RU85445U1 - Система голосовой индентификации диктора - Google Patents

Система голосовой индентификации диктора Download PDF

Info

Publication number
RU85445U1
RU85445U1 RU2009116785/22U RU2009116785U RU85445U1 RU 85445 U1 RU85445 U1 RU 85445U1 RU 2009116785/22 U RU2009116785/22 U RU 2009116785/22U RU 2009116785 U RU2009116785 U RU 2009116785U RU 85445 U1 RU85445 U1 RU 85445U1
Authority
RU
Russia
Prior art keywords
unit
output
block
inputs
adder
Prior art date
Application number
RU2009116785/22U
Other languages
English (en)
Inventor
Александр Павлович Зыков
Дмитрий Анатольевич Леднов
Максим Николаевич Меркулов
Original Assignee
Общество с ограниченной ответственностью "Стэл-Компьютерные Системы"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Стэл-Компьютерные Системы" filed Critical Общество с ограниченной ответственностью "Стэл-Компьютерные Системы"
Priority to RU2009116785/22U priority Critical patent/RU85445U1/ru
Application granted granted Critical
Publication of RU85445U1 publication Critical patent/RU85445U1/ru

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

1.Система голосовой идентификации диктора, содержащая генератор базисных сигналов, формирователь параметров разбиения диапазона частот, интеграторы, блок формирования последовательности векторов признаков, формирователь порогового уровня, блок формирования потенциалов единичных зарядов, блок формирования модуля градиентов, блок памяти идентификационных номеров дикторов и блок питания, подключенный к питающим входам составных блоков системы, последовательно соединенные цифровое запоминающее устройство, блок дискретизации, блок дискретного преобразования Фурье и блок нормирования спектра Фурье, последовательно соединенные компаратор, сумматор, дополнительный сумматор, блок определения максимумов и соответствующих им аргументов, регистратор максимальных значений, блок динамического программирования, дополнительный компаратор, блок принятия решений, переключатель режимов, блок определения условной вероятности, блок умножения и дополнительный блок принятия решений, последовательно соединенные блок упорядочивания векторов, селектор, блок предварительной кластеризации последовательности векторов признаков, блок определения статистических характеристик кластеров и блок памяти вероятностных характеристик, при этом блок памяти идентификационных номеров дикторов подключен к соответствующему входу блока памяти вероятностных характеристик, выход которого подключен к соответствующему входу блока определения условной вероятности, входы интеграторов соединены с выходом блока нормирования спектра Фурье и выходом генератора базисных сигналов, а выходы параллельно подключены к входам компара�

