RU2812728C2 - Optical cables for harsh environmental conditions - Google Patents

Optical cables for harsh environmental conditions Download PDF

Info

Publication number
RU2812728C2
RU2812728C2 RU2019127911A RU2019127911A RU2812728C2 RU 2812728 C2 RU2812728 C2 RU 2812728C2 RU 2019127911 A RU2019127911 A RU 2019127911A RU 2019127911 A RU2019127911 A RU 2019127911A RU 2812728 C2 RU2812728 C2 RU 2812728C2
Authority
RU
Russia
Prior art keywords
optical cable
optical
layer
cable
cable according
Prior art date
Application number
RU2019127911A
Other languages
Russian (ru)
Other versions
RU2019127911A (en
Inventor
Хосеп Мария МАРТИН-РЕГАЛАДО
Хосеп Ориоль ВИДАЛЬ КАСАНАС
Матиас КАМПИЛЬО САНЧЕС
Эстер КАСТИЛЬО ЛОПЕС
Original Assignee
Призмиан С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/129,481 external-priority patent/US10606005B1/en
Application filed by Призмиан С.П.А. filed Critical Призмиан С.П.А.
Publication of RU2019127911A publication Critical patent/RU2019127911A/en
Application granted granted Critical
Publication of RU2812728C2 publication Critical patent/RU2812728C2/en

Links

Images

Abstract

FIELD: optical cables.
SUBSTANCE: invention relates to optical cables capable of maintaining operational condition under adverse environmental conditions. An optical cable contains a plurality of optical fibres sealed in a metal tube; a polymeric inner shell surrounding the metal pipe and operably connected to the metal pipe; and an outer jacket surrounding a polymeric inner jacket, the metal tube being the only metal tube in the optical cable.
EFFECT: reduction in cable dimensions.
21 cl, 9 dwg

Description

Область техникиField of technology

[1] Настоящее изобретение относится в основном к оптическим кабелям, и в частности, к вариантам осуществления для оптических кабелей, способных поддерживать рабочее состояние в неблагоприятных условиях окружающей среды.[1] The present invention relates generally to optical cables, and in particular to embodiments for optical cables capable of maintaining operational condition under harsh environmental conditions.

Уровень техникиState of the art

[2] Оптические кабели представляют собой пряди стекловолокна, способные передавать оптический сигнал на большие расстояния, при очень высоких скоростях и с относительно низкой потерей сигнала, по сравнению со стандартными сетями из медных проводов. Поэтому, оптические кабели широко используются в дистанционной связи и заменяют другие технологии, такие как спутниковая связь, стандартная проводная связь, и т.д. Помимо дистанционной связи, оптические волокна также используются во многих применениях, таких как медицина, авиация, серверы данных компьютеров, и т.д.[2] Optical cables are strands of fiberglass capable of transmitting an optical signal over long distances, at very high speeds, and with relatively low signal loss compared to standard copper wire networks. Therefore, optical cables are widely used in distance communication and are replacing other technologies such as satellite communication, standard wireline communication, etc. Apart from remote communication, optical fibers are also used in many applications such as medicine, aviation, computer data servers, etc.

[3] Из–за широкого диапазона применений оптических волокон, может возникнуть необходимость в оптических кабелях, пригодных для эксплуатации в неблагоприятных условиях окружающей среды. Например, оптические кабели можно использовать в неблагоприятных условиях окружающей среды, где требуется высокое химическое сопротивление, например, в трубопроводах, нефтеочистительных предприятиях, таких как нефте– и газоочистительные заводы, горные работы, и т.п. Применение оптических кабелей также может быть обосновано поддержанием функциональности для поддержания безопасности в случаях катастроф. Например, может возникнуть необходимость в том, чтобы оптические кабели были огнеупорными, огнестойкими и поддерживали целостность цепи в течение как можно большего времени при воспламенении. В дополнение, на характеристики оптических кабелей могут неблагоприятно повлиять такие нагрузки, как изгибание, коробление и напряжения сжатия. По этим причинам могут быть желательны оптические кабели, стойкие к химикатам, огню и/или к механическим нагрузкам.[3] Due to the wide range of applications of optical fibers, there may be a need for optical cables that are suitable for use in harsh environmental conditions. For example, optical cables can be used in harsh environmental conditions where high chemical resistance is required, such as pipelines, oil refineries such as oil and gas refineries, mining operations, etc. The use of optical cables can also be justified to maintain functionality to maintain safety in the event of a disaster. For example, there may be a need for optical cables to be flame retardant, fire resistant, and maintain circuit integrity for as long as possible when ignited. In addition, the performance of optical cables can be adversely affected by stresses such as bending, buckling, and compressive stresses. For these reasons, optical cables that are resistant to chemicals, fire, and/or mechanical stress may be desirable.

[4] Оптические кабели также можно использовать в применениях, где электрические сигналы и/или электроэнергия желательны в дополнение к оптическому сигналу. Гибридный кабель может включать в себя электропроводящие дорожки, а также оптические дорожки в решении, связанном со встроенным кабелем. Например, с помощью гибридного кабеля могут снабжаться такие оптические устройства и электронное оборудование, как машинное оборудование, датчики, устройства связи, и др. Гибридные кабели были ранее описаны в работах из уровня техники.[4] Optical cables can also be used in applications where electrical signals and/or electrical power are desired in addition to the optical signal. A hybrid cable may include electrically conductive traces as well as optical traces in an embedded cable solution. For example, optical devices and electronic equipment such as machinery, sensors, communication devices, etc. can be supplied with a hybrid cable. Hybrid cables have been previously described in prior art.

[5] Кабель оптоволоконной передачи для внешних условий, вызывающих ускоренное разрушение, и особенно для применений на морском дне описано Стамницом (Stamnitz) в Европейской патентной публикации № EP0371660A1. Кабель оптоволоконной передачи содержит от одного до большого количества оптических волокон, электрических проводников и несущих деталей металлических проводов, содержащихся в одиночной кабельной структуре. Конкретным примером является электрооптомеханический кабель, который включает в себя, по меньшей мере, одну тонкостенную трубу из легированной стали, содержащую, по меньшей мере, одно одномодовое волокно и гель для заполнения пустот. Диэлектрическое кольцо включает в себя находящийся в нем электропроводящий слой. Необязательный двухслойный, с противоположно направленными спиралями, либо трех– или четырехслойный, сбалансированный по крутящему моменту, несущий элемент из стальной проволоки обеспечивает дополнительную защиту, а также возможность буксировки, развертывания и извлечения со дна моря на абиссальных глубинах.[5] Fiber optic transmission cable for environmental conditions causing accelerated degradation, and especially for seabed applications, is described by Stamnitz in European Patent Publication No. EP0371660A1. A fiber optic transmission cable contains from one to a large number of optical fibers, electrical conductors and supporting metal wire parts contained in a single cable structure. A specific example is an electro-opto-mechanical cable that includes at least one thin-walled alloy steel tube containing at least one single-mode fiber and a void-filling gel. The dielectric ring includes an electrically conductive layer located in it. An optional two-layer, counter-spiral, or three- or four-layer, torque-balanced steel wire load-bearing element provides additional protection, as well as the ability to be towed, deployed and recovered from the seabed at abyssal depths.

[6] Подводные телекоммуникационные кабели описаны Мэрльером (Marlier) и др. В Патенте США № 5,125,061. Подводный телекоммуникационный кабель имеет оптические волокна, встроенные в материал, заполняющий трубу, которая сама лежит внутри спиральной свивки из металлических проводов, обладающих высокой механической прочностью, и промежутки в которой заполнены герметизирующим материалом. Кабель включает в себя первую экструдированную оболочку между трубой и спиральной свивкой, а сама спиральная свивка покрыта второй прессованной оболочкой, которая является изолирующей и стойкой к истиранию, и если кабель предназначен для дистанционной связи, он включает в себя проводящую полоску на трубе или на первой оболочке.[6] Submarine telecommunications cables are described by Marlier et al. in US Patent No. 5,125,061. A submarine telecommunications cable has optical fibers embedded in a material filling the pipe, which itself lies within a spiral strand of metal wires having high mechanical strength, and the spaces in which are filled with a sealing material. The cable includes a first extruded sheath between the pipe and the helical lay, and the helical lay itself is covered by a second extruded sheath, which is insulating and abrasion resistant, and if the cable is intended for remote communication, it includes a conductive strip on the pipe or on the first sheath .

Сущность изобретенияThe essence of the invention

[7] В соответствии с вариантом осуществления изобретения, оптический кабель включает в себя несколько оптических волокон, герметизированных в металлической трубе, полимерную внутреннюю оболочку, окружающую металлическую трубу и оперативно подключаемую к металлической трубе, и окружающую внешнюю оболочку, расположенную поверх полимерной внутренней оболочки. В варианте осуществления, одиночный слой оплетки расположен между полимерной внутренней оболочкой и внешней оболочкой.[7] According to an embodiment of the invention, an optical cable includes a plurality of optical fibers encapsulated in a metal tube, a polymeric inner jacket surrounding the metal tube and operatively connected to the metal tube, and a surrounding outer jacket disposed over the polymeric inner jacket. In an embodiment, a single layer of braid is located between the polymeric inner shell and the outer shell.

