RU90552U1 - Система непрерывного измерения веса перемещаемых материалов на ленточных конвейерах и весовая роликоопора ленточного конвейера - Google Patents

Система непрерывного измерения веса перемещаемых материалов на ленточных конвейерах и весовая роликоопора ленточного конвейера Download PDF

Info

Publication number
RU90552U1
RU90552U1 RU2009137867/22U RU2009137867U RU90552U1 RU 90552 U1 RU90552 U1 RU 90552U1 RU 2009137867/22 U RU2009137867/22 U RU 2009137867/22U RU 2009137867 U RU2009137867 U RU 2009137867U RU 90552 U1 RU90552 U1 RU 90552U1
Authority
RU
Russia
Prior art keywords
weight
conveyor
rollers
roller support
tape
Prior art date
Application number
RU2009137867/22U
Other languages
English (en)
Inventor
Евгений Александрович Артемьев
Андрей Евгеньевич Артемьев
Эдуард Валерьевич Царенко
Original Assignee
Общество с ограниченной ответственностью "ВИБРО-М"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ВИБРО-М" filed Critical Общество с ограниченной ответственностью "ВИБРО-М"
Priority to RU2009137867/22U priority Critical patent/RU90552U1/ru
Application granted granted Critical
Publication of RU90552U1 publication Critical patent/RU90552U1/ru

Links

Abstract

1. Система непрерывного измерения веса перемещаемых материалов на ленточном конвейере, содержащая раму конвейера, штатные и оснащенные тензометрическими датчиками весовые роликоопоры, на которых размещена бесконечная лента, и средства автоматики, отличающаяся тем, что используют две весовые роликоопоры, расположенные на раме с возможностью размещения между ними одной штатной роликоопоры, при этом одна весовая роликоопора выполнена с возможностью размещения на ней эталонного пригруза, а средства автоматики включают весовой контроллер, датчик скорости и центральный процессор. ! 2. Весовая роликоопора ленточного конвейера, включающая основание с расположенными под углом друг к другу роликами, по меньшей мере, один кронштейн, выполненный с возможностью крепления к раме конвейера, и два тензометрических датчика, связанные с устройством обработки их показаний, отличающаяся тем, что тензометрические датчики выполнены консольными, расположены между основанием и кронштейном и разнесены вдоль роликов, а на основании со стороны противоположной размещению тензометрических датчиков расположена площадка для размещения на ней эталонного пригруза.