Description

Полезная модель относится к технике опознавания личности и может быть использована в системах связи экипажей самолетов с наземными службами, в охранных автомобильных системах, а также в call-центрах, мобильных и стационарных телефонах.
Известна система для выделения частоты основного тона с преобразованием речевых колебаний в импульсную последовательность, включающая в себя два селектора, ключ, формирователь сигнала равенства чисел, ключ и аналоговый сумматор (RU 2007763, 15.02.1994). При ее функционировании принимают, что каждый импульс соответствует переходу через ноль речевого колебания (берется однополярный переход) и используют свойство, заключающееся в том, что на периоде основного тона последовательности межимпульсных интервалов повторяются.
Недостаток известной системы проявляется в пропуске интервалов, обладающих основным тоном, при смене одной фонемы другой. Это происходит вследствие того, что при смене одной звучащей фонемы другой между двумя соседними периодами основного тона изменения межимпульсных интервалов становятся значительными.
Известна система для выделения частоты основного тона с помощью узкополосного фильтра (Вокодерная телефония. Под ред. А.А.Пирогова. М.; Связь, 1974). Указанным фильтром осуществляют слежение за изменением частоты первой гармоники речевого сигнала. При этом ширину полосы итерационно подстраивают под среднюю частоту основного тона, рассчитываемую на основании выходной функции этого фильтра и передаваемую на фильтр благодаря органу обратной связи. Это предопределяет высокое качество выделения частоты основного тона при условии, что фильтр подстраивается под диктора в течение нескольких минут.
Недостатком известной системы является ее непригодность для выявления частоты основного тона в коротких сообщениях, длительность которых составляет несколько секунд.
Известна система для выделения основного тона с предварительной записью речевого сигнала и его последующей обработкой, охватывающая три канала обработки речевого сигнала (М.Е.Hernandez-Diaz Huici and J.V.Lorenzo Ginori Combined algorithm for pitch detection of speech signals // Electronics Letters 5-th January 1995 Vol.31, No. 1, pp.15-16). В первом канале проводят амплитудную селекцию по схеме Голда, во втором канале используют аппроксимацию первой гармоники основного тона экспоненциальной функцией, а в третьем канале проводят вычисление корреляционной функции по схеме Медана. В том случае, когда разность между полученными значениями оценок частоты основного тона для различных каналов не превышает заданную величину, считают, что частота основного тона найдена.
Недостаток известной системы связан с низкой точностью, обусловленной сильной зависимостью от точности реализации каждого из определяющих способ алгоритмов.
Известны различные системы, позволяющие в условиях присутствия шумовой составляющей в акустическом сигнале выделять речевую составляющую сигнала (RU 231830, 27.06.2004; RU 296376, 27.03.2007; RU 2271578, 10.03.2006; RU 2263358, 27.10.2005; RU 2103753, 27.01.1998; RU 2161826, 10.01.2001 и др.).
Однако они не позволяют проводить обнаружение речи на фоне стационарных и нестационарных шумов, обладающих сплошным спектром, без априорных знаний о статистических свойствах шума.
Известна система для выделения признаков речевого сигнала MFCC (Mel Frequency Cepstral Coefficients) с разбиением сигнала на окна (Fang Zheng, Guoliang Zhang and Zhanjiang Song, Comparison of Different Implementations of MFCC, J. Computer Science & Technology, 16(6): p.p.582- 589, Sept. 2001). Разбиение сигнала в ней осуществляют на окна с длительностью 25 мс со смещением на 10 мс начала отсчета каждого последующего окна относительно начала каждого предыдущего окна. С помощью органов преобразования и вычисления над фрагментами сигнала в каждом окне выполняют преобразования Фурье, вычисляют спектр Фурье и параметры амплитудно-частотных характеристик множества интегрирующих фильтров, полосы пропускания которых изменяются в соответствии с известной из психоакустики мел-шкалой. Посредством интеграторов спектр Фурье интегрируют в соответствии с найденными параметрами интегрирующих фильтров. Дополнительными вычислительными органами осуществляют логарифмирование результатов интегрирования и выполнение косинус-преобразования над результатами логарифмирования.
Недостаток известной системы определяется неустойчивостью к изменению статистических свойств шума, на фоне которого проводится распознавание речи или идентификация диктора.
Наиболее близкой к предложенной является система для выделения частоты основного тона из речевого сигнала, представленная в RU 2184399, 27.06.2002. В ее состав входят последовательно соединенные блок вычисления спектра Фурье, интегратор, вычислитель значений определителя автокорреляционной матрицы, блок проверки синхронности и блок аппроксимации подпоследовательностей квадратичной функцией, а также выделитель основного тона по схеме Голда и блок выделения основного тона с полосовым фильтром, включенные между выходом указанного вычислителя и соответствующими входами блока проверки синхронности. Принцип действия известной системы основан на разложении речевого сигнала в последовательность спектров Фурье, нахождении абсолютного максимума, вычислении среднего значения аргумента последовательности полученных максимумов, оценке средней частоты основного тона исследуемого речевого сигнала, амплитудной селекции сигналов, вычислении значений определителя автокорреляционной матрицы и фильтрации этих значений.
