acoustic system that compensates for the scattering action of the measurement object, one of the waveguides having a conical shape and acoustically connected to the piezoelectric transducer receiver.
RU93011866A 1993-03-04 1993-03-04 Ultrasonic meter for measuring clearances in multi-layer structures RU2084821C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93011866A RU2084821C1 (en) 1993-03-04 1993-03-04 Ultrasonic meter for measuring clearances in multi-layer structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93011866A RU2084821C1 (en) 1993-03-04 1993-03-04 Ultrasonic meter for measuring clearances in multi-layer structures

Publications (2)

Publication Number Publication Date
RU93011866A true RU93011866A (en) 1995-02-10
RU2084821C1 RU2084821C1 (en) 1997-07-20

Family

ID=20138242

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93011866A RU2084821C1 (en) 1993-03-04 1993-03-04 Ultrasonic meter for measuring clearances in multi-layer structures

Country Status (1)

Country Link
RU (1) RU2084821C1 (en)

Similar Documents

Publication Publication Date Title
Hay et al. Flexible PVDF comb transducers for excitation of axisymmetric guided waves in pipe
US11428671B2 (en) Arrangement for non-destructive testing and a testing method thereof
Carino et al. Pulse‐echo method for flaw detection in concrete
RU93011866A (en) ULTRASONIC GAP METER IN MULTILAYER STRUCTURES
US3192418A (en) Ultrasonic transducers
Gachagan et al. Detection of ultrasonic Lamb waves in composite plates using optical-fibres
Golub et al. Experimental and theoretical investigation of edge waves propagation and scattering in a thick plate with surface-breaking crack-like defect
Vlasie et al. Mechanical and acoustical study of a structural bond: comparison theory/numerical simulations/experiment
US4238725A (en) Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers
Mattsson et al. Three-dimensional ultrasonic crack detection in anisotropic materials
Cawley et al. A comparison of different methods for the detection of a weak adhesive/adherend interface in bonded joints
Berndt et al. Feasibility study of a nonlinear ultrasonic technique to evaluate adhesive bonds
Cawley The detection of delaminations using flexural waves
JPH04157360A (en) Supersonic probe
RU114786U1 (en) ULTRASONIC IMMERSION MULTI-SECTION COMBINED PIEZOELECTRIC CONVERTER
Ito et al. Contact pattern measurement by means of ultrasonic waves: art of present and some improvements of its performance
Brown New ferroelectric polymer ultrasound contact transducers for nondestructive testing applications
Lee et al. A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate
Pei et al. Plate tomography with dry contact Lamb wave transducers
CA2295405A1 (en) Method and apparatus for torque measurement
Lowe et al. Comparison of reflection coefficient minima with dispersion curves for ultrasonic waves in embedded layers
Neary et al. In-situ damage monitoring of composite structures
Gunawan et al. Numerical and experimental studies on the scattering of lamb waves in a bent plate
SARRAFZADEH et al. NDE of composite materials using ultrasound: Quantitative optical detection
GB1317162A (en) Material tester and search unit therefor