Description

Полезные модели относятся к области транспортного машиностроения и весоизмерительной техники и могут быть использованы в различных технологических процессах, связанных с непрерывным измерением веса перемещаемых материалов на ленточных конвейерах.
Известна система измерения веса на базе конвейерных весов [Описание изобретения к патенту РФ №2232979 от 23.09.2002, МПК7 G01G 11/04, опубл. 20.07.2004]. Весы содержат две рядом стоящие весовые роликоопоры, установленные при помощи моста и рамы и включенные встречно друг другу, имеют контргруз, датчик скорости, датчик веса и, при этом они снабжены суммирующим устройством, соединяющим между собой весовые роликоопоры, установленные на рамах, объединенных мостом, выполненным в виде двух рычагов равной длины, расположенных вдоль продольной оси конвейерной ленты, образуя с ней угол по вертикали, и соединяющихся соединительным элементом, передающим усилие по вертикали рычагу масштабирования, на одном из плеч которого установлен контргруз, а другое плечо вдоль продольной оси конвейерной ленты связано с датчиком веса. В результате решается задача увеличения точности измерения веса до 0,5-1,0% и надежность работы при сохранении относительной простоты конструкции системы.
Недостатком системы является то, что она неспособна учитывать дефекты конвейерной ленты. Даже при идеальном монтаже рамы и опорных роликов возможен уход ленты в сторону. Производство резинотканевых конвейерных лент - многооперационный процесс, при проведении которого применяемые ткани, резиновые смеси и ленты в целом испытывают различного рода нагрузки: сжатия, растяжения, сдвига, изгиба и их комбинации. При несоблюдении технологии, некачественном сырье и значительном износе оборудования эти нагрузки могут неравномерно распределяться как по сечению, так и по площади лент, вызывая остаточные напряжения и отклонения в размерах элементов лент.
Одним проявлений остаточных напряжений является «изначальная серповидность» ленты. При ее установке в эксплуатацию возникает неравномерное рабочее натяжение по ширине, вызывая «вытягивание» одного из бортов, что в свою очередь ведет к еще большей серповидности. Центрирование серповидных лент весьма затруднительно, а иногда и невозможно. Данный дефект обнаруживается, как правило, не на предприятии-изготовителе лент, а только у потребителя. Высокая стоимость конвейерной ленты и трудоемкость ее монтажа, особенно в случае протяженного конвейера, заставляют потребителя мирится указанным ее недостатком в эксплуатации, тем более что возложенные на нее функции она все-таки выполняет. Но как только потребитель решит установить на данный конвейер конвейерные весы (причем независимо от конструкции и фирмы производителя), он тут же сталкивается с проблемой калибровки последних из-за постоянного «гуляния» ленты под нагрузкой из стороны в сторону, которое он не может воспроизвести с помощью механического имитатора нагрузки.
Кроме этого, точность взвешивания на уровне 0,5-1,0% является теоретической. При использовании рычагов масштабирования, действительно, можно уменьшить в восемь раз величину контргруза, в десять раз величину калибровочных грузов. При этом погрешности взвешивания также фиксируются уменьшенными в 8-10 раз. На практике точность взвешивания на весах подобной конструкции в лучшем случае составляет примерно 7%, что неприемлемо для оценки перемещаемых грузов, суммарный вес которых исчисляется сотнями тысяч и миллионами тонн.
Известна система измерения массы изделий в потоке на базе соответствующего устройства [Описание изобретения к патенту РФ №2022237 от 12.05.1991, МПК5 G01C 19/18, опубл. 30.10.1994], которое содержит ленточный транспортер, закрепленный на основании, весовую платформу, датчик усилия и схему обработки сигналов. В устройство введен дополнительный датчик усилия, а весовая платформа выполнена в виде двух размещенных друг под другом продольных рычагов, свободный конец верхнего из которых опирается на первый датчик усилия, а его второй конец шарнирно закреплен на свободном конце второго рычага, который опирается на второй датчик усилия, при этом другой конец второго рычага шарнирно прикреплен к основанию, а схема обработки сигналов выполнена в виде двух датчиков наличия изделия, источника питания, двух усилителей, подключенных своими входами к соответствующим датчикам усилия, сумматора, аналого-цифрового преобразователя, микроЭВМ и цифрового дисплея. Устройство обеспечивает повышенную надежность работы и высокую точность взвешивания, позволяющую производить разбраковку перемещаемых изделий по массе и корректировку фасовочных дозаторов.
Недостатком известного устройства является то, что оно работает с малыми, как правило, порционными массами продуктов питания. В этом случае можно обеспечить высокую точность взвешивания, поскольку приходится оперировать механизмами соразмерными с часовыми. В случае с заявляемой системой непрерывного измерения веса перемещаемых материалов на ленточных конвейерах оперировать приходится с механизмами общего или тяжелого машиностроения, способными перемещать очень большие массы грузов с высокой производительностью, когда практически нереально переизмерить отгруженную за один полный цикл работы конвейера массу (сотни тысяч тонн) на эталонном весовом оборудовании.