[8] В соответствии с другим вариантом осуществления изобретения, оптический кабель включает в себя сердцевину оптоволокна, содержащую металлическую трубу, заключающую в себе несколько ненатянутых оптических волокон. Сердцевина оптоволокна сконфигурирована для противодействия проникновению воды. Оптический кабель дополнительно включает в себя однородную внутреннюю оболочку одиночного слоя, расположенную поверх и оперативно подключаемую к сердцевине оптоволокна и к внешней оболочке. Однородная внутренняя оболочка одиночного слоя сконфигурирована так, чтобы она была химически стойкой. Оптический кабель также может включать в себя слой оплетки, расположенный поверх и физически контактирующий с однородной внутренней оболочкой одиночного слоя, и внешнюю оболочку, расположенную поверх слоя оплетки. Внешняя оболочка сконфигурирована так, чтобы она была огнеупорной.[8] According to another embodiment of the invention, an optical cable includes an optical fiber core comprising a metal tube enclosing a plurality of unstretched optical fibers. The fiber core is configured to resist water penetration. The optical cable further includes a uniform single layer inner cladding disposed over and operatively connected to the fiber core and to the outer cladding. The single layer's homogeneous inner shell is configured to be chemically resistant. The optical cable may also include a braided layer disposed over and physically in contact with a uniform inner cladding of the single layer, and an outer cladding disposed over the braided layer. The outer shell is configured to be fire resistant.

[9] В соответствии с еще одним вариантом осуществления изобретения, гибридный кабель включает в себя несколько оптических волокон, герметизированных в металлической трубе, и полиамидную внутреннюю оболочку, окружающую металлическую трубу. Полиамидная внутренняя оболочка непосредственно прикреплена к металлической трубе. Гибридный кабель дополнительно включает в себя проводящий слой, расположенный поверх и физически контактирующий с полиамидной внутренней оболочкой, промежуточной оболочкой, расположенной поверх проводящего слоя, и внешнюю оболочку, окружающую промежуточную оболочку. Слой оплетки может быть расположен между промежуточной оболочкой и внешней оболочкой. Гибридный кабель сконфигурирован для передачи оптических сигналов по нескольким оптическим волокнам. Гибридный кабель дополнительно сконфигурирован для пропускания электрического тока через проводящий слой.[9] According to yet another embodiment of the invention, a hybrid cable includes multiple optical fibers encapsulated in a metal tube and a polyamide inner sheath surrounding the metal tube. The polyamide inner shell is directly attached to the metal pipe. The hybrid cable further includes a conductive layer located on top of and physically contacting a polyamide inner jacket, an intermediate jacket located on top of the conductive layer, and an outer jacket surrounding the intermediate jacket. The braid layer may be located between the intermediate shell and the outer shell. A hybrid cable is configured to carry optical signals over multiple optical fibers. The hybrid cable is further configured to pass electrical current through the conductive layer.

[10] В соответствии с еще одним вариантом осуществления изобретения, способ изготовления оптического кабеля включает в себя обеспечение нескольких оптических волокон, герметизацию нескольких оптических волокон в металлической трубе, формирование полимерной внутренней оболочки, окружающей металлическую трубу и оперативно подключаемой к металлической трубе, и формирование внешней оболочки, окружающей полимерную внутреннюю оболочку. В варианте осуществления, способ дополнительно содержит формирование одиночного слоя оплетки поверх полимерной внутренней оболочки, до формирования внешней оболочки.[10] According to yet another embodiment of the invention, a method for manufacturing an optical cable includes providing multiple optical fibers, encapsulating the multiple optical fibers in a metal pipe, forming a polymeric inner sheath surrounding the metal pipe and operatively connected to the metal pipe, and forming an outer shell surrounding the polymer inner shell. In an embodiment, the method further comprises forming a single layer of braid over the polymeric inner shell, prior to forming the outer shell.

Краткое описание чертежейBrief description of drawings

[11] Для более полного понимания настоящего изобретения и его преимуществ, теперь обратимся к следующим описаниям, приведенным в сочетании с прилагаемыми чертежами, на которых:[11] For a more complete understanding of the present invention and its advantages, reference is now made to the following descriptions, taken in conjunction with the accompanying drawings, in which:

[12] Фигура 1 иллюстрирует стандартный оптический кабель;[12] Figure 1 illustrates a standard optical cable;

[13] Фигура 2 иллюстрирует другой стандартный оптический кабель;[13] Figure 2 illustrates another standard optical cable;

[14] Фигура 3 иллюстрирует примерный оптический кабель, включающий в себя внутреннюю оболочку одиночного слоя, непосредственно прилегающую к герметизированной металлической трубе, содержащей несколько оптических волокон в соответствии с вариантом осуществления изобретения;[14] Figure 3 illustrates an exemplary optical cable including a single layer inner cladding immediately adjacent to an encapsulated metal conduit containing multiple optical fibers in accordance with an embodiment of the invention;

[15] Фигура 4 иллюстрирует примерный оптический кабель, включающий в себя внутреннюю оболочку одиночного слоя, непосредственно прилегающую к герметизированной металлической трубе, содержащей две или более труб для волокна, каждая из которых содержит несколько оптических волокон в соответствии с вариантом осуществления изобретения;[15] Figure 4 illustrates an exemplary optical cable including a single layer inner cladding immediately adjacent to an encapsulated metal conduit containing two or more fiber conduits, each containing multiple optical fibers in accordance with an embodiment of the invention;

[16] Фигура 5 иллюстрирует примерный гибридный кабель, включающий в себя внутреннюю оболочку одиночного слоя, непосредственно прилегающую к герметизированной металлической трубе, содержащей несколько оптических волокон, а также электропроводящий слой в соответствии с вариантом осуществления изобретения;[16] Figure 5 illustrates an exemplary hybrid cable including a single layer inner cladding immediately adjacent to an encapsulated metal conduit containing multiple optical fibers, as well as an electrically conductive layer in accordance with an embodiment of the invention;

[17] Фигура 6 иллюстрирует примерный гибридный кабель, включающий в себя внутреннюю оболочку одиночного слоя, непосредственно прилегающую к герметизированной металлической трубе, содержащей две или более труб для волокна, каждая из которых содержит несколько оптических волокон, а также электропроводящий слой в соответствии с вариантом осуществления изобретения;[17] Figure 6 illustrates an exemplary hybrid cable including a single layer inner jacket immediately adjacent to an encapsulated metal conduit containing two or more fiber conduits, each containing multiple optical fibers, as well as an electrically conductive layer in accordance with an embodiment inventions;

[18] Фигура 7 иллюстрирует примерный способ изготовления оптического кабеля в соответствии с вариантом осуществления изобретения;[18] Figure 7 illustrates an exemplary method for manufacturing an optical cable in accordance with an embodiment of the invention;

[19] Фигура 8 иллюстрирует другой примерный способ изготовления оптического кабеля в соответствии с вариантом осуществления изобретения; и[19] Figure 8 illustrates another exemplary method of manufacturing an optical cable in accordance with an embodiment of the invention; And

[20] Фигура 9 иллюстрирует примерный способ изготовления гибридного кабеля в соответствии с вариантом осуществления изобретения.[20] Figure 9 illustrates an exemplary method for manufacturing a hybrid cable in accordance with an embodiment of the invention.

Подробное описание иллюстративных вариантов осуществленияDetailed Description of Illustrative Embodiments

[21] Создание и использование предпочтительных в настоящее время вариантов осуществления подробно обсуждается ниже. Однако, следует учитывать, что настоящее изобретение обеспечивает многие применимые идеи изобретения, которые могут быть осуществлены в самых разнообразных конкретных контекстах. Обсуждаемые конкретные варианты осуществления являются лишь иллюстративными для конкретных способов создания и использования изобретения, и не ограничивают объем изобретения.[21] The creation and use of currently preferred embodiments are discussed in detail below. However, it should be appreciated that the present invention provides many applicable inventive concepts that may be practiced in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways of making and using the invention, and are not intended to limit the scope of the invention.

[22] В различных вариантах осуществления будет описан оптический кабель с высокой химической стойкостью, огнестойкостью, огнеупорностью, целостностью цепи и механической прочностью. Оптический кабель достигает этих и других свойств тем, что он включает в себя химически стойкий слой, непосредственно контактирующий с металлической трубой, которая вмещает в себя оптические волокна. В дальнейшем описании представлены примерные варианты осуществления.[22] In various embodiments, an optical cable with high chemical resistance, fire resistance, flame retardancy, circuit integrity, and mechanical strength will be described. An optical cable achieves these and other properties by including a chemically resistant layer in direct contact with the metal tube that houses the optical fibers. In the following description, exemplary embodiments are presented.

[23] Сначала будут описаны два стандартных оптических кабеля, с использованием Фигур 1 и 2. Затем будут обсуждаться два варианта осуществления оптических кабелей, с использованием Фигур 3 и 4. Затем будут обсуждаться два варианта осуществления гибридных кабелей, с использованием Фигур 5 и 6. Затем будут обсуждаться несколько примерных способов изготовления вариантов осуществления кабелей, с использованием Фигур 7–9. Выбор возможных диаметров кабеля и диапазонов диаметра кабеля будет подытожен в Таблице I.[23] First, two standard optical cables will be described using Figures 1 and 2. Then two optical cable embodiments will be discussed using Figures 3 and 4. Then two hybrid cable embodiments will be discussed using Figures 5 and 6. Several exemplary methods for manufacturing cable embodiments will then be discussed using Figures 7-9. The selection of possible cable diameters and cable diameter ranges will be summarized in Table I.

[24] Фигура 1 иллюстрирует стандартный оптический кабель.[24] Figure 1 illustrates a standard optical cable.

[25] Обратимся к Фигуре 1, где стандартный оптический кабель 100 включает в себя центральный 150 элемент из пластика, армированного стекловолокном (glass fiber reinforced plastic, GFRP). Вокруг центрального 150 элемента из GFRP расположены трубы 152 из термопластического полиэфира. Каждая из труб 152 из термопластического полиэфира содержит несколько оптических волокон 110 и соединение 122 в виде геля. Стандартный оптический кабель имеет 72 оптических волокна 110, содержащихся в шести трубах 152 из термопластического полиэфира, как проиллюстрировано на Фигуре 1.[25] Referring to Figure 1, a standard optical cable 100 includes a glass fiber reinforced plastic (GFRP) center member 150. Surrounding the central GFRP member 150 are thermoplastic polyester pipes 152. Each of the thermoplastic polyester tubes 152 contains a plurality of optical fibers 110 and a gel compound 122. A typical optical cable has 72 optical fibers 110 contained in six thermoplastic polyester tubes 152, as illustrated in Figure 1.