Недостаток известной системы проявляется в невозможности обнаружения речи на фоне стационарных и нестационарных шумов, обладающих сплошным спектром, без априорных знаний о статистических свойствах шума, а также невозможность формирования вектора признаков сигналов для систем распознавания речи, идентификации дикторов и идентификации языка, устойчивого к изменению статистических свойств шума, на фоне которого проводится распознавание или идентификация.
Задачей полезной модели является реализация возможности автоматической текстонезависимой идентификации диктора по голосу и автоматического разрешения или запрещения соединения с идентифицированной личностью.
Технический результат, достигаемый при решении задачи, выражается в повышении вероятности голосовой идентификации.
Технический результат обеспечивается при использовании системы голосовой идентификации диктора, содержащей генератор базисных сигналов, формирователь параметров разбиения диапазона частот, интеграторы, блок формирования последовательности векторов признаков, формирователь порогового уровня, блок формирования потенциалов единичных зарядов, блок формирования модуля градиентов, блок памяти идентификационных номеров дикторов и блок питания, подключенный к питающим входам составных блоков системы, последовательно соединенные цифровое запоминающее устройство, блок дискретизации, блок дискретного преобразования Фурье и блок нормирования спектра Фурье, последовательно соединенные компаратор, сумматор, дополнительный сумматор, блок определения максимумов и соответствующих им аргументов, регистратор максимальных значений, блок динамического программирования, дополнительный компаратор, блок принятия решений, переключатель режимов, блок определения условной вероятности, блок умножения и дополнительный блок принятия решений, последовательно соединенные блок упорядочивания векторов, селектор, блок предварительной кластеризации последовательности векторов признаков, блок определения статистических характеристик кластеров и блок памяти вероятностных характеристик, при этом блок памяти идентификационных номеров дикторов подключен к соответствующему входу блока памяти вероятностных характеристик, выход которого подключен к соответствующему входу блока определения условной вероятности, входы интеграторов соединены с выходом блока нормирования спектра Фурье и выходом генератора базисных сигналов, а выходы параллельно подключены к входам компаратора и сумматора, выход формирователя параметров разбиения диапазона частот соединен с одним из входов блока определения максимумов и соответствующих им аргументов, выход формирователя порогового уровня подключен к задающему входу дополнительного компаратора, выход сумматора дополнительно соединен с соответствующим входом блока формирования последовательности векторов признаков, выход которого соединен с входом переключателя режимов, а соответствующий выход последнего дополнительно параллельно подключен к входам блока формирования потенциалов единичных зарядов и блока формирования модуля градиентов, выходы которых соединены с входами блока упорядочивания векторов.
Решению поставленной задачи и достижению указанного технического результата способствуют также частные существенные признаки полезной модели.
Блок определения статистических характеристик кластеров выполнен в виде последовательно соединенных блока предварительной оценки статистических характеристик и блока коррекции статистических характеристик, при этом вход блока предварительной оценки статистических характеристик соединен с выходом блока предварительной кластеризации последовательности векторов признаков, а выход блока коррекции статистических характеристик соединен с входом блока памяти вероятностных характеристик.
На фиг.1 представлена функциональная схема предложенной системы голосовой идентификации диктора, на фиг.2 - приведен график используемой вейвлет-функции, на фиг.3 - пример наложения вейвлет-функций в выбранном отсчете спектра Фурье и на фиг. 4 - граф связей во времени между последовательностью состояний.
Система голосовой идентификации диктора (фиг.1) содержит генератор 1 базисных сигналов, формирователь 2 параметров разбиения диапазона частот, интеграторы 3-5, блок 6 формирования последовательности векторов признаков, формирователь 7 порогового уровня, блок 8 формирования потенциалов единичных зарядов, блок 9 формирования модуля градиентов, блок 10 памяти идентификационных номеров дикторов и блок 11 питания, подключенный к питающим входам составных блоков системы. В систему входят также последовательно соединенные цифровое запоминающее устройство 12, блок 13 дискретизации, блок 14 дискретного преобразования Фурье и блок 15 нормирования спектра Фурье, последовательно соединенные компаратор 16, сумматор 17, дополнительный сумматор 18, блок 19 определения максимумов и соответствующих им аргументов, регистратор 20 максимальных значений, блок 21 динамического программирования, дополнительный компаратор 22, блок 23 принятия решений, переключатель 24 режимов, блок 25 определения условной вероятности, блок 26 умножения и дополнительный блок 27 принятия решений, последовательно соединенные блок 28 упорядочивания векторов, селектор 29, блок 30 предварительной кластеризации последовательности векторов признаков, блок 31 определения статистических характеристик кластеров и блок 32 памяти вероятностных характеристик. Блок 10 памяти идентификационных номеров дикторов подключен к соответствующему входу блока 32 памяти вероятностных характеристик, выход которого подключен к соответствующему входу блока 25 определения условной