Указанных недостатков лишена система измерения веса на основе конвейерных многороликовых весов непрерывного действия [Описание полезной модели к патенту РФ №11604 от 17.06.1999, МПК6 G01G 11/00, опубл. 16.10.1999]. Система содержит раму конвейера, штатные и оснащенные тензометрическими датчиками весовые роликоопоры на которых размещена бесконечная лента, и средства автоматики. Оборудование размещено на грузоприемном устройстве, в виде жесткой металлической конструкции с одной степенью свободы двух тензометрических датчиков так, что линия, соединяющая точки приложения усилия к датчикам, расположена вдоль оси ленты конвейера.
Система обеспечивает высокую точность и надежность измерения, но только при равномерной загрузке относительно оси симметрии конвейера. Любое отклонение цента тяжести груза в поперечном направлении искажает точность показаний тензометрических датчиков. Кроме этого, для динамической калибровки известной системы измерения веса используются различные имитаторы нагрузки. Последние устанавливают на конвейерную ленту сверху, шарнирно закрепляя их на раме конвейера. Затем включают конвейер и заставляют ленту сделать один или несколько полных оборотов. При этом контроллер конвейерных весов фиксирует показания тензодатчиков и соотносит их с массой имитатора и скоростью движения конвейерной ленты, вычисляя тем самым величину съимитированной отгруженной массы. Полученные таким образом данные используются для вычисления отгруженной массы и производительности конвейера. В качестве имитатора нагрузки используют роликовые цепи, тележки и т.д.
Однако какой бы имитатор мы не взяли, он не в состоянии полностью съимитировать нагрузку сыпучего материала на транспортерную ленту, а, через нее, на тензодатчики весов. Это объясняется тем, что имитатор имеет несколько точечных контактов с лентой, в то время как находящийся на ленте материал дает распределенную нагрузку. Кроме того, между неподвижным имитатором и движущейся лентой всегда существует трение, в то время как материал относительно ленты всегда неподвижен. Масса имитатора должна быть ограничена, иначе обслуживающему персоналу будет неудобно с ней работать. На практике она не превосходит 100 кг. Данная нагрузка не может вызвать уход ленты в сторону, если рама конвейера на каком-либо участке имеет уход от горизонтали в поперечном направлении вследствие погрешностей монтажа. Нагрузка от материала, находящегося на ленте, может составлять несколько тонн и в состоянии вызвать уход ленты в сторону. В этом случае сразу возникают большие погрешности измерений, т.к. динамическая калибровка весов проводилась в ином положении конвейерной ленты.
Задача, решаемая первой полезной моделью заявленной группы и достигаемый технический результат заключаются в создании достаточно простой и надежной системы непрерывного измерения веса перемещаемых материалов на ленточных конвейерах, обеспечивающей высокую точность взвешивания при сохранении высокой производительности используемого оборудования. Дополнительно, расширяются технологические возможности системы измерения веса, обеспечивающие проведение процесса взвешивания с одинаковой точностью на конвейерных линиях с различной производительностью.
Для решения поставленной задачи и достижения заявленного технического результата в системе непрерывного измерения веса перемещаемых материалов на ленточном конвейере, содержащей раму конвейера, штатные и оснащенные тензометрическими датчиками весовые роликоопоры на которых размещена бесконечная лента, и средства автоматики, используют две весовые роликоопоры, расположенные на раме с возможностью размещения между ними одной штатной роликоопоры, при этом одна весовая роликоопора выполнена с возможностью размещения на ней эталонного пригруза, а средства автоматики включают весовой контроллер, датчик скорости и центральный процессор.
Вышеприведенные сведения из уровня техники включают информацию о конструкции весовых роликоопор ленточных конвейеров, используемых для непрерывного взвешивания различных материалов (см. патенты РФ на изобретения №2232979 и №2022237 и на полезную модель №11604).
Недостатками этих устройств для измерения веса являются ограниченные технологические возможности, связанные с невозможностью точного взвешивания, в частности, больших объемов и масс непрерывно движущихся материалов.
Задача, решаемая второй полезной моделью заявленной группы и достигаемый технический результат заключаются в создании достаточно простых и надежных весовых роликоопор ленточных конвейеров непрерывного действия, предназначенных для измерения больших объемов и масс, обеспечивающих высокую точность взвешивания при сохранении высокой производительности обслуживаемых конвейерных линий. Дополнительно, расширяются технологические возможности системы измерения веса, оборудованной соответствующими роликоопорами, обеспечивающие проведение процесса взвешивания с одинаковой точностью на конвейерных линиях с различной производительностью.