[26] Трубы 152 из термопластического полиэфира окружены термостойким и способным к набуханию покрытием 124 сердцевины. Термостойкое и способное к набуханию покрытие 124 сердцевины содержит слюдяную ленту для обеспечения термостойкости и порошок абсорбента для обеспечения защиты от воды. Термостойкое и способное к набуханию покрытие 124 сердцевины окружено слоем 154 с малым выделением дыма и без выделения галогенов (low smoke zero halogen (LS0H)). Центральный 150 элемент из GFRP, трубы 152 из термопластического полиэфира, термостойкое и способное к набуханию покрытие 124 сердцевины и слой 154 LS0H составляют сердцевину 140 кабеля для стандартного оптического кабеля 100.[26] The thermoplastic polyester tubes 152 are surrounded by a heat-resistant and swellable core coating 124. The heat-resistant and swellable core coating 124 contains mica tape to provide heat resistance and absorbent powder to provide water protection. The heat-resistant and swelling core coating 124 is surrounded by a low smoke zero halogen (LS0H) layer 154. A GFRP center member 150, thermoplastic polyester pipes 152, a heat-resistant and swellable core coating 124, and an LS0H layer 154 comprise the cable core 140 for a standard optical cable 100.

[27] Сердцевина 140 кабеля имеет стандартный диаметр 190 сердцевины, определяемый в зависимости от количества и расположения оптических волокон в трубах 152 из термопластического полиэфира. Общее количество оптических волокон обычно составляет от 6 до 96. Стандартный диаметр 190 сердцевины имеет минимальный диаметр 6,5 мм для 6–36 оптических волокон. Диаметр увеличивается с повышением количества оптических волокон. Стандартный оптический кабель 100, включающий в себя 72 оптических волокна, имеет стандартный диаметр 190 сердцевины, составляющий 7,4 мм. Аналогично, стандартный оптический кабель 100, включающий в себя 96 оптических волокон, имеет стандартный диаметр 190 сердцевины, составляющий 9 мм.[27] The cable core 140 has a standard core diameter 190 determined depending on the number and arrangement of optical fibers in the thermoplastic polyester tubes 152. The total number of optical fibers typically ranges from 6 to 96. The standard 190 core diameter has a minimum diameter of 6.5 mm for 6 to 36 optical fibers. The diameter increases with the number of optical fibers. A standard optical cable 100, comprising 72 optical fibers, has a standard core diameter 190 of 7.4 mm. Likewise, a standard optical cable 100 comprising 96 optical fibers has a standard core diameter 190 of 9 mm.

[28] Сердцевина 140 кабеля покрыта многослойной внутренней 142 оболочкой в радиально внешнем положении относительно слоя 154 LS0H. Многослойная внутренняя 142 оболочка имеет алюминиевую фольгу 132, слой 156 полиэтилена высокой плотности (ПВП) и слой 158 полиамида (ПА). ПА–слой 158 изготовлен из полиамида 12 (также называемого PA12). Многослойная внутренняя 142 оболочка имеет стандартный диаметр 192 внутренней оболочки, который ограничен количеством слоев, входящих в многослойную внутреннюю 142 оболочку, а также минимальными требованиями по защите. Для защиты стандартного оптического кабеля 100, стандартный диаметр 192 внутренней оболочки не может быть менее 6,9 мм.[28] The cable core 140 is covered with a multi-layer inner sheath 142 in a radially outer position relative to the LS0H layer 154. The multi-layer inner shell 142 has aluminum foil 132, a high-density polyethylene (HDPE) layer 156, and a polyamide (PA) layer 158. PA layer 158 is made from polyamide 12 (also called PA12). The multi-layer inner shell 142 has a standard inner shell diameter 192, which is limited by the number of layers included in the multi-layer inner shell 142, as well as the minimum protection requirements. To protect the standard 100 optical cable, the standard 192 diameter of the inner sheath cannot be less than 6.9mm.

[29] Слой 146 оплетки расположен на многослойной внутренней 142 оболочке. Слой 146 оплетки состоит из одного слоя проволок 136 из оцинкованной стали. Внешняя 148 оболочка LS0H покрывает слой 146 оплетки. Стандартный оптический кабель 100 имеет стандартный диаметр 199 оптического кабеля, который включает в себя внешнюю 148 оболочку LS0H. Поскольку также задействована сердцевина 140 кабеля, стандартный диаметр 199 оптического кабеля подвергается тем же ограничениям, что и стандартный диаметр 190 сердцевины. Стандартный оптический кабель 100 с общим количеством оптических волокон в диапазоне 6–36 оптических волокон имеет стандартный диаметр 199 оптического кабеля 9,8 мм. Стандартный оптический кабель 100 с 72 оптическими волокнами имеет стандартный диаметр 199 оптического кабеля 20,7 мм. Аналогично, стандартный оптический кабель 100 с 96 оптическими волокнами имеет стандартный диаметр 199 оптического кабеля 22,3 мм.[29] The braid layer 146 is located on the multi-layer inner shell 142. The braid layer 146 consists of a single layer of galvanized steel wires 136. The outer jacket 148 of the LS0H covers the braid layer 146. The standard optical cable 100 has a standard diameter 199 optical cable that includes an outer 148 sheath LS0H. Since a cable core 140 is also involved, the standard optical cable diameter 199 is subject to the same limitations as the standard core diameter 190. A standard 100 optical cable with a total optical fiber count ranging from 6 to 36 optical fibers has a standard 199 optical cable diameter of 9.8mm. A standard 100 optical cable with 72 optical fibers has a standard 199 optical cable diameter of 20.7 mm. Similarly, a standard 100 optical cable with 96 optical fibers has a standard 199 optical cable diameter of 22.3 mm.

[30] Фигура 2 иллюстрирует другой стандартный оптический кабель.[30] Figure 2 illustrates another standard optical cable.

[31] Обратимся к Фигуре 2, где стандартный оптический кабель 200 имеет центральный 250 несущий элемент. Волокна 210 защищены в заполненных гелем ненатянутых 252 трубах, переплетенных вокруг центрального 250 несущего элемента. Гидроизолирующая прокладка 232 изготовлена из ленты на основе сополимера алюминия, которая сложена в продольном направлении вокруг ненатянутых 252 труб. Оболочечный 256 подэлемент, изготовленный из полиэтилена высокой плотности (ПВП), устанавливают поверх гидроизолирующей прокладки 232. Полиамидную оболочку 258 устанавливают вокруг оболочечного 256 подэлемента. Оплетку 246, состоящую из стальных проволок, стальных оплеток, или гофрированной стальной ленты, устанавливают вокруг полиамидной оболочки 258. Оболочку 248, состоящую из огнеупорного материала с малым выделением дыма и без выделения галогенов или огнеупорного и термо– и маслостойкого материала на основе ПВХ, устанавливают вокруг оплетки 246.[31] Referring to Figure 2, a standard optical cable 200 has a central support member 250. The fibers 210 are protected in gel-filled, untensioned tubes 252 woven around a central 250 support member. The waterproofing gasket 232 is made of an aluminum copolymer tape that is folded longitudinally around the slack 252 pipes. A shell 256 sub-element made of high-density polyethylene (HDPE) is installed over the waterproofing liner 232. A polyamide shell 258 is installed around the shell 256 sub-element. A braid 246, consisting of steel wires, steel braids, or corrugated steel tape, is installed around the polyamide sheath 258. A sheath 248, consisting of a low-smoke and halogen-free fire-resistant material or a fire-resistant, heat- and oil-resistant PVC-based material, is installed around the braid 246.

[32] Стандартный оптический кабель 200 имеет стандартный диаметр 299 оптического кабеля, на который наложены те же ограничения, что и на сердцевину 240 оптоволокна способом, аналогичным способу для стандартного оптического кабеля 100. Стандартный диаметр 299 оптического кабеля не может быть менее 18,0 мм, когда стандартный оптический кабель 200 имеет общее количество оптических волокон в диапазоне от 2 до 72 оптических волокон. Стандартный оптический кабель 200 с 96 оптическими волокнами имеет стандартный диаметр 299 оптического кабеля 19,6 мм. Стандартный оптический кабель 200 с 144 оптическими волокнами имеет стандартный диаметр 299 оптического кабеля 23,4 мм.[32] The standard optical cable 200 has a standard optical cable diameter 299, which is subject to the same restrictions as the optical fiber core 240 in a manner similar to that of the standard optical cable 100. The standard optical cable diameter 299 cannot be less than 18.0 mm when the standard optical cable 200 has a total number of optical fibers ranging from 2 to 72 optical fibers. A standard 200 optical cable with 96 optical fibers has a standard 299 optical cable diameter of 19.6 mm. A standard 200 optical cable with 144 optical fibers has a standard 299 optical cable diameter of 23.4 mm.

[33] Некоторые недостатки могут быть связаны со стандартными оптическими кабелями. Например, стандартные оптические кабели являются относительно толстыми. Как стандартный оптический кабель 100, так и стандартный оптический кабель 200 должны иметь центральный несущий элемент GFRP, который повышает диаметр сердцевины оптоволокна, а следовательно, и диаметр стандартного оптического кабеля. По этой причине, наполнитель трубы, не содержащей никаких оптических волокон, задействован для поддержания структурной целостности кабеля даже когда необходимо меньшее количество труб, содержащих оптические волокна. Дополнительно, многослойная внутренняя оболочка стандартного оптического кабеля 100 и стандартного оптического кабеля 200 повышает общий диаметр кабеля.[33] Some disadvantages may be associated with standard optical cables. For example, standard optical cables are relatively thick. Both the standard optical cable 100 and the standard optical cable 200 must have a GFRP center support element, which increases the diameter of the fiber core, and therefore the diameter of the standard optical cable. For this reason, pipe filler, which does not contain any optical fibers, is used to maintain the structural integrity of the cable even when fewer pipes containing optical fibers are needed. Additionally, the multi-layer inner jacket of the standard optical cable 100 and standard optical cable 200 increases the overall diameter of the cable.