вероятности. Входы интеграторов 3-5 соединены с выходом блока 15 нормирования спектра Фурье и выходом генератора 1 базисных сигналов, а выходы параллельно подключены к входам компаратора 16 и сумматора 17. Выход формирователя 2 параметров разбиения диапазона частот соединен с одним из входов блока 19 определения максимумов и соответствующих им аргументов. Выход формирователя 7 порогового уровня подключен к задающему входу дополнительного компаратора 22. Выход сумматора 17 дополнительно соединен с соответствующим входом блока 6 формирования последовательности векторов признаков, выход которого соединен с входом переключателя 24 режимов. Соответствующий выход переключателя 24 режимов дополнительно параллельно подключен к входам блока 8 формирования потенциалов единичных зарядов и блока 9 формирования модуля градиентов, выходы которых соединены с входами блока 28 упорядочивания векторов. Блок 31 определения статистических характеристик кластеров может быть выполнен (фиг.1) в виде последовательно соединенных блока 33 предварительной оценки статистических характеристик и блока 34 коррекции статистических характеристик, при этом вход блока 33 предварительной оценки статистических характеристик соединен с выходом блока 30 предварительной кластеризации последовательности векторов признаков, а выход блока 34 коррекции статистических характеристик соединен с входом блока 32 памяти вероятностных характеристик.
Система голосовой идентификации диктора функционирует следующим образом.
Акустический сигнал поступает на вход цифрового записывающего устройства 12, на выходе которого формируется записанный оцифрованный сигнал. В блоке 13 дискретизации осуществляется его оконное преобразование (дискретизация), при этом не перекрывающиеся интервалы окон имеют длительность не менее 0,032 с и следуют друг за другом со смещением, длительность которого не превышает 0,010 с. Для получения сигнала, соответствующего каждому окну, в блоке 14 происходит вычисление дискретного преобразования Фурье. Блок 15 определяет спектр Фурье и осуществляет его последующее нормирование в соответствии с зависимостью
где - компоненты нормированного спектра Фурье,
φi - компоненты исходного спектра Фурье,
j - номер компоненты спектра Фурье,
n - количество компонент спектра Фурье.
Генератор 1 базисных сигналов формирует управляющие сигналы, структура которых определяется параметрами вейвлет-функции W={w(x,jτ)}Y (фиг.2), имеющей вид
где τ -шаг анализа частоты основного тона,
j- номер отсчета вейвлет-функции, j=0,..,Y; ,
ωmin -минимальное значение частоты основного тона (~80 Гц,),
ωmax - максимальное значение частоты основного тона (~450 Гц),
ω - текущее значение частоты,
π=3,14.
Примерное наложение вейвлет-функций в выбранном отсчете спектра Фурье соответствует фиг.3.
Управляющие базисные сигналы с выхода блока 1 поступают на входы интеграторов 3-5, которые проводят интегрирование нормированного спектра Фурье φ(ω) с параметрическим классом вейвлет-функций W={w(x,jτ)}Y. Результатом работы интегратора 3 является вычисление значения интегралов вида
где переменная ξ определяет местоположение максимума вейвлет- функций на спектре.
Результатом работы интегратора 4 является вычисление значения интегралов вида
а результатом работы интегратора 5 является вычисление значения интегралов вида
С выхода интеграторов 3-5 сигналы поступают на входы сумматора 17 и компаратора 16. В компараторе 16 проводится сравнение значений сигналов, полученных с выходов интеграторов 3-5 для каждого значения положения вейвлет-функций ξ и каждого значения основного тона jτ. На выходе компаратора появляется положительное значение +U, если выполняются условия
I3(ξ,jτ)>I4(ξ,jτ) и I3(ξ,jτ)>I5(ξ,jτ) (6)
Если же условия (6) не выполняются, то на выходе компаратора появляется отрицательное значение -U.
Сумматор 17 при появлении на выходе компаратора 16 отрицательного значения -U, формирует на своем выходе ноль. Если же значение на выходе компаратора положительно +U, то он формирует на своем выходе значение gj(ξ), которое образуется на основе значений сигналов, полученных с выходов интеграторов 3-5, т.е.
В дополнительном сумматоре 18 суммируются значения сигналов gi(ξ) для различных значений смещения h и частоты основного тона jτ
где h- значение смещения.
В блоке 19 определения максимумов и соответствующих им аргументов определяются значения максимумов для каждого из трех диапазонов частот основного тона
и соответствующих аргументов максимумов
Эти значения сохраняются в регистраторе 20 максимальных значений. Границы диапазонов частот (от 90 до 180 Гц, от 180 до 360 Гц, от 360 до 450 Гц) заданы формирователем 2 параметров разбиения диапазона частот основного тона голоса, разбитого на три неперекрывающихся диапазона. Верхнюю границу первого диапазона выбирают из условия G1=2Gmin, где Gmin - известное минимальное значение частоты основного тона мужского голоса, верхнюю границу второго диапазона - из условия G2=4Gmin, а верхнюю границу третьего диапазона принимают равной известному максимальному значению частоты Gmax основного тона женского голоса. По мере накопления регистратором 20 максимальных значений 4-х значений они передаются в блок 21 динамического программирования, реализующего поиск наиболее вероятной траектории с использованием алгоритма динамического программирования.
Функционирование блока 21 динамического программирования осуществляется на основе введенной меры вероятностей следования пар (значение максимума, значение аргумента максимума) друг за другом
где σ -дисперсия частоты основного тона,
t-дискретное время,