Для решения поставленной задачи и получения заявленного технического результата в весовой роликоопоре ленточного конвейера, включающей основание с расположенными под углом друг к другу роликами, по меньшей мере, один кронштейн, выполненный с возможностью крепления к раме конвейера, и два тензометрических датчика, связанные с устройством обработки их показаний, тензометрические датчики выполнены консольными, расположены между основанием и кронштейном и разнесены вдоль роликов, а на основании со стороны противоположной размещению тензометрических датчиков расположена площадка для размещения на ней эталонного пригруза.
Полезные модели иллюстрируются чертежом, где:
- на фиг.1 показан общий вид системы непрерывного измерения веса перемещаемых материалов на ленточном конвейере;
- на фиг.2 изображена весовая роликоопора на фронтальном виде;
- на фиг.3 - весовая роликоопора на виде сбоку;
- на фиг.4 - весовая роликоопора на виде сверху.
Система непрерывного измерения веса перемещаемых материалов на ленточных конвейерах 1 содержит раму 2, штатные роликоопоры 3 и оснащенные тензометрическими датчиками 4 две весовые роликоопоры 5 и 6 на которых размещена бесконечная лента 7, и средства автоматики, при этом весовые роликоопоры 5 и 6, расположены на раме 2 с возможностью размещения между ними одной штатной роликоопоры 3, причем весовая роликоопора 6 выполнена с возможностью размещения на ней эталонного пригруза 8, а средства автоматики включают весовой контроллер 9, датчик скорости 10 и центральный процессор 11 (функцию которого также может выполнять специальный контроллер) и различные периферийные устройства 12, типа монитора, принтера, громкоговорителя и т.д. - по нормам оснащения рабочего места (пульта) оператора конвейерной линии.
Технология измерения веса в упомянутой системе включает получение суммарных показаний с оснащенных тензометрическими датчиками 4 и расположенных по обе стороны от штатной роликоопоры 3 весовых роликоопор 5 и 6, из которых роликоопора 6 оснащена эталонным пригрузом 8, при этом перед началом работы с помощью любой из весовых роликоопор 5 или 6 за один холостой цикл работы конвейера 1 измеряют вес порожней ленты 7 и полученное значение запоминают, после этого, одновременно двумя весовыми роликоопорами 5 и 6 измеряют вес загруженной ленты 7, затем, после каждого полного оборота ленты 7 вычисляют отгруженную массу как разницу между суммарными показаниями весовой роликоопоры 5 без эталонного пригруза 8 и весом порожней ленты 7, одновременно вычисляют разность суммарных показаний обоих весовых роликоопор 5 и 6, сравнивают ее с весом эталонного пригруза 8, и в случае их расхождений вносят поправку в величину отгруженной массы.
Весовая роликоопора 5 или 6 ленточного конвейера 1 имеет универсальную конструкцию, включающую основание 13 с расположенными под углом друг к другу опорными (поддерживающими, направляющими) роликами 14, два кронштейна 15, выполненные с возможностью крепления к раме 2 конвейера 1, и два тензометрических датчика 4, связанные с устройством обработки их показаний, являющемся одним из элементов средств автоматики системы непрерывного измерения веса перемещаемых материалов, при этом тензометрические датчики 4 выполнены консольными, расположены между основанием 13 и кронштейном 15 и разнесены вдоль роликов 14, а на основании 13 со стороны противоположной размещению тензометрических датчиков 4 расположена площадка 16 для размещения на ней, в случае технологической необходимости, как это предусмотрено в системе непрерывного измерения веса перемещаемых материалов на ленточном конвейере 1, калибровочных гирь или эталонного пригруза 8, выполненных в виде, по меньшей мере, одного откалиброванного по весу предмета (показаны условно).
Система непрерывного измерения веса перемещаемых материалов на ленточном конвейере 1 может быть реализована на соответствующей конвейерной линии, как вновь проектируемой, так и уже введенной в эксплуатацию, т.е. модернизируемой.
Особенностью конструкции конвейерной линии является не только наличие двух весовых роликоопор 5 и 6, одна из которых, а именно - 6, оснащена эталонным пригрузом 8, но и их особое взаимное расположение. Что касается места расположения эталонного пригруза 8, то не имеет значение, какая из роликоопор 5 или 6 оснащена им - каждая из них включает соответствующую площадку 16, которая при необходимости может использоваться по прямому назначению - размещению эталонного пригруза 8 или калибровочных гирь (условно не показаны). Что касается взаимного расположения весовых роликоопор 5 и 6, то здесь главным условием является их расположение по обе стороны от заранее выбранной, например, по критерию наилучшей доступности, штатной роликоопоры 3. Только такое расположение весовых роликоопор 5 и 6 помимо компактности обеспечивает необходимую чувствительность тензометрических датчиков 4. В уровне техники, в частности, имеются