[34] Другим недостатком стандартных оптических кабелей, таких как кабель 100, является использование слюдяной ленты для обеспечения огнестойкости. Слюдяная лента усложняет технологическую последовательность процесса изготовления за счет требования того, чтобы стандартный оптический кабель можно было перемещать к другой линии для наматывания слюдяной ленты. Дополнительная обработка повышает затраты на изготовление за счет увеличения времени на изготовления и требования дополнительного машинного оборудования. Слюдяную ленту формируют путем наклеивания чешуек слюды на стекловолоконную подложку, и поэтому она очень хрупкая. Чешуйки слюды легко отслаиваются в ходе обработки, что невыгодно загрязняет рабочую среду. В дополнение, слюдяная лента достаточно дорогая, что, помимо всего прочего, повышает затраты. Кабель 200, не содержащий слюдяные ленты, непригоден для поддержания целостности цепи под действием огня согласно IEC 60331–25 (1999).[34] Another disadvantage of standard optical cables such as 100 cable is the use of mica tape to provide fire resistance. Mica tape adds complexity to the manufacturing process by requiring that a standard optical cable be moved to another mica tape winding line. Additional processing increases manufacturing costs by increasing manufacturing time and requiring additional machinery. Mica tape is formed by gluing mica flakes onto a fiberglass backing and is therefore very fragile. Mica flakes easily peel off during processing, which unfavorably pollutes the working environment. In addition, mica tape is quite expensive, which, among other things, increases costs. Cable 200, which does not contain mica tapes, is not suitable for maintaining circuit integrity under fire conditions in accordance with IEC 60331-25 (1999).

[35] Стандартные оптические кабели также не могут отвечать всем требованиям по защите для определенных неблагоприятных условий окружающей среды, таких как те, которые встречаются в нефтегазовой промышленности. Например, оптические кабели, сконструированные для химически сложных сред, таких как шахты и нефтяные скважины, должны быть одновременно водостойкими, огнестойкими, огнеупорными, химически стойкими, механически устойчивыми и поддерживающими целостность цепи под действием огня. В стандартных оптических кабелях невыгодно отсутствует выполнение одного или более требований по защите, что делает их непригодными для использования в этих неблагоприятных условиях окружающей среды, таких как условия в нефтегазовой промышленности.[35] Standard optical cables also may not meet all the protection requirements for certain harsh environmental conditions, such as those found in the oil and gas industry. For example, optical cables designed for chemically challenging environments such as mines and oil wells must be simultaneously waterproof, flame retardant, flame retardant, chemical resistant, mechanically resistant, and maintain circuit integrity when exposed to fire. Standard optical cables disadvantageously lack one or more protection requirements, making them unsuitable for use in these harsh environmental conditions, such as those found in the oil and gas industry.

[36] Кроме того, в одиночном кабеле, в дополнение к оптической связности может быть желательным обеспечение электрической связности. Например, в одиночном оптическом кабеле можно одновременно передавать электрические сигналы и/или электроэнергию. Электроэнергию можно выгодно подавать, например, на удаленное машинное оборудование или датчики. Однако, стандартные оптические кабели невыгодно обеспечивают только оптическую связность.[36] Additionally, in a single cable, it may be desirable to provide electrical connectivity in addition to optical connectivity. For example, a single optical cable can simultaneously transmit electrical signals and/or electrical power. Electrical energy can be advantageously supplied, for example, to remote machinery or sensors. However, standard optical cables disadvantageously provide only optical connectivity.

[37] Авторы настоящей заявки обнаружили, что стандартные оптические кабели не отвечают требованиям по защите, таким как огнестойкость и целостность цепи, в присутствии огня. Кроме того, авторы настоящей заявки обнаружили, что стандартные оптические кабели нельзя сделать более тонкими и менее дорогими так, чтобы они еще и отвечали требованиям по защите для неблагоприятных условий окружающей среды, таких как те, которые встречаются в нефтегазовой промышленности. Авторы настоящей заявки также признают неудовлетворенную потребность в промышленности для обеспечения электрических сигналов и/или электроэнергии, в дополнение к оптическим сигналам, с использованием одиночного кабеля, пригодного для использования в этих неблагоприятных условиях окружающей среды.[37] The present inventors have discovered that standard optical cables do not meet protection requirements such as fire resistance and circuit integrity in the presence of fire. In addition, the present inventors have discovered that standard optical cables cannot be made thinner and less expensive while still meeting the requirements for protection against harsh environmental conditions such as those encountered in the oil and gas industry. The present inventors also recognize an unmet need in the industry to provide electrical signals and/or power, in addition to optical signals, using a single cable suitable for use in these harsh environmental conditions.

[38] Фигура 3 иллюстрирует примерный оптический кабель согласно настоящему раскрытию, включающий в себя внутреннюю оболочку одиночного слоя, непосредственно прилегающую к герметизированной металлической трубе, содержащей несколько оптических волокон в соответствии с вариантом осуществления изобретения.[38] Figure 3 illustrates an exemplary optical cable according to the present disclosure including a single layer inner cladding immediately adjacent to an encapsulated metal conduit containing multiple optical fibers in accordance with an embodiment of the invention.

[39] Обратимся к Фигуре 3, где оптический кабель 300 включает в себя несколько оптических волокон 10, герметизированных в металлической трубе 30. В металлической трубе 30 можно герметизировать любое мыслимое количество оптических волокон. В различных вариантах осуществления, количество оптических волокон 10 в металлической трубе 30 составляет менее 150. Однако, количество оптических волокон 10 в металлической трубе 30 также может быть равно или превышать 150. В одном варианте осуществления, количество оптических волокон 10 в металлической трубе 30 составляет 48. В другом варианте осуществления, количество оптических волокон 10 в металлической трубе 30 составляет 12. В еще одном варианте осуществления, количество оптических волокон 10 в металлической трубе 30 составляет 96.[39] Referring to Figure 3, optical cable 300 includes a plurality of optical fibers 10 encapsulated in a metal conduit 30. Any conceivable number of optical fibers may be encapsulated in the metal conduit 30. In various embodiments, the number of optical fibers 10 in the metal pipe 30 is less than 150. However, the number of optical fibers 10 in the metal pipe 30 may also be equal to or greater than 150. In one embodiment, the number of optical fibers 10 in the metal pipe 30 is 48 In another embodiment, the number of optical fibers 10 in the metal pipe 30 is 12. In yet another embodiment, the number of optical fibers 10 in the metal pipe 30 is 96.

[40] Наполнитель 20 может быть использован для заполнения пустого пространства и частичной или полной иммобилизации оптических волокон 10 в металлической трубе 30. Наполнитель 20 может быть сконфигурирован для предотвращения распространения влаги в продольном направлении вдоль оптического кабеля 300. Например, наполнитель 20 может включать в себя водоблокирующее соединение. Наполнитель также может включать в себя поглотитель водорода. В различных вариантах осуществления, наполнитель 20 включает в себя абсорбирующий материал для поглощения влаги и воды и в некоторых вариантах включает в себя сверхтонкий порошок абсорбента осуществления. В других вариантах осуществления, наполнитель 20 включает в себя гель, и в некоторых вариантах осуществления он представляет собой тиксотропный гель. В различных вариантах осуществления, наполнитель 20 представляет собой агент заводнения, для предотвращения продольное распространение влаги в металлической трубе 30. Примерами материалов, пригодных в качестве наполнителя согласно настоящему раскрытию являются гидрированные тяжелые парафины, гидрированные нейтральные C20–50 масла и полидиметилсилоксановые масла. Также, или в качестве альтернативы можно использовать водоблокирующие нити, несущие на себе, например порошок полиакрилата и/или полиакриламида.[40] The filler 20 may be used to fill void space and partially or completely immobilize the optical fibers 10 in the metal tube 30. The filler 20 may be configured to prevent moisture from spreading longitudinally along the optical cable 300. For example, the filler 20 may include water blocking compound. The filler may also include a hydrogen scavenger. In various embodiments, the fill 20 includes an absorbent material for absorbing moisture and water, and in some embodiments includes an ultrafine absorbent powder embodiment. In other embodiments, the filler 20 includes a gel, and in some embodiments, it is a thixotropic gel. In various embodiments, filler 20 is a flooding agent to prevent longitudinal propagation of moisture in metal pipe 30. Examples of materials suitable as filler according to the present disclosure include hydrogenated heavy waxes, hydrogenated C20-50 neutral oils, and polydimethylsiloxane oils. Also, or alternatively, water blocking threads carrying, for example, polyacrylate and/or polyacrylamide powder can be used.