, , - компоненты вектора информативных признаков, взятые в дискретные моменты времени t; t=1,2....
- максимальное значение интеграла (9), взятое в момент времени t,
τ - точность измерения частоты основного тона.
На выходе блока 21 динамического программирования формируется сигнал, соответствующий значению вероятности наиболее вероятной траектории и поступающий на вход дополнительного компаратора 22. Граф связей во времени между последовательностью состояний представлен на фиг.4. Значение порогового уровня задается формирователем 7 порогового уровня. Если значение сигнала с блока 21 динамического программирования превышает значение установленного порога, то блоком 23 принятия решений принимается решение о том, что на интервале времени, на котором получена последовательность из четырех спектров, присутствует основной тон и соответственно вокализированный участок речи. По первому найденному интервалу устанавливается граница начала речи, а по последнему интервалу, на котором вероятность траектории не преодолела порог, устанавливается окончание речи.
Посредством сигналов gi(ξ), полученных в сумматоре 17, для которых в блоке 21 динамического программирования было установлено, что они принадлежат наиболее вероятной траектории, в блоке 6 формирования последовательности векторов признаков формируются сигналы, соответствующие последовательности векторов признаков H={st}T (T-количество векторов в последовательности) речевого сигнала с элементами
где Ω - диапазон спектра исследуемого сигнала,
ωi - частота i-ой гармоники основного тона,
mt - количество гармоник частоты основного тона в спектре в данный момент времени,
mel(ω)=2597log(1+ω/700), (13)
поступающие на вход переключателя 24, представляющего собой ключ и определяющего режимы работы системы, которыми являются режим обучения и режим идентификации. Также на вход переключателя 24 поступает информационный сигнал с блока 23 принятия решений.
В случае реализации режима обучения обработка сигналов, соответствующих передаче последовательности векторов признаков, следующая. Блок 8 формирования потенциалов единичных зарядов проводит вычисление значений потенциалов единичного заряда Et, а блок 9 формирования модуля градиентов - вычисление значений модуля градиентов единичного заряда,
где
помещенного в точку фазового пространства с координатами векторов признаков. В результате работы блока 8 формирования потенциалов единичных зарядов и блока 9 формирования модуля градиентов каждый вектор последовательности Н характеризуется своим потенциалом и модулем градиента. Блок 28 упорядочивания векторов проводит упорядочение векторов последовательности Н по принципу Парето, где точка ht считается лучше точки hm, если выполняются два неравенства Еtm и φtm. Селектор 29 проводит выборку подмножества J наилучших по Парето точек из упорядоченного множества. Блок 30 предварительной кластеризации последовательности векторов признаков проводит предварительную сегментацию последовательности Н, реализованную посредством метода кластеризации k-средних, в котором в качестве начального приближения используются вектора подмножества J. Совместная работа блоков 8, 9, 28, 29, 30 соответствует предварительной кластеризации последовательности векторов признаков. В блоке 31 определения статистических характеристик кластеров определяются математические ожидания, дисперсии и априорные вероятности образовавшихся кластеров. При выполнении блока 31 определения статистических характеристик кластеров (фиг.1) в виде последовательно соединенных блока 33 предварительной оценки статистических характеристик и блока 34 коррекции статистических характеристик в блоке 33 определяются предварительные оценки статистических характеристик кластеров, после чего блоком 34 на основе ЕМ-алгоритма проводится переоценка полученных значений математических ожиданий, дисперсий и априорных вероятностей. С выхода блока 34 сигналы поступают в блок 32 памяти вероятностных характеристик, на вход которого из блока 10 памяти идентификационных номеров дикторов также поступают информационные сигналы, соответствующие идентификационному номеру диктора.
При реализации режима идентификации блок 25 определения условной вероятности на основе данных о математических ожиданиях, дисперсиях и априорных вероятностях кластеров (ассоциированных с диктором d), полученных из блока 32 памяти вероятностных характеристик, для каждого вектора последовательности Н проводит вычисление условной вероятности вида
где {μ(d)},{σ(d)},{p(d)} - математические ожидания, дисперсии и априорные вероятности, соответственно, ассоциированные с диктором d.
Блок 26 умножения проводит вычисление условной вероятности того, что данная последовательность векторов признаков Н порождена диктором d.
После этого дополнительный блок 27 принятия решений принимает решение, какому же диктору (из тех, чьи идентификационные номера содержались в блоке 10 памяти идентификационных номеров дикторов) принадлежала данная последовательность векторов признаков на основе вычисления аргумента максимума в соответствии с зависимостью
после чего формируется сигнал, соответствующий тому или иному идентификационному номеру диктора.
Питание системы осуществляется от блока 11 питания, подключенного к питающим входам составных блоков системы. При использовании системы идентификации голоса диктора повышается точность определения параметров за счет использования динамических параметров спектра информационного сигнала и вейвлет-функций в качестве опорных базисных сигналов, а также разделения диапазона частот на неперекрывающиеся области.