сведения о последовательном расположении роликоопор, оснащенных тензометрическими датчиками (см., например, патент РФ №11604 на полезную модель). Как упоминалось выше, последовательное расположение весовых роликоопор 5 и 6 не обеспечивает необходимую точность взвешивания и требует частых весоповерок. Точно так же, расположение весовых роликоопор 5 и 6 через две, три и более штатные роликоопоры 3, обеспечивает искажение результатов взвешивания. В этом случае фиксируемый вес на разнесенных роликоопорах может существенно отличаться друг от друга. Это происходит за счет того, что боковые смещения движущейся под нагрузкой ленты 7 в той или иной степени начинают проявляться сразу же, как только она сойдет с опорных роликов 14. Чем больше будет штатных роликоопор 3 между весовыми роликоопорами 5 и 6, тем больше будут искажения. Наличие всего лишь одной штатной роликоопоры 3 в этом случае вносит минимум искажений.
Используемые в конструкции системы непрерывного измерения веса средства автоматики включают наиболее распространенные серийно выпускаемые отечественными и зарубежными производителями, как правило, многофункциональные устройства, например, весовой контроллер 9 типа SIWAREX U (его сдвоенные и т.д. варианты) производства фирмы SIEMENS (WWW.siemens.com), датчик скорости 10 типа ДС-2М производства фирмы «ВИБРО-М» (WWW.vibro-m.ru) и центральный процессор 11 типа CPU313C производства фирмы SIEMENS или аналогичные им устройства. Это позволяет производить плановое обслуживание и текущий ремонт средств автоматики силами предприятия с минимальным привлечением проектировщика системы измерения веса.
Использование в весовых роликоопорах 5 и 6 консольных тензометрических датчиков 4, например, марки VISHAY-1260 или Т60А производства фирмы ТЕНЗО-М (WWW.tenso-m.ru), по сравнению, например, с тензодатчиками сжатия, растяжения, кручения и др., связано, в первую очередь, с их чувствительностью, удобством в монтаже, обслуживании и замене. Их разнесение вдоль опорных роликов 14 (т.е. по ширине конвейера 1 с делением на правый и левый тензодатчики 4) позволяет учитывать любые отклонения в конструкции конвейерной ленты 7 и неравномерность ее загрузки. В этом случае мгновенная масса перемещаемого груза будет попросту складываться из суммы их показаний. Расположение основания 13 весовой роликоопоры 6 (или 5) и площадки 16 для размещения пригруза 8 на максимальном удалении от кронштейна 15 крепления роликоопоры 6 (или 5) к раме 2, также делает максимально возможным изгибающее усилие на чувствительном элементе консольных тензодатчиков 4. В известных решениях (см., например, патент РФ №2232979) специально вводят масштабирование (мультипликацию) конечной нагрузки в меньшую сторону, не принимая во внимание при этом, что такому же масштабированию в меньшую сторону подвергается и реальная точность взвешивания.
Возможность размещения эталонного пригруза 8 на специальных площадках 16 позволяет заранее рассчитать величину «дополнительной контрольной отгруженной массы» при работе конвейера 1, которая будет присутствовать в программе корректировки веса отгруженной массы перемещаемых материалов, заложенной в центральный процессор 11. На этих же площадках 16, независимо от функциональной возможности размещения на них эталонного пригруза 8, размещаются и стандартные калибровочные гири (условно не показаны) при калибровке тензоканалов после монтажа весовых роликоопор 5 и 6 или в результате их технического обслуживания. Использование такого решения позволило полностью отказаться от механического имитатора нагрузки, который должен устанавливаться на порожнюю конвейерную ленту 7.
Таким образом, все перечисленное, включая независимость весовых роликоопор 5 и 6 увеличивает точность взвешивания непрерывно перемещаемых материалов на ленточных конвейерах 1. Практика контрольных взвешиваний показала, что в данном случае погрешность измерения составляет не более 1-2% Существующие аналоги имеют погрешность измерения отгруженной массы от 1% до 5% и более.
Полезные модели реализованы следующим образом.
Оснащение конвейерных линий весовыми роликоопорами 5 и 6 может быть произведено как при изготовлении новых ленточных конвейеров 1 на предприятии-изготовителе, так и при модернизации действующих. В любом случае на смонтированном конвейере 1 в удобном для обслуживания месте, по обе стороны от штатной роликоопоры 3 устанавливают весовые роликоопоры 5 и 6.