[41] В различных вариантах осуществления, металлическая труба 30 может быть сварной или прессованной, если возможно. Металлическая труба 30 может быть изготовлена из стали, например, из нержавеющей стали, такой как нержавеющая сталь 304 или 304L, или нержавеющая сталь 316 или 316L. Металлическая труба 30 также может быть осуществлена с использованием других металлов или сплавов металлов. В одном альтернативном варианте осуществления, металлическая труба 30 представляет собой элементарную медь (Cu), а в одном варианте осуществления является сварной медной трубой. В других вариантах осуществления, металлическая труба 30 представляет собой сплав меди, а в одном варианте осуществления представляет собой сварную трубу из сплава меди. В различных вариантах осуществления, металлическая труба 30 представляет собой алюминий, а в одном варианте осуществления представляет собой сварную трубу из алюминия. В качестве альтернативы, металлическая труба 30 может быть образована из прессованного алюминия. Когда металлическая труба 30 изготовлена из меди, сплава меди или алюминия, она также может переносить электрический ток, как требуется для конкретного применения кабеля.[41] In various embodiments, the metal pipe 30 may be welded or extruded, if possible. The metal pipe 30 may be made of steel, such as stainless steel such as 304 or 304L stainless steel, or 316 or 316L stainless steel. The metal pipe 30 may also be made using other metals or metal alloys. In one alternative embodiment, metal pipe 30 is elemental copper (Cu), and in one embodiment is welded copper pipe. In other embodiments, metal pipe 30 is a copper alloy, and in one embodiment is a welded copper alloy pipe. In various embodiments, metal pipe 30 is aluminum, and in one embodiment is welded aluminum pipe. Alternatively, the metal pipe 30 may be formed from extruded aluminum. When the metal pipe 30 is made of copper, copper alloy or aluminum, it can also carry electrical current as required for the particular cable application.

[42] Металлическая труба 30, наполнитель 20 и несколько оптических волокон 10 содержат сердцевину 40 оптоволокна оптического кабеля 300. Хотя несколько оптических волокон 10 могут быть частично или полностью иммобилизованы наполнителем 20, конфигурация как проиллюстрировано на Фигуре 3 может называться конфигурацией сердцевины ненатянутой трубы. Возможное преимущество этой конфигурации состоит в том, что металлическая труба 30 может обеспечить механическую стабильность, вследствие чего в центральном несущем элементе нет необходимости. Поскольку металлическая труба 30 герметизирована путем сварки или прессования, она также может функционировать для предотвращения поглощения воды в сердцевину 40 оптоволокна. В частности, металлическая труба 30 может предотвратить радиальное проникновение воды в сердцевину 40 оптоволокна.[42] The metal pipe 30, the filler 20, and the plurality of optical fibers 10 comprise an optical fiber core 40 of the optical cable 300. Although the plurality of optical fibers 10 may be partially or completely immobilized by the filler 20, the configuration as illustrated in Figure 3 may be referred to as an untensioned pipe core configuration. A possible advantage of this configuration is that the metal pipe 30 can provide mechanical stability so that a central support member is not necessary. Since the metal pipe 30 is sealed by welding or extrusion, it may also function to prevent water from being absorbed into the optical fiber core 40. In particular, the metal pipe 30 can prevent water from radially penetrating into the optical fiber core 40.

[43] Обратимся теперь к Фигуре 3, где оптический кабель 300 дополнительно включает в себя внутреннюю 42 оболочку, окружающую металлическую трубу 30. В различных вариантах осуществления, внутренняя 42 оболочка образована из одиночного слоя однородного полимерного материала, а в некоторых вариантах осуществления представляет собой полиамидный материал. В других вариантах осуществления, внутренняя 42 оболочка может включать в себя два или более слоев. Внутренняя 42 оболочка также может быть осуществлена с использованием других материалов, такой как, например, полиэтилен (ПЭ). Внутренняя 42 оболочка может быть сконфигурирована для защиты сердцевины 40 оптоволокна от вредных химикатов. Возможное преимущество внутренней 42 оболочки состоит в том, что достаточная защита от таких химикатов, как масло, топливо, толуол, вода, и др., может быть получена с использованием одиночного слоя материала. Следовательно, внутренняя 42 оболочка может быть преимущественно более тонкой, менее дорогой и более простой в изготовлении, чем стандартные слои, сконфигурированные для защиты сердцевины оптоволокна.[43] Referring now to Figure 3, the optical cable 300 further includes an inner jacket 42 surrounding a metal conduit 30. In various embodiments, the inner jacket 42 is formed from a single layer of uniform polymeric material, and in some embodiments is a polyamide material. In other embodiments, the inner shell 42 may include two or more layers. The inner shell 42 can also be made using other materials, such as polyethylene (PE), for example. The inner cladding 42 may be configured to protect the fiber core 40 from harmful chemicals. A possible advantage of the inner 42 liner is that sufficient protection against chemicals such as oil, fuel, toluene, water, etc. can be obtained using a single layer of material. Therefore, the inner cladding 42 may advantageously be thinner, less expensive, and easier to manufacture than standard layers configured to protect the fiber core.

[44] Было обнаружено, что, будучи изготовленной из полиамида, внутренняя оболочка кабеля по раскрытию является стойкой к таким химикатам, как гидроксид натрия при комнатной температуре, толуол при 50°C, бензол при 50°C, дизельное топливо при 50°C, эталонное масло 902 согласно ASTM при 75°C и 100°C, эталонное масло 903 согласно ASTM при 100°C и 140°C, причем внутреннюю оболочку тестируют согласно IEC 60811–2–1 (2001).[44] It has been found that, being made of polyamide, the inner sheath of the cable is resistant to chemicals such as sodium hydroxide at room temperature, toluene at 50°C, benzene at 50°C, diesel at 50°C, ASTM reference oil 902 at 75°C and 100°C, ASTM reference oil 903 at 100°C and 140°C, with the inner lining tested according to IEC 60811-2-1 (2001).

[45] В одном варианте осуществления, внутренняя 42 оболочка осуществлена с использованием одиночного однородного слоя нейлона 6 (также называемого PA6). В частности, нейлон 6 имеет химическую формулу [NH−(CH2)5−CO] n , в качестве повторяющегося блока. Например, как было описано ниже, авторы изобретения обнаружили, что нейлон 6 можно использовать для формирования внутренней оболочки 42, для преимущественного обеспечения химической защитой, при минимизации толщины внутренней 42 оболочки. В другом варианте осуществления, внутренняя 42 оболочка осуществлена с использованием одиночного однородного слоя нейлона 12 (также называемого PA12). В частности, нейлон 12 имеет химическую формулу [NH–(CH2)11–CO] n в качестве повторяющегося блока. Другие типы нейлона также можно использовать для внутренней 42 оболочки, такой как нейлон 6,6. Аналогично, другие полиамидные материалы также можно использовать для внутренней 42 оболочки. В некоторых применениях, другие материалы, такие как другие полимерные материалы, также могут быть включены во внутреннюю 42 оболочку.[45] In one embodiment, the inner shell 42 is constructed using a single uniform layer of nylon 6 (also called PA6). Specifically, nylon 6 has the chemical formula [NH−(CH 2 ) 5 −CO] n as its repeating unit. For example, as described below, the inventors have discovered that nylon 6 can be used to form the inner shell 42 to advantageously provide chemical protection while minimizing the thickness of the inner shell 42. In another embodiment, the inner shell 42 is constructed using a single uniform layer of nylon 12 (also called PA12). Specifically, nylon 12 has the chemical formula [NH–(CH 2 ) 11 –CO] n as a repeating unit. Other types of nylon can also be used for the inner 42 shell, such as nylon 6,6. Likewise, other polyamide materials can also be used for the inner 42 shell. In some applications, other materials, such as other polymeric materials, may also be included in the inner 42 shell.

[46] Необязательный адгезионный слой 26 может быть расположен между металлической трубой 30 и внутренней 42 оболочкой. Адгезионный слой 26 может быть сконфигурирован для облегчения припаивания внутренней 42 оболочки непосредственно к металлической трубе 30. Адгезионный слой 26 также может быть сконфигурирован для функционирования в качестве грунтовка, путем приготовления внешней поверхности металлической трубы 30, припаиваемой к внутренней 42 оболочке. В различных вариантах осуществления, адгезионный слой 26 полностью заполняет пространство между металлической трубой 30 и внутренней 42 оболочкой. В результате, адгезионный слой 26 также может функционировать для предотвращения или снижения продольного проникновения воды. Пригодные адгезивы для кабелей по настоящему раскрытию получены на основе, например, полиамида или полиэтилена, необязательно перемешивают с акриловой кислотой или акрилатными полимерами.[46] An optional adhesion layer 26 may be located between the metal pipe 30 and the inner shell 42. The adhesive layer 26 may be configured to facilitate soldering of the inner 42 sheath directly to the metal pipe 30. The adhesive layer 26 may also be configured to function as a primer by preparing the outer surface of the metal pipe 30 to be soldered to the inner 42 sheath. In various embodiments, the adhesive layer 26 completely fills the space between the metal pipe 30 and the inner shell 42. As a result, the adhesive layer 26 may also function to prevent or reduce longitudinal water penetration. Suitable cable adhesives of the present disclosure are based on, for example, polyamide or polyethylene, optionally mixed with acrylic acid or acrylate polymers.

[47] Оптический кабель 300 также включает в себя слой 46 оплетки, окружающий внутреннюю 42 оболочку. Слой 46 оплетки включает в себя металл в различных вариантах осуществления. В одном варианте осуществления, слой 46 оплетки представляет собой одиночный слой оплетки. Осуществление слоя 46 оплетки в качестве одиночного слоя оплетки может преимущественно обеспечить меньший общий диаметр оптического кабеля 300. Слой 46 оплетки может быть осуществлен с использованием нескольких проволок 34 круглого сечения. В некоторых вариантах осуществления, слой 46 оплетки включает в себя нержавеющую сталь, а в одном варианте осуществления реализована с использованием проволок круглого сечения из оцинкованной стали (SWA) намотанных почти спиралеобразно вокруг внутренней 42 оболочки. В качестве альтернативы, слой 46 оплетки может содержать другие типы металла, такие как фосфатная сталь, нержавеющая сталь, алюминированная сталь, элементарная медь (Cu), элементарный алюминий (Al), сплавы металлов, и т.п.[47] Optical cable 300 also includes a braided layer 46 surrounding an inner jacket 42 . Braid layer 46 includes metal in various embodiments. In one embodiment, braid layer 46 is a single layer of braid. Constructing the braid layer 46 as a single braid layer may advantageously provide a smaller overall diameter of the optical cable 300. The braid layer 46 may be implemented using multiple round wires 34. In some embodiments, the braid layer 46 includes stainless steel, and in one embodiment is implemented using galvanized steel round wires (SWA) wound in a nearly helical manner around the inner sheath 42. Alternatively, braid layer 46 may contain other types of metal, such as phosphate steel, stainless steel, aluminized steel, elemental copper (Cu), elemental aluminum (Al), metal alloys, and the like.