Claims (2)

1.Система голосовой идентификации диктора, содержащая генератор базисных сигналов, формирователь параметров разбиения диапазона частот, интеграторы, блок формирования последовательности векторов признаков, формирователь порогового уровня, блок формирования потенциалов единичных зарядов, блок формирования модуля градиентов, блок памяти идентификационных номеров дикторов и блок питания, подключенный к питающим входам составных блоков системы, последовательно соединенные цифровое запоминающее устройство, блок дискретизации, блок дискретного преобразования Фурье и блок нормирования спектра Фурье, последовательно соединенные компаратор, сумматор, дополнительный сумматор, блок определения максимумов и соответствующих им аргументов, регистратор максимальных значений, блок динамического программирования, дополнительный компаратор, блок принятия решений, переключатель режимов, блок определения условной вероятности, блок умножения и дополнительный блок принятия решений, последовательно соединенные блок упорядочивания векторов, селектор, блок предварительной кластеризации последовательности векторов признаков, блок определения статистических характеристик кластеров и блок памяти вероятностных характеристик, при этом блок памяти идентификационных номеров дикторов подключен к соответствующему входу блока памяти вероятностных характеристик, выход которого подключен к соответствующему входу блока определения условной вероятности, входы интеграторов соединены с выходом блока нормирования спектра Фурье и выходом генератора базисных сигналов, а выходы параллельно подключены к входам компаратора и сумматора, выход формирователя параметров разбиения диапазона частот соединен с одним из входов блока определения максимумов и соответствующих им аргументов, выход формирователя порогового уровня подключен к задающему входу дополнительного компаратора, выход сумматора дополнительно соединен с соответствующим входом блока формирования последовательности векторов признаков, выход которого соединен с входом переключателя режимов, а соответствующий выход последнего дополнительно параллельно подключен к входам блока формирования потенциалов единичных зарядов и блока формирования модуля градиентов, выходы которых соединены с входами блока упорядочивания векторов.
2. Система голосовой идентификации диктора по п.1, в которой блок определения статистических характеристик кластеров выполнен в виде последовательно соединенных блока предварительной оценки статистических характеристик и блока коррекции статистических характеристик, при этом вход блока предварительной оценки статистических характеристик соединен с выходом блока предварительной кластеризации последовательности векторов признаков, а выход блока коррекции статистических характеристик соединен с входом блока памяти вероятностных характеристик.
Figure 00000001
RU2009116785/22U 2009-05-05 2009-05-05 Система голосовой индентификации диктора RU85445U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009116785/22U RU85445U1 (ru) 2009-05-05 2009-05-05 Система голосовой индентификации диктора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009116785/22U RU85445U1 (ru) 2009-05-05 2009-05-05 Система голосовой индентификации диктора