Выводы 17 тензодатчиков каждой весовой роликоопоры подключаются к единому весовому контроллеру 9 или к индивидуальным для каждой весовой роликоопоры 5 и 6 весовым контроллерам (условно не показаны), а последние соединяют с центральным процессором 11. Средства автоматики укомплектовывают необходимыми периферийными устройствами. После этого производят настройку и калибровку оборудования и тестирование системы в реальных рабочих условиях. Для этого на соответствующих площадках 16 каждой весовой роликоопоры 5 и 6 при приподнятой ленте 7 устанавливают калибровочные гири в необходимом количестве и производят калибровку тензоканалов. Затем калибровочные гири снимают, возвращают ленту 7 на опорные ролики 14, включают конвейер 1 и производят один полный оборот порожней ленты 7, который фиксируется показаниями датчика скорости 10 или визуально по специальной метке на ленте 7, записывая при этом в центральный процессор 11 показания обоих весовых роликоопор 5 и 6. Затем рассчитывают среднее арифметическое значение их показаний и для каждой из них определяют поправочный коэффициент, как отношение полученных показаний данных весов к среднему арифметическому значению. Затем на площадку 16 одной из весовых роликоопор, например - 6 (на которую ранее временно устанавливались калибровочные гири) - устанавливается эталонный пригруз 8, который должен теперь постоянно стоять на этой роликоопоре.
После этого система непрерывного измерения веса перемещаемых материалов на ленточном конвейере 1 готова к работе.
Система измерения веса работает следующим образом.
В режиме холостого хода за один полный цикл работы конвейера 1 измеряют вес порожней ленты 7, и это значение вводят в весовой контроллер 9.
При включении конвейера 1 обе весовые роликоопоры 5 и 6 по мере прохода порожней ленты 7 начинают производить взвешивание транспортируемого материала, при этом датчик скорости 10 постоянно определяет скорость ленты 7, значения которой учитываются в расчете отгруженной массы.
Алгоритм непрерывного взвешивания перемещаемых материалов состоит в следующем:
Отгруженная за один оборот конвейерной ленты 7 масса М0 вычисляется как разность между показаниями весовой роликоопоры 5 без эталонного пригруза 8 - Мбпр и массой порожней ленты 7 - Мпл:
М0=Мбпр-Мпл.
Масса порожней ленты 7 - Мпл берется из памяти центрального процессора 11 куда она была занесена во время последнего холостого оборота конвейера 1.
Одновременно за один оборот конвейерной ленты 7 определяется разность M1 между показаниями весовой роликоопоры 6 с эталонным пригрузом 8 - Мспр и массой порожней ленты 7 - Мпл:
М1=Мспр-Мпл.
Эталонный пригруз 8 должен дать за один оборот ленты 7 теоретическую величину приращения отгруженной массы М2, которая рассчитывается контроллером 9 по показаниям тензодатчиков 4 и датчика скорости 10 ленты 7.
После снятия соответствующих показаний и проведения всех вычислений определяется коэффициент К:
K=М2/(М1-М0), где:
М2 - теоретическая величина приращения отгруженной массы за счет эталонного пригруза 8;
M1 - разность между показаниями весовой роликоопоры 6 с эталонным пригрузом 8 - Мспр и массой порожней ленты 7 - Мпл;
М0 - разность между показаниями весовой роликоопоры 5 без эталонного пригруза 8 - Мбпр и массой порожней ленты7 - Мпл.
Коэффициент K может принимать значения от 0.7 до 1.3.
Действительная величина отгруженной массы Мд вычисляется, как произведение коэффициента К на величину М0:
Мд=K×М0
Далее, после каждого полного оборота ленты конвейера 1, процесс повторяется, а действительная величина отгруженной массы Мд, выдаваемой на пульт оператора суммируется с предыдущим результатом:
МдΣ=ΣМдi
Пример расчета.
Имеется ленточный конвейер 1 со следующими характеристиками:
- длина конвейера - 10 м;
- ширина конвейерной ленты 7 - 600 мм;
- скорость ленты 7 - 1 м/с;
- производительность - 40 т/ч;
- вес эталонного пригруза 8 - 20 кг;
- теоретическая величина М2 - 400 кг.
Масса порожней ленты 7, зафиксированная тензодатчиками 4 составила Мпл=100 кг.
Весовая роликоопора 5 без пригруза 8 зафиксировала после одного оборота ленты 7 величину Мбпр=300 кг.
Величина М0 будет равна М0=300-100=200 кг.
Весовая роликоопора 6 с пригрузом 8 зафиксировала величину M1=580 кг.
Величина К для первого оборота конвейерной ленты 7 составит K1=400/(580-200)=1,05.
Таким образом, действительная величина отгруженной массы после первого оборота конвейерной ленты 7 составит Мд1=1,05×200=210 кг, что фиксируется средствами автоматики и, при необходимости, оператором.
Значительное повышение точности взвешивания условно может быть проиллюстрировано тем фактом, что обе весовые роликоопоры 5 и 6 выдали разные результаты взвешивания. Одна выдала значение отгруженной массы, как 200 кг, а другая, с учетом приращения отгруженной массы за счет эталонного пригруза 8, как 580-400=180 кг, при условии, что реальный вес перемещаемых за один полный оборот ленты 7 материалов составил 210 кг.
При дальнейшем измерении веса перемещаемых материалов процесс повторяется. Вычисляются действительные величины отгруженной массы после второго и последующих оборотов конвейерной ленты 7, значения которых суммируется, что в итоге составит величину МдΣ=Мд1+Мд2+…+Мдi
В результате решения поставленных задач были созданы достаточно простые и надежные система непрерывного измерения веса перемещаемых материалов на ленточных конвейерах и соответствующие весовые роликоопоры, обеспечивающие высокую точность взвешивания при сохранении высокой производительности используемого оборудования, расширились технологические возможности системы измерения веса, обеспечивающие проведение процесса взвешивания с одинаковой точностью на конвейерных линиях с различной производительностью.