[48] Форма элементарных компонентов слоя 46 оплетки не ограничена проволоками круглого сечения. Слой 46 оплетки также может быть осуществлен с использованием гофрированной ленты, трапецеидальных проволок или плоских проволок. Кроме того, слой 46 оплетки также может быть осуществлен с использованием диэлектрических несущих элементов, таких как скругленные стеклянные несущие элементы или плоские стеклянные несущие элементы, или скругленные арамидные проволоки. Слой 46 оплетки также может включать в себя дополнительные слои.[48] The shape of the elementary components of the braid layer 46 is not limited to circular wires. The braid layer 46 may also be made using corrugated tape, trapezoidal wires, or flat wires. In addition, the braid layer 46 can also be made using dielectric support elements such as rounded glass support elements or flat glass support elements, or rounded aramid wires. Braid layer 46 may also include additional layers.

[49] Обратимся снова к Фигуре 3, где оптический кабель 300 дополнительно включает в себя внешнюю 48 оболочку вокруг слоя 46 оплетки. Внешняя 48 оболочка может быть преимущественно сконфигурирована для обеспечения существенной огнестойкости и огнеупорности. Внешняя 48 оболочка также может преимущественно быть термо–, масло– и УФ–стойкой. Внешняя 48 оболочка может (необязательно) порождать вещества с малым выделением дыма и без выделения галогенов в присутствии огня. В некоторых вариантах осуществления, внешняя 48 оболочка осуществлена с использованием LS0H–материала, как было описано, например, в Патенте США № 6,552,112 который полностью включен в настоящую работу в виде ссылки. В частности, LS0H–материал может содержать, например, (a) гомополимер или сополимер кристаллического пропилена; (b) сополимер этилена, по меньшей мере, с одним альфа–олефином, и (необязательно) с диеном; и (c) природный гидроксид магния в таком количестве, чтобы придать ему огнеупорные свойства. В других вариантах осуществления, внешняя 48 оболочка может быть осуществлена с использованием ПВХ–материала или ППП–материала.[49] Referring again to Figure 3, optical cable 300 further includes an outer jacket 48 around a braided layer 46. The outer shell 48 may advantageously be configured to provide substantial fire resistance and fire resistance. The outer shell can also advantageously be heat, oil and UV resistant. The outer 48 shell may optionally produce low smoke and no halogen emissions in the presence of fire. In some embodiments, the outer shell is made using LS0H material as described, for example, in US Patent No. 6,552,112 which is incorporated herein by reference in its entirety. In particular, the LS0H material may contain, for example, (a) a homopolymer or copolymer of crystalline propylene; (b) a copolymer of ethylene with at least one alpha-olefin, and (optionally) a diene; and (c) natural magnesium hydroxide in such quantity as to impart fire-resistant properties. In other embodiments, the outer shell may be made using PVC material or PPP material.

[50] Некоторые характерные размеры оптического кабеля 300 показаны на Фигуре 3. Сердцевина 40 оптоволокна, которая включает в себя металлическую трубу 30, несколько оптических волокон 10 и (необязательно) наполнитель 20, имеет первый 90 диаметр сердцевины оптоволокна. Первый 90 диаметр сердцевины оптоволокна может зависеть от количества оптических волокон 10, содержащихся его пределах. Первый 90 диаметр сердцевины оптоволокна может дополнительно зависеть от толщины металлической трубы 30, а также от наличия дополнительных структурных и организационных компонентов, задействованных для размещения нескольких оптических волокон 10. Например, толщина металлической трубы 30 может составлять 0,1–0,5 мм, а в одном варианте осуществления составляет 0,4 мм. Возможная выгода металлической трубы 30, включающей в себя ненатянутые упакованные оптические волокна 10, состоит в том, что первый 90 диаметр сердцевины оптоволокна снижен, по сравнению со стандартными сердцевинами оптоволокна, по причинам, описанным более подробно ниже.[50] Some typical dimensions of an optical cable 300 are shown in Figure 3. An optical fiber core 40, which includes a metal pipe 30, a plurality of optical fibers 10, and (optionally) filler 20, has a first 90° fiber core diameter. The first 90 fiber core diameter may depend on the number of optical fibers 10 contained within it. The first 90 fiber core diameter may further depend on the thickness of the metal pipe 30, as well as the presence of additional structural and organizational components involved in housing multiple optical fibers 10. For example, the thickness of the metal pipe 30 may be 0.1-0.5 mm, and in one embodiment is 0.4 mm. A possible benefit of the metal tube 30 including unstretched packaged optical fibers 10 is that the first 90 diameter of the optical fiber core is reduced compared to standard optical fiber cores for reasons described in more detail below.

[51] В различных вариантах осуществления, первый 90 диаметр сердцевины оптоволокна составляет 1,5–5,5 мм. В одном варианте осуществления, первый 90 диаметр сердцевины оптоволокна составляет примерно 2 мм. В качестве конкретного примера, сердцевина 40 оптоволокна, включающая в себя 12 оптических волокон, может иметь первый 90 диаметр сердцевины оптоволокна 2 мм. В других вариантах осуществления, первый 90 диаметр сердцевины оптоволокна составляет примерно 3,5 мм. В качестве конкретного примера, сердцевина 40 оптоволокна, включающая в себя 13–48 оптических волокон, может иметь первый 90 диаметр сердцевины оптоволокна 3,5 мм. В еще одних вариантах осуществления, первый 90 диаметр сердцевины оптоволокна составляет примерно 4,8 мм. В качестве конкретного примера, сердцевина 40 оптоволокна, включающая в себя 49–96 оптических волокон, может иметь первый 90 диаметр сердцевины оптоволокна 4,8 мм. Возможны также и другие сочетания сердцевины оптоволокна диаметры и количества оптических волокон. Первый 90 диаметр сердцевины оптоволокна, как правило, может повышаться с ростом количества оптических волокон, но это необязательно верно во всех случаях.[51] In various embodiments, the first 90 fiber core diameter is 1.5-5.5 mm. In one embodiment, the first 90 fiber core diameter is approximately 2 mm. As a specific example, the optical fiber core 40 including 12 optical fibers may have a first 90 optical fiber core diameter of 2 mm. In other embodiments, the first 90 fiber core diameter is approximately 3.5 mm. As a specific example, an optical fiber core 40 including 13 to 48 optical fibers may have a first 90 optical fiber core diameter of 3.5 mm. In yet other embodiments, the first 90 fiber core diameter is approximately 4.8 mm. As a specific example, an optical fiber core 40 including 49 to 96 optical fibers may have a first 90 optical fiber core diameter of 4.8 mm. Other combinations of optical fiber core diameters and numbers of optical fibers are also possible. The first 90 fiber core diameter can generally increase as the number of optical fibers increases, but this is not necessarily true in all cases.

[52] В отличие от стандартных оптических кабелей, сконструированных огнестойкими и поддерживающими целостность цепи в присутствии огня, оптический кабель 300 может не включать в себя никакого огнестойкого слоя, отличного от металлической трубы 30 вокруг сердцевины 40 оптоволокна. Например, в стандартных оптических кабелях обычно используют огнестойкую ленту, такую как слюдяная лента, для достижения требований стандартов огнестойкой целостной цепи, таких как стандарты Международной электротехнической комиссии (International Electrotechnical Commission (IEC) 60331–25 (1999)). Стандартные кабели, в которых не использован некоторый тип термостойкой лента, не проходит стандарта IEC 60331–25 (1999).[52] Unlike standard optical cables, which are designed to be fire resistant and maintain circuit integrity in the presence of fire, optical cable 300 may not include any fire resistant layer other than the metal pipe 30 around the optical fiber core 40. For example, standard optical cables typically use flame retardant tape, such as mica tape, to achieve flame retardant integrity circuit standards such as International Electrotechnical Commission (IEC) 60331–25 (1999) standards. Standard cables that do not use some type of heat resistant tape do not pass IEC 60331-25 (1999).

[53] Авторы настоящей заявки обнаружили, что металлическая труба, такая как металлическая труба 30, обеспечивает достаточную защиту для оптических волокон для поддержания целостности цепи под действием огня. В частности, авторы изобретения провели испытания на целостность цепи на кабелях, содержащих трубы из нержавеющей стали, содержащие безбуферные оптические волокна, с хорошими результатами. Кабель по настоящему раскрытию успешно прошел испытания на целостность цепи при 750ºC в течение 90 мин и при 1000ºC в течение 180 мин согласно IE C 60331–25 (1999) и при 830ºC в течение 120 мин под действием ударного нагружения согласно CEI EN50200 (2015). Эта находка может быть парадоксальной, если основываться на известные способы и конфигурации, поскольку можно ожидать, что оптические волокна будут перегреваться, из–за высокой теплопроводности большинства металлов. Преимущественно, с использованием металлической трубы, содержащей ненатянутые оптические волокна, можно снизить диаметр сердцевины оптоволокна согласно варианту осуществления оптических и гибридных кабелей, при поддержании также высоких уровней огнестойкости и целостности цепи в присутствии огня.[53] The present inventors have discovered that a metal pipe, such as metal pipe 30, provides sufficient protection for optical fibers to maintain circuit integrity when exposed to fire. In particular, the inventors have conducted continuity tests on cables containing stainless steel tubes containing unbuffered optical fibers with good results. The cable of this disclosure has been successfully tested for continuity testing at 750ºC for 90 minutes and at 1000ºC for 180 minutes according to IE C 60331–25 (1999) and at 830ºC for 120 minutes under impact loading according to CEI EN50200 (2015). This finding may be counterintuitive based on known methods and configurations, since optical fibers can be expected to overheat due to the high thermal conductivity of most metals. Advantageously, by using a metal pipe containing unstretched optical fibers, it is possible to reduce the diameter of the optical fiber core according to an embodiment of optical and hybrid cables, while also maintaining high levels of fire resistance and circuit integrity in the presence of fire.