Publications (1)

Publication Number Publication Date
RU85445U1 true RU85445U1 (ru) 2009-08-10

Family

ID=41049892

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009116785/22U RU85445U1 (ru) 2009-05-05 2009-05-05 Система голосовой индентификации диктора

Country Status (1)

Country Link
RU (1) RU85445U1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2546311C2 (ru) * 2012-09-06 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБУ ВПО "ВГУ") Способ оценки частоты основного тона речевого сигнала
EA023695B1 (ru) * 2012-07-16 2016-07-29 Ооо "Центр Речевых Технологий" Способ распознавания речевых сообщений и устройство для его осуществления
RU2704723C2 (ru) * 2018-03-12 2019-10-30 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Устройство автоматической верификации личности по голосу
RU2784691C1 (ru) * 2022-09-14 2022-11-29 Общество с ограниченной ответственностью "Специальный Технологический Центр" (ООО "СТЦ") Способ идентификации личности диктора по цифровым сигналам низкоскоростных кодеков речи

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA023695B1 (ru) * 2012-07-16 2016-07-29 Ооо "Центр Речевых Технологий" Способ распознавания речевых сообщений и устройство для его осуществления
RU2546311C2 (ru) * 2012-09-06 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБУ ВПО "ВГУ") Способ оценки частоты основного тона речевого сигнала
RU2704723C2 (ru) * 2018-03-12 2019-10-30 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Устройство автоматической верификации личности по голосу
RU2784691C1 (ru) * 2022-09-14 2022-11-29 Общество с ограниченной ответственностью "Специальный Технологический Центр" (ООО "СТЦ") Способ идентификации личности диктора по цифровым сигналам низкоскоростных кодеков речи

Similar Documents

Publication Publication Date Title
Jang et al. Single-channel signal separation using time-domain basis functions
US9489965B2 (en) Method and apparatus for acoustic signal characterization
CN102054480B (zh) 一种基于分数阶傅立叶变换的单声道混叠语音分离方法
US5596679A (en) Method and system for identifying spoken sounds in continuous speech by comparing classifier outputs
US5903863A (en) Method of partitioning a sequence of data frames
US5594834A (en) Method and system for recognizing a boundary between sounds in continuous speech
WO1995034035A1 (en) Method of training neural networks used for speech recognition
WO2002101717A2 (en) Pitch candidate selection method for multi-channel pitch detectors
CN109192200A (zh) 一种语音识别方法
CN112992190B (zh) 音频信号的处理方法、装置、电子设备和存储介质
CN113053400B (zh) 音频信号降噪模型的训练方法、音频信号降噪方法及设备
CN109300470B (zh) 混音分离方法和混音分离装置
US20100169085A1 (en) Model based real time pitch tracking system and singer evaluation method
RU85445U1 (ru) Система голосовой индентификации диктора
CN111785262B (zh) 一种基于残差网络及融合特征的说话人年龄性别分类方法
Alamsyah et al. Speech gender classification using bidirectional long short term memory
Li et al. Frame-Level Signal-to-Noise Ratio Estimation Using Deep Learning.
AU2362495A (en) Speech-recognition system utilizing neural networks and method of using same
CN114863905A (zh) 语音类别获取方法、装置、电子设备和存储介质
RU2385272C1 (ru) Система голосовой идентификации диктора
Maazouzi et al. MFCC and similarity measurements for speaker identification systems
Xu et al. Ships classification using deep neural network based on attention mechanism
Herrera-Camacho et al. Design and testing of a corpus for forensic speaker recognition using MFCC, GMM and MLE
RU2399102C2 (ru) Способ и устройство автоматической верификации личности по голосу
RU2364957C1 (ru) Способ определения параметров линейчатых спектров вокализованных звуков и система для его реализации