RU2812819C1 - Способ скважинной добычи нефти - Google Patents

Способ скважинной добычи нефти Download PDF

Info

Publication number
RU2812819C1
RU2812819C1 RU2023120731A RU2023120731A RU2812819C1 RU 2812819 C1 RU2812819 C1 RU 2812819C1 RU 2023120731 A RU2023120731 A RU 2023120731A RU 2023120731 A RU2023120731 A RU 2023120731A RU 2812819 C1 RU2812819 C1 RU 2812819C1
Authority
RU
Russia
Prior art keywords
gas
well
annulus
compressor
pressure
Prior art date
Application number
RU2023120731A
Other languages
English (en)
Inventor
Денис Валериевич Петраковский
Original Assignee
Денис Валериевич Петраковский
Filing date
Publication date
Application filed by Денис Валериевич Петраковский filed Critical Денис Валериевич Петраковский
Application granted granted Critical
Publication of RU2812819C1 publication Critical patent/RU2812819C1/ru

Links

Images

Abstract

Способ относится к нефтяной отрасли промышленности и предназначен для добычи нефти без применения скважинных насосов с отбором газа из затрубного пространства нефтяных скважин. Технической задачей предложенного способа является использование резерва мощности компрессора при отборе газа из затрубного пространства скважины для периодической закачки отобранного газа под высоким давлением в камеру замещения скважины и безнасосного подъема продукции пласта по колонне насосно-компрессорных труб. Способ скважинной добычи нефти, включающий периодическую закачку газа высокого давления в камеру замещения газлифтной скважины для подъема продукции пласта по колонне насосно-компрессорных труб, отбор газа из затрубного пространства компрессором высокого давления с использованием жидкого поршня для повышения дебита скважины и закачку его в выкидной коллектор скважины, отличающийся тем, что отбираемый компрессором из затрубного пространства газ закрытием электромагнитного клапана на линии его нагнетания в выкидной коллектор под высоким давлением периодически направляют в камеру замещения через гибкий трубопровод, спущенный в скважину снаружи основной колонны НКТ, а после полного вытеснения продукции пласта в колонну НКТ из камеры замещения открывают электромагнитный клапан для совместного поступления в коллектор скважины газа из гибкого трубопровода и газа, откачиваемого компрессором из затрубного пространства, причем в период нагнетания газа в выкидной коллектор газ из гибкого трубопровода направляют непосредственно на прием компрессора вместе с газом из затрубного пространства. 2 ил.