[54] Внутренняя 42 оболочка имеет первую 92 толщину внутренней оболочки. В различных вариантах осуществления, первая 92 толщина внутренней оболочки составляет 0,4–3 мм, а в некоторых вариантах осуществления может находиться в диапазоне примерно 0,3–1,5 мм. В одном варианте осуществления, первая 92 толщина внутренней оболочки составляет примерно 0,5 мм. В качестве конкретного примера, внутренняя 42 оболочка, осуществленная с использованием однородного ПА–материала, такого как нейлон 6, может иметь первую 92 толщину внутренней оболочки примерно 0,5 мм. В другом варианте осуществления, первая 92 толщина внутренней оболочки составляет примерно 1,3 мм. В качестве конкретного примера, внутренняя 42 оболочка, осуществленная с использованием однородного ПЭ–материала, может иметь первую 92 толщину внутренней оболочки примерно 1,3 мм. Следует отметить, что когда толщина адгезионного слоя 26 является ненулевой, его можно сделать очень тонким (обладающим толщиной, меньшей или равной 0,2 мм), так, чтобы он был намного меньше, чем первый 90 диаметр сердцевины оптоволокна и первая 92 толщина внутренней оболочки.[54] The inner 42 shell has a first 92 inner shell thickness. In various embodiments, the first 92 thickness of the inner shell is 0.4-3 mm, and in some embodiments may be in the range of about 0.3-1.5 mm. In one embodiment, the first 92 thickness of the inner shell is approximately 0.5 mm. As a specific example, an inner 42 shell made using a uniform PA material such as nylon 6 may have a first 92 inner shell thickness of approximately 0.5 mm. In another embodiment, the first 92 thickness of the inner shell is approximately 1.3 mm. As a specific example, an inner 42 shell made using a homogeneous PE material may have a first 92 inner shell thickness of approximately 1.3 mm. It should be noted that when the thickness of the adhesive layer 26 is non-zero, it can be made very thin (having a thickness less than or equal to 0.2 mm) so that it is much smaller than the first 90 diameter of the optical fiber core and the first 92 thickness of the inner cladding .

[55] Толщину внутренней 42 оболочки можно преимущественно сделать тонкой, по сравнению со стандартными толщинами внутренней оболочки. Например, стандартные внутренние оболочки могут включать в себя несколько слоев, что повышает толщину внутренней оболочки. В стандартных внутренних оболочках, используемых для химической стойкости, можно использовать композитные слои или слои, изготовленные из ПЭ–слоя, слоя алюминия и ПА–слоя вместе взятых. Другие стандартные внутренние оболочки можно сделать очень толстыми, для использования определенных материалов, которые могут обладать пониженной эффективностью, если их сделать тонкими, особенно при использовании в неблагоприятных условиях окружающей среды, таких как среды, где важна высокая химическая стойкость.[55] The thickness of the inner shell 42 can advantageously be made thin compared to standard inner shell thicknesses. For example, standard inner shells may include multiple layers, which increases the thickness of the inner shell. Standard inner shells used for chemical resistance may use composite layers or layers made from a PE layer, an aluminum layer and a PA layer combined. Other standard liners can be made very thick to accommodate certain materials that may have reduced effectiveness if made thin, especially when used in harsh environmental conditions, such as environments where high chemical resistance is important.

[56] Авторы настоящей заявки обнаружили, что одиночный слой подходящей толщины можно использовать для внутренней 42 оболочки оптического кабеля 300, при поддержании также высокого уровня химической стойкости. Например, авторы изобретения обнажили ПЭ, нейлон 6 и нейлон 12 для различных соединений, таких как вода, масло (IRM 902), топливо (IRM 903) и толуол при различных температурах, как было уже упомянуто выше. Авторы изобретения определили, среди прочих результатов, что относительно тонкий слой полиамида, например нейлона 6 или нейлона 12, можно использовать для защиты металлической трубы в неблагоприятных химических средах. Например, толщина тонкого слоя нейлона 6 может находиться в диапазоне примерно 0,3–1,0 мм. Исходя из результатов испытания, внутренняя оболочка, осуществленная с использованием однородного ПЭ–слоя, менее эффективна при обеспечении защиты в неблагоприятных химических средах, в частности, в средах, где присутствуют нефть и газ.[56] The present inventors have discovered that a single layer of suitable thickness can be used for the inner 42 cladding of an optical cable 300 while also maintaining a high level of chemical resistance. For example, the inventors exposed PE, Nylon 6 and Nylon 12 for various compounds such as water, oil (IRM 902), fuel (IRM 903) and toluene at different temperatures, as mentioned above. The inventors determined, among other results, that a relatively thin layer of polyamide, such as nylon 6 or nylon 12, can be used to protect metal pipe in harsh chemical environments. For example, the thickness of a thin layer of nylon 6 may be in the range of approximately 0.3–1.0 mm. Based on the test results, an inner shell constructed using a homogeneous PE layer is less effective in providing protection in harsh chemical environments, particularly in environments where oil and gas are present.

[57] Обратимся теперь к Фигуре 3, где слой 46 оплетки оптического кабеля 300 имеет толщина 96 слоя оплетки. Толщина 96 слоя оплетки может зависеть от механических требований данного применения. В случаях, где слой 46 оплетки осуществлен с использованием одиночного слоя проволок 34 круглого сечения, диаметр проволок 34 круглого сечения может определять значение толщины 96 слоя оплетки. В различных вариантах осуществления, толщина 96 слоя оплетки составляет примерно 0,5–3,6 мм. В одном варианте осуществления, толщина 96 слоя оплетки составляет примерно 1,0 мм. Для определенных применений, где желательная очень высокая механическая прочность, слой 46 оплетки может быть осуществлен с использованием нескольких слоев. Толщина 96 слоя оплетки для определенных применений может превышать 3,6 мм.[57] Referring now to Figure 3, braid layer 46 of optical cable 300 has a braid layer thickness of 96. The thickness of the braid layer 96 may depend on the mechanical requirements of the application. In cases where the braid layer 46 is made using a single layer of round wires 34, the diameter of the round wires 34 may determine the thickness 96 of the braid layer. In various embodiments, the thickness of the braid layer 96 is approximately 0.5-3.6 mm. In one embodiment, the thickness of the braid layer 96 is approximately 1.0 mm. For certain applications where very high mechanical strength is desired, the braid layer 46 may be constructed using multiple layers. The thickness of the braid layer 96 may exceed 3.6 mm for certain applications.

[58] Внешняя 48 оболочка имеет толщину 97 внешней оболочки. Толщина 97 внешней оболочки может зависеть от различных желаемых уровней защиты, например, химической стойкости, термостойкости, огнеупорности, целостности цепи, механической стабильности, и др. Толщина 97 внешней оболочки в различных вариантах осуществления составляет примерно 1,0–5,0 мм. В одном варианте осуществления, толщина 97 внешней оболочки составляет 2,2 мм. В другом варианте осуществления, толщина 97 внешней оболочки составляет примерно 3,0 мм.[58] The outer shell 48 has a thickness of 97 outer shell. The thickness 97 of the outer shell may depend on various desired levels of protection, for example, chemical resistance, heat resistance, fire resistance, circuit integrity, mechanical stability, etc. The thickness of the outer shell 97 in various embodiments is approximately 1.0-5.0 mm. In one embodiment, the thickness 97 of the outer shell is 2.2 mm. In another embodiment, the thickness 97 of the outer shell is approximately 3.0 mm.

[59] Оптический кабель 300 имеет первый 399 диаметр оптического кабеля, который зависит от сочетания первого 90 диаметра сердцевины оптоволокна, первой 92 толщины внутренней оболочки, толщины 96 слоя оплетки и толщины 97 внешней оболочки. В различных вариантах осуществления, первый 399 диаметр оптического кабеля составляет 5–25 мм, а в некоторых вариантах осуществления находится в диапазоне примерно 5,6–21 мм. В одном варианте осуществления, первый 399 диаметр оптического кабеля составляет примерно 12,5 мм для оптического кабеля 300, включающего в себя 48 оптических волокна.[59] The optical cable 300 has a first 399 optical cable diameter that depends on a combination of the first 90 diameter of the optical fiber core, the first 92 thickness of the inner cladding, the thickness 96 of the braid layer, and the thickness 97 of the outer cladding. In various embodiments, the first 399 diameter of the optical cable is 5-25 mm, and in some embodiments is in the range of about 5.6-21 mm. In one embodiment, the first 399 optical cable diameter is approximately 12.5 mm for an optical cable 300 including 48 optical fibers.

[60] Поскольку первый 399 диаметр оптического кабеля часто в первую очередь зависит от количества оптических волокон 10, может быть полезным рассматривать отношение количества задействованных оптических волокон к диаметру оптического кабеля. Например, в предыдущем примере первого 399 диаметра оптического кабеля 12,5 мм для оптического кабеля 300, включающего в себя 48 оптических волокон, отношение число волокон/диаметр составляет примерно 3,84 волокон/мм. Как правило, более высокое отношение число волокон/диаметр указывает на меньший размер кабеля и может быть желательным в применениях, в которых пространство, отведенное для прокладки кабеля, ограничено. В Таблице перечислены различные примерные диаметры оптического кабеля, а соответствующие количества оптических волокон показаны ниже в Таблице I.[60] Since the first 399 diameter of an optical cable is often primarily dependent on the number of optical fibers 10, it may be useful to consider the ratio of the number of optical fibers involved to the diameter of the optical cable. For example, in the previous example of a first 399 optical cable diameter of 12.5 mm, for an optical cable 300 including 48 optical fibers, the number of fibers/diameter ratio is approximately 3.84 fibers/mm. In general, a higher fiber count/diameter ratio indicates a smaller cable size and may be desirable in applications where space available for cable routing is limited. The Table lists various approximate optical cable diameters, and the corresponding quantities of optical fibers are shown below in Table I.

[61] Первый 399 диаметр оптического кабеля может быть намного тоньше для заданного количества оптических волокон 10, чем стандартные оптические кабели. В вышеприведенном примере, оптический кабель, включающий в себя 48 оптических волокон, имеет отношение число волокон/диаметр, составляющее примерно 3,84 волокон/мм. Стандартные оптические кабели имеют отношение число волокон/диаметр, которое намного ниже. Например, как было описано ранее применительно к Фигуре 1, стандартный оптический кабель, включающий в себя 36 оптических волокон, обычно имеет отношение число волокон/диаметр, составляет 1,81 волокон/мм. Напротив, настоящие варианты осуществления могут достигать отношения число волокон/диаметр более 3 волокон/мм и примерно 3–8 волокон/мм.[61] The first 399 diameter of an optical cable can be much thinner for a given number of optical fibers 10 than standard optical cables. In the above example, the optical cable including 48 optical fibers has a fiber number/diameter ratio of approximately 3.84 fibers/mm. Standard optical cables have a fiber/diameter ratio that is much lower. For example, as previously described in relation to Figure 1, a standard optical cable including 36 optical fibers typically has a fiber count/diameter ratio of 1.81 fibers/mm. In contrast, the present embodiments can achieve a fiber count/diameter ratio of greater than 3 fibers/mm and about 3-8 fibers/mm.

[62] Дополнительным преимуществом кабеля по настоящему раскрытию может быть количество содержащихся в нем органических материалов, и такое количество сильно снижено, по сравнению со стандартным кабелем. Следовательно, характеристики по дыму и характеристики по пламени могут быть значительно улучшены. В качестве конкретного примера, был изготовлен кабель по настоящему раскрытию, который имеет коэффициент пропускания > 90% (98% при 48 оптических волокон в кабеле и 95% при 96 оптических волокон в кабеле, где оба имеют внешний слой LS0H) при испытании на дым согласно IEC 61034–2 (2005), и успешно прошел испытания на распространение пламени согласно IEC 60332–1–2 (2004), IEC 60332–3–24 (2000) Cat C и 60332–3–22 (2009) Кат. A.[62] An additional advantage of the cable of the present disclosure may be the amount of organic materials it contains, and such amount is greatly reduced compared to a standard cable. Therefore, smoke performance and flame performance can be greatly improved. As a specific example, a cable of the present disclosure was manufactured that has a transmittance of >90% (98% with 48 optical fibers in the cable and 95% with 96 optical fibers in the cable, where both have an LS0H outer layer) when tested for smoke according to IEC 61034–2 (2005), and has successfully passed flame propagation tests in accordance with IEC 60332–1–2 (2004), IEC 60332–3–24 (2000) Cat C and 60332–3–22 (2009) Cat. A.

[63] Кабель согласно настоящему раскрытию, содержащий до 96 оптических волокон и имеющий внешний слой LS0H, был классифицирован как B2ca–s1a,d2,a1 класс CPR согласно Регламенту о делегировании Комиссии полномочий (Commission Delegated Regulation (EU)) 2016/364 от 1 июля 2015 г.[63] The cable according to the present disclosure, containing up to 96 optical fibers and having an outer layer LS0H, has been classified as B2ca-s1a,d2,a1 CPR class according to the Commission Delegated Regulation (EU) 2016/364 dated 1 July 2015

[64] Фигура 4 иллюстрирует примерный оптический кабель, включающий в себя внутреннюю оболочку одиночного слоя, непосредственно прилегающую к герметизированной металлической трубе, содержащей две или более труб для волокна, каждая из которых содержит несколько оптических волокон в соответствии с вариантом осуществления изобретения.[64] Figure 4 illustrates an exemplary optical cable including a single layer inner cladding immediately adjacent to an encapsulated metal conduit containing two or more fiber conduits, each containing multiple optical fibers in accordance with an embodiment of the invention.

[65] Обратимся к Фигуре 4, где оптический кабель 400 включает в себя сердцевину 41 оптоволокна, внутреннюю 42 оболочку, слой 46 оплетки и внешнюю 48 оболочку. Оптический кабель 400 может быть аналогичным оптическому кабелю 300, как было описано ранее применительно к Фигуре 3, за исключением включения сердцевины 41 оптоволокна, которая включает в себя несколько комплектов оптических волокон, содержащихся в трубах 18 для волокна. Помеченные аналогичным образом элементы могут быть такими, как было описано ранее, и не будут описаны здесь, для краткости.[65] Referring to Figure 4, optical cable 400 includes an optical fiber core 41, an inner cladding 42, a braid layer 46, and an outer cladding 48. Optical cable 400 may be similar to optical cable 300 as previously described in connection with Figure 3, except for the inclusion of an optical fiber core 41 that includes multiple sets of optical fibers contained in fiber conduits 18. Likewise marked elements may be as previously described and will not be described here for the sake of brevity.

[66] Сердцевина 41 оптоволокна может включать в себя любое количество труб 18 для волокна, каждая из которых содержит комплект оптических волокон 10. Трубы 18 для волокна могут содержать полимерный материал. В различных вариантах осуществления, трубы 18 для волокна включают в себя полиэфирный материал, а в одном варианте осуществления осуществлены с использованием материала термопластического полиэфира. Трубы 18 для волокна могут быть сконфигурированы упорядочивания оптических волокон 10 в сердцевине 41 оптоволокна. Трубы 18 для волокна также могут обеспечить дополнительную механическую стабильность и заключать в себе необязательный наполнитель 21 трубы для волокна. Наполнитель 21 трубы для волокна может представлять собой гелеобразный материал, аналогичный, например, наполнителю 20. В конфигурации кабеля по Фигуре 4, может быть использован кремнийорганический наполнитель 21 трубы для волокна.[66] The optical fiber core 41 may include any number of fiber tubes 18, each of which contains a set of optical fibers 10. The fiber tubes 18 may comprise a polymeric material. In various embodiments, the fiber conduits 18 include a polyester material, and in one embodiment are implemented using a thermoplastic polyester material. The fiber conduits 18 may be configured to arrange the optical fibers 10 in the optical fiber core 41. The fiber tubes 18 may also provide additional mechanical stability and enclose an optional fiber tube filler 21. The fiber tube filler 21 may be a gel material similar to, for example, filler 20. In the cable configuration of Figure 4, a silicone fiber tube filler 21 may be used.

[67] Соответствующие комплекты оптических волокон 10 могут быть такими же или отличными от других комплектов оптических волокон 10. Комплект оптических волокон 10 в некоторых вариантах осуществления может представлять собой одиночное оптическое волокно 10. Не существует теоретического предела для количества оптических волокон 10 в комплекте оптических волокон. Однако, конкретные решения могут ограничивать количество оптических волокон 10 в одиночной трубе 18 для волокна. Как проиллюстрировано на Фигуре 4, сердцевина 41 оптоволокна может включать в себя три трубы 18 для волокна, содержащие первый, второй и третий комплекты оптических волокон 11, 12, 13. В одном варианте осуществления, каждый из комплектов оптических волокон 11, 12, 13 состоит из двенадцати оптических волокон 10. В других вариантах осуществления, некоторые или все комплекты оптических волокон 11, 12, 13 состоят из более или менее двенадцати оптических волокон 10.[67] The corresponding sets of optical fibers 10 may be the same or different from other sets of optical fibers 10. The set of optical fibers 10 in some embodiments may be a single optical fiber 10. There is no theoretical limit to the number of optical fibers 10 in the set of optical fibers . However, specific solutions may limit the number of optical fibers 10 in a single fiber tube 18. As illustrated in Figure 4, the optical fiber core 41 may include three fiber tubes 18 containing first, second and third sets of optical fibers 11, 12, 13. In one embodiment, each of the sets of optical fibers 11, 12, 13 consists of twelve optical fibers 10. In other embodiments, some or all of the sets of optical fibers 11, 12, 13 consist of more or less twelve optical fibers 10.

[68] Сердцевина 41 оптоволокна имеет второй 91 диаметр сердцевины оптоволокна, который может быть сходным или отличным от первого 90 диаметра сердцевины оптоволокна оптического кабеля 300. Например, вследствие добавления труб 18 для волокна, второй 91 диаметр сердцевины оптоволокна может быть больше, чем первый 90 диаметр сердцевины оптоволокна для заданного количества оптических волокон 10, но это необязательно верно для всех случаев. В результате, второй 499 диаметр оптического кабеля для оптического кабеля 400 может быть больше, чем первый 399 диаметр оптического кабеля для оптического кабеля 300 для заданного количества оптических волокон 10, но опять–таки, это лишь общий принцип, а не строгое требование.[68] The optical fiber core 41 has a second 91 fiber core diameter that may be similar or different from the first 90 fiber core diameter of the optical cable 300. For example, due to the addition of fiber tubes 18, the second 91 fiber core diameter may be larger than the first 90 fiber core diameter. The fiber core diameter for a given number of optical fibers is 10, but this is not necessarily true for all cases. As a result, the second 499 optical cable diameter for optical cable 400 may be larger than the first 399 optical cable diameter for optical cable 300 for a given number of optical fibers 10, but again, this is only a general principle and not a strict requirement.

[69] Фигура 5