Claims (2)

1. Система непрерывного измерения веса перемещаемых материалов на ленточном конвейере, содержащая раму конвейера, штатные и оснащенные тензометрическими датчиками весовые роликоопоры, на которых размещена бесконечная лента, и средства автоматики, отличающаяся тем, что используют две весовые роликоопоры, расположенные на раме с возможностью размещения между ними одной штатной роликоопоры, при этом одна весовая роликоопора выполнена с возможностью размещения на ней эталонного пригруза, а средства автоматики включают весовой контроллер, датчик скорости и центральный процессор.
2. Весовая роликоопора ленточного конвейера, включающая основание с расположенными под углом друг к другу роликами, по меньшей мере, один кронштейн, выполненный с возможностью крепления к раме конвейера, и два тензометрических датчика, связанные с устройством обработки их показаний, отличающаяся тем, что тензометрические датчики выполнены консольными, расположены между основанием и кронштейном и разнесены вдоль роликов, а на основании со стороны противоположной размещению тензометрических датчиков расположена площадка для размещения на ней эталонного пригруза.
Figure 00000001
RU2009137867/22U 2009-10-14 2009-10-14 Система непрерывного измерения веса перемещаемых материалов на ленточных конвейерах и весовая роликоопора ленточного конвейера RU90552U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009137867/22U RU90552U1 (ru) 2009-10-14 2009-10-14 Система непрерывного измерения веса перемещаемых материалов на ленточных конвейерах и весовая роликоопора ленточного конвейера