Description

Предлагаемое изобретение относится к добыче нефти на обводненных залежах нефтяной отрасли промышленности и предназначен для добычи нефти без применения скважинных насосов с отбором газа из затрубного пространства нефтяных скважин.
Известно, что к безнасосным способам скважинной добычи нефти относится газлифтный способ, в частности, периодический газлифт, основанный на периодической закачке газа высокого давления в камеру наполнения (замещения) (Мищенко И.Т. Скважинная добыча нефти. - М.: Российский государственный университет нефти и газа им. И.М. Губкина, 2015, с. 267, рис. 6.1,е). Газ высокого давления вытесняет через клапан, установленный в башмаке внутренней колонны НКТ, продукцию скважины, вошедшую в камеру замещения под давлением на приеме камеры в период сброса давления нагнетания газа.
Однако, отсутствие промысловых компрессоров высокого давления не позволило получить периодическому газлифту должного распространения. Кроме того, для нагнетания газа требовался его источник, расположенный в непосредственной близости к самой скважине или группе скважин.
Известно, что эксплуатация нефтяных скважин при повышенных давлениях в выкидных коллекторах неизбежно связана с накоплением сепарированного газа и повышением его давления в затрубном пространстве. Это приводит к снижению динамического уровня жидкости в скважине и депрессии на пласт. При этом снижаются приток пластовой жидкости к забою, наполнение глубинного насоса и происходит срыв его работы при достижении уровнем жидкости приема насоса. В практике нефтедобычи в настоящее время уже применяются компрессорные установки, позволяющие отбирать газ из затрубного пространства и закачивать его в выкидной коллектор скважины.
К примеру, известен подвесной компрессор с приводом от балансира станка-качалки для отбора газа из затрубного пространства скважин, всасывающий патрубок которого соединен общим коллектором с затрубным пространством этих скважин, причем, по крайней мере, одна из скважин соединена с общим коллектором и напорным газопроводом компрессора через регуляторы давления (патент РФ №2102584, МПК Е21В 4 В 3/00, заявл. 22.12.1995, опубл. 20.01.1998).
В такте всасывания такого компрессора происходит поступление газа в полость цилиндра из затрубного пространства скважин, а нагнетание газа из цилиндра компрессора поршнем производится в выкидной коллектор группы скважин. Компрессор обладает недостатком, состоящим в невозможности отбора газа из скважины с меньшим давлением газа в затрубном пространстве в случае откачки газа из группы скважин. В случае установки регулятора давления количество газа, отбираемого из скважины с большим давлением в затрубном пространстве, значительно сократится.
Для отбора газа из одиночных скважин известна установка штангового нефтяного насоса (патент РФ №49923 на полезную модель, заявл. 11.07.2005, опубл. 10.12.2005, БИ №34), включающая дополнительный цилиндр с проточным плунжером, по обе стороны которого в основаниях муфт выполнены обратные клапаны со сферическими запорными элементами, позволяющими перепускать газ из затрубного пространства в колонну насосно-компрессорных труб. На манифольдной линии скважины устанавливается обратный клапан. При ходе штанговой колонны и проточного плунжера вверх его клапан закрывается и в подплунжерной зоне образуется некоторое снижение давления, благодаря которому в эту зону вместе с откачиваемой нефтью будет поступать газ из затрубного пространства через нижнюю муфту. При ходе плунжера вниз в надплунжерной зоне частично снизится давление и в эту зону при открытом клапане дополнительного плунжера будут поступать нефть из подплунжерной зоны и газ из затрубного пространства.
Недостаток установки заключается в возникновении значительных гидравлических сопротивлений в момент хода колонны штанг вниз при добыче нефти повышенной вязкости. Верхние отверстия в проточном плунжере для жидкости при соединении со штангой будут иметь недостаточные сечения для перетока вязкой среды и существенно увеличивать сопротивления движению штанг вниз. При этом может произойти так называемое «зависание» колонны штанг и установка потеряет работоспособность.
Известен способ насосной добычи нефти с высоким газовым фактором (патент RU №2627797 С1. Заявл. 21.07.2016. Опубл. 11.08.2017. БИ №23), согласно которому на устье скважины устанавливают напорную емкость для нагнетания газа из затрубного пространства в выкидной коллектор скважины. Периодическое нагнетание газа осуществляется насосом, подающим рабочую жидкость в напорную емкость снизу. Затрубное пространство скважины соединяют с верхней частью напорной емкости и выкидным коллектором, расположенным на устье скважины. Нижнюю часть напорной емкости связывают с насосом, приемную часть которого сообщают с питающей емкостью для рабочей жидкости. Откачку накапливающегося газа из затрубного пространства производят периодически с помощью этого насоса, включаемого для подачи рабочей жидкости в нагнетательную емкость с газом в цикле его закачки в выкидной коллектор, и отключаемого для слива рабочей жидкости из нагнетательной емкости в питающую в цикле поступления газа из затрубного пространства в нагнетательную емкость.
Недостаток способа состоит в существовании холостого цикла, в котором производится слив рабочей жидкости из емкости с остановкой насоса. Это влечет за собой потери объемов откачки газа и снижению надежности работы насоса из-за его постоянных переключений.
Известен также способ периодического компримирования газа (патент RU №2642704 С1. Заявл. 10.01.2017. Опубл. 25.01.2018. БИ №3). включающий цикл подачи насосом рабочей жидкости под давлением от питающей емкости в компрессионную камеру с одновременным вытеснением из ее верхней части газа в напорную линию через нагнетательный клапан и, по мере достижения уровнем рабочей жидкости в компрессионной камере максимального положения, производится переключение компрессионной камеры на слив рабочей жидкости. Цикл опорожнения камеры от рабочей жидкости производится с одновременным поступлением в нее компримируемого газа через всасывающий клапан и, по мере достижения уровнем сливаемой рабочей жидкости минимального положения, производится повторение циклов.
Способ обладает тем же недостатком, состоящим в потере объемов откачки газа в цикле слива рабочей жидкости из компрессионной емкости.
Наиболее близким к предлагаемому является способ, реализуемый в насосной установке для откачки газа из затрубного пространства нефтяной скважины (патент RU №2630490 С1. Заявл. 21.07.2016. Опубл. 11.09.2017. БИ №26). Насосная установка включает две компрессионные емкости с подводящими к ним газовыми линиями, соединенными с затрубным пространством скважины, и отводящими газовыми линиями, соединенными с выкидным коллектором скважины. Всасывающие и нагнетательные клапаны установлены соответственно на подводящих и отводящих газовых линиях. Имеются насос для перекачки рабочей жидкости и линии для входа и выхода жидкости в нижних частях обеих емкостей. Каждая из линий сообщена с приемной и напорной сторонами перекачивающего насоса. Способ откачки газа осуществляется попеременной закачкой рабочей жидкости насосом в нижние части компрессионных емкостей и вытеснением из них газа в выкидной коллектор скважины.
Достоинствами способа являются обеспечение непрерывности откачки газа из затрубного пространства скважины, а также возможности создания высоких давлений компримирования газа. Однако способ обладает недостатком, состоящим в неэффективном использовании давления, создаваемого компрессором и его значительного резерва. Использование жидкого поршня в передаче давления от насоса газовой среде позволяет получить давление компримирования газа, близкое к давлению, создаваемому самим насосом. К примеру, применение шестеренного насоса для перекачки жидкого поршня на масляной основе позволяет достичь давление газа в конце цикла его закачки из емкости в напорную линию порядка 18,0…22,0 МПа. В то же время максимальное давление в напорных линиях скважин не превышает 4,0 МПа. Таким образом, существует значительный резерв мощности и развиваемого давления компрессора установки, выбранной в качестве прототипа.
Технической задачей предложенного способа является использование резерва мощности компрессора при отборе газа из затрубного пространства скважины для периодической закачки отобранного газа под высоким давлением в камеру замещения скважины и безнасосного подъема продукции пласта по колонне насосно-компрессорных труб.
Новизна технического решения состоит в том, что в способе скважинной добычи нефти, включающем периодическую закачку газа высокого давления в камеру замещения газлифтной скважины для подъема продукции пласта по колонне насосно-компрессорных труб, отбор газа из затрубного пространства компрессором высокого давления с использованием жидкого поршня для повышения дебита скважины и закачку его в выкидной коллектор скважины, отличающийся тем, что отбираемый компрессором из затрубного пространства газ закрытием электромагнитного клапана на линии его нагнетания в выкидной коллектор под высоким давлением периодически направляют в камеру замещения через гибкий трубопровод, спущенный в скважину снаружи основной колонны НКТ, а после полного вытеснения продукции пласта в колонну НКТ из камеры замещения открывают электромагнитный клапан для совместного поступления в коллектор скважины газа из гибкого трубопровода и газа, откачиваемого компрессором из затрубного пространства, причем в период нагнетания газа в выкидной коллектор газ из гибкого трубопровода направляют непосредственно на прием компрессора вместе с газом из затрубного пространства.
На фиг. 1 и 2 показаны схемы реализации способа. В нефтяную скважину 1 спущена колонна насосно-компрессорных труб (НКТ) 2. В нижнем конце колонны НКТ размещена камера замещения 3, представляющая собой концентрическую трубу с обратными клапанами 4 и 5 соответственно на нижних концах внутренней и внешней труб. Вместе с колонной НКТ 2 в скважину 1 спущен гибкий трубопровод 6 меньшего в сравнении с колонной НКТ диаметра, выходящая на поверхность через сальник 7 и соединенная через электроуправляемый 3-х ходовой кран 8 с выкидной стороной компрессора 9 (на фиг. 1 и 2 показан условно). Нижним концом гибкая труба 6 герметично входит в торец камеры замещения 3. Верхняя часть колонны НКТ 2 на дневной поверхности через кран 10 связана с выкидным коллектором 11. Прием компрессора 9 линией 12 через кран 13 соединен с затрубным пространством скважины 1. Выкид компрессора 9 через электромагнитный клапан 14 также соединен с выкидным коллектором 11 скважины. Поперечный отвод 3-х ходового крана 8 соединен с приемной линией 12 компрессора 9. На выкидной линии компрессора 9 и его приеме установлены манометры 15 и 16. Компрессор включает контроллер (на фиг. 1 и 2 не показан) с программой управления электромагнитным клапаном 14 и приводом 3-х ходового крана 8.
Способ осуществляется следующим образом.
Конструкция компрессора позволяет осуществлять постоянное компримирование газа под высоким давлением в гибкий трубопровод 6 через 3-х ходовой кран 8 или в напорный коллектор 11 через электромагнитный клапан 14.
После спуска труб в скважину и отсутствии нагнетания газа в трубопровод 6 компрессором 9 пластовая жидкость из скважины 1 под давлением через клапан 5 войдет в камеру замещения 3 и частично заполнит трубопровод 6 до уровня жидкости в скважине 1. Одновременно пластовая жидкость частично заполнит и колонну НКТ 2 через клапан 4 до того же уровня жидкости в скважине.
После запуска компрессора 9 в работу при закрытом электромагнитном клапане 14 через 3-х ходовой кран 8, как показано на фиг. 1, газ под высоким давлением будет поступать в камеру замещения 3 по гибкому трубопроводу 6. Повышение давление газа в камере замещения 3 до величины гидростатического давления жидкости в башмаке НКТ 2 позволяет вытеснять оттуда продукцию пласта в колонну НКТ 2. По достижению давления в камере замещения 3, достаточного для преодоления гидростатического столба жидкости в колонне НКТ 2 и давления в выкидном коллекторе 11 произойдет резкое снижение давления газа в напорной линии компрессора из-за прорыва газа в колонну НКТ 2 через клапан 4, что будет зафиксировано манометром 15. Программа контроллера откроет электромагнитный клапан 14 и газ из затрубного пространства будет нагнетаться компрессором 9 уже в выкидной коллектор 11 (фиг. 2). Одновременно с клапаном 14 3-х ходовой кран 8 переключит поток газа из гибкого трубопровода 6 в линию 12 на прием компрессора 9. Таким образом, компрессор 9 одновременно будет откачивать газ в выкидной коллектор как из затрубного пространства скважины, так и из гибкого трубопровода 6.
После того, как давление в приемной линии 12 компрессора, регистрируемого манометром 16, достигнет величины, соответствующей началу предыдущего цикла закачки газа в скважину, производят закрытие электромагнитного клапана 14 и переключение 3-х ходового крана на закачку газа в скважину и т.д.
Спуск в скважину трубопровода 6 меньшего в сравнении с НКТ 2 диаметра позволяет ускорять периоды подъема и снижения давления в ней за счет значительного уменьшения ее объема. Гибкое исполнение трубопровода 6 позволяет осуществлять одновременный спуск его в скважину с колонной НКТ 2.
Режим добычи нефти в описанном способе регулируется в широких пределах объемным расходом газа, давлением его нагнетания, глубиной подвески колонны НКТ 2, а также объемом камеры замещения 3.
Технико-экономическими преимуществами способа являются простота регулирования параметров добычи нефти, ремонта скважины, высокий межремонтный период и отсутствие глубинного насоса. При кустовом разбуривании скважин описанный принцип добычи нефти сохраняется. Способ позволяет одновременно откачивать газ из затрубного пространства и повышать дебит скважин.

Claims (1)

  1. Способ скважинной добычи нефти, включающий периодическую закачку газа высокого давления в камеру замещения газлифтной скважины для подъема продукции пласта по колонне насосно-компрессорных труб, отбор газа из затрубного пространства компрессором высокого давления с использованием жидкого поршня для повышения дебита скважины и закачку его в выкидной коллектор скважины, отличающийся тем, что отбираемый компрессором из затрубного пространства газ закрытием электромагнитного клапана на линии его нагнетания в выкидной коллектор под высоким давлением периодически направляют в камеру замещения через гибкий трубопровод, спущенный в скважину снаружи основной колонны НКТ, а после полного вытеснения продукции пласта в колонну НКТ из камеры замещения открывают электромагнитный клапан для совместного поступления в коллектор скважины газа из гибкого трубопровода и газа, откачиваемого компрессором из затрубного пространства, причем в период нагнетания газа в выкидной коллектор газ из гибкого трубопровода направляют непосредственно на прием компрессора вместе с газом из затрубного пространства.
RU2023120731A 2023-08-07 Способ скважинной добычи нефти RU2812819C1 (ru)

Publications (1)

Publication Number Publication Date
RU2812819C1 true RU2812819C1 (ru) 2024-02-02

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2293178C1 (ru) * 2005-06-22 2007-02-10 Александр Николаевич Дроздов Система для водогазового воздействия на пласт
US20110088896A1 (en) * 2009-10-19 2011-04-21 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
RU2500883C2 (ru) * 2011-08-22 2013-12-10 Открытое акционерное общество "Акционерная компания ОЗНА" Установка для водогазового воздействия на нефтяной пласт
RU2630490C1 (ru) * 2016-07-21 2017-09-11 ООО НПП "ВМ система" Насосная установка для откачки газа из затрубного пространства нефтяной скважины
RU2642704C1 (ru) * 2017-01-10 2018-01-25 Мурад Давлетович Валеев Способ периодического компримирования газа

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2293178C1 (ru) * 2005-06-22 2007-02-10 Александр Николаевич Дроздов Система для водогазового воздействия на пласт
US20110088896A1 (en) * 2009-10-19 2011-04-21 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
RU2500883C2 (ru) * 2011-08-22 2013-12-10 Открытое акционерное общество "Акционерная компания ОЗНА" Установка для водогазового воздействия на нефтяной пласт
RU2630490C1 (ru) * 2016-07-21 2017-09-11 ООО НПП "ВМ система" Насосная установка для откачки газа из затрубного пространства нефтяной скважины
RU2642704C1 (ru) * 2017-01-10 2018-01-25 Мурад Давлетович Валеев Способ периодического компримирования газа

Similar Documents

Publication Publication Date Title
US7191838B2 (en) Method and apparatus for pumping wells with a sealing fluid displacement device
US4540348A (en) Oilwell pump system and method
CA2619252C (en) An improved reciprocated pump system for use in oil wells
RU2630490C1 (ru) Насосная установка для откачки газа из затрубного пространства нефтяной скважины
RU162632U1 (ru) Подвесной компрессор к станку-качалке нефтяной скважины
US20120114510A1 (en) Reciprocated Pump System for Use in Oil Wells
RU139596U1 (ru) Скважинный насос двойного действия
US4611974A (en) Hydraulically operated well pump system
RU2627797C1 (ru) Способ насосной добычи нефти с высоким газовым фактором
RU2812819C1 (ru) Способ скважинной добычи нефти
RU2498058C1 (ru) Установка скважинная штанговая насосная для закачки воды в пласт
US9784254B2 (en) Tubing inserted balance pump with internal fluid passageway
RU177393U1 (ru) Подвесной компрессор с приводом от балансира станка-качалки
US20060045767A1 (en) Method And Apparatus For Removing Liquids From Wells
US4565496A (en) Oil well pump system and method
RU76085U1 (ru) Гидропривод глубинного штангового насоса
RU74672U1 (ru) Нефтяной диафрагменный насосный агрегат
US4390326A (en) Downhole pump having a power piston and a production piston
CA3027805C (en) Modular subsurface lift engine
RU2357099C1 (ru) Наземный силовой агрегат глубинного скважинного насоса, преимущественно гидропоршневого или струйного, для подъема жидкости из скважины с использованием энергии рабочей жидкости
RU55894U1 (ru) Гидравлический привод скважинного насоса
RU162679U1 (ru) Гидравлический привод штангового насоса
RU2351801C1 (ru) Насосная установка для одновременно-раздельной эксплуатации двух пластов одной скважины
RU2793784C1 (ru) Способ эксплуатации группы нефтяных скважин
RU184474U1 (ru) Установка для откачки сепарированного газа из нефтяной скважины