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009137867/22U RU90552U1 (ru) 2009-10-14 2009-10-14 Система непрерывного измерения веса перемещаемых материалов на ленточных конвейерах и весовая роликоопора ленточного конвейера

Publications (1)

Publication Number Publication Date
RU90552U1 true RU90552U1 (ru) 2010-01-10

Family

ID=41644639

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009137867/22U RU90552U1 (ru) 2009-10-14 2009-10-14 Система непрерывного измерения веса перемещаемых материалов на ленточных конвейерах и весовая роликоопора ленточного конвейера

Country Status (1)

Country Link
RU (1) RU90552U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11274960B2 (en) * 2017-04-25 2022-03-15 Schenck Process Europe Gmbh Calibration and support platform for calibration weights on a conveyor and metering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11274960B2 (en) * 2017-04-25 2022-03-15 Schenck Process Europe Gmbh Calibration and support platform for calibration weights on a conveyor and metering device

Similar Documents

Publication Publication Date Title
US9074923B2 (en) System and methods for belt conveyor weighing based on virtual weigh span
CN101363750B (zh) 大吨位料位电子秤的无砝码称量校正方法
CN101655388B (zh) 在线校准子母皮带秤及其在线校准方法
RU2401994C1 (ru) Способ непрерывного измерения веса перемещаемых материалов на ленточных конвейерах, система для его осуществления и весовая роликоопора ленточного конвейера
CN102538936B (zh) 一种大型衡器的检定装置
CN201892566U (zh) 料斗秤校秤装置
RU90552U1 (ru) Система непрерывного измерения веса перемещаемых материалов на ленточных конвейерах и весовая роликоопора ленточного конвейера
US4509609A (en) Weighbelt apparatus
JP2013101061A (ja) 計量装置
JP5890140B2 (ja) 計量装置
JP4744364B2 (ja) 多連式重量選別機
JP5730650B2 (ja) コンベヤスケール用ロードセル
CN112082635A (zh) 一种电子皮带称的状态监测与故障判定方法
JP5904715B2 (ja) コンベヤスケール
JP2012193996A (ja) ホッパ式計量装置
JP5191520B2 (ja) 重量測定装置
RU2401995C1 (ru) Способ непрерывного измерения веса горячих сыпучих материалов на ковшовых конвейерах (варианты), система для их осуществления и конвейерные весы непрерывного действия
CN210293440U (zh) 皮带秤在线校验装置
Živanić et al. The analysis of influential parameters on calibration and feeding accuracy of belt feeders
RU90196U1 (ru) Система непрерывного измерения веса горячих сыпучих материалов на ковшовых конвейерах и конвейерные весы непрерывного действия
AU676595B2 (en) Temperature-compensated belt scale
CN202853730U (zh) 电子皮带秤在线标定系统
RU71428U1 (ru) Устройство для поверки тензометрических весов
CN216050256U (zh) 一种上置测力仪形式的料斗秤免码放校验装置
SU1747935A2 (ru) Устройство дл автоматического измерени массы и длины проката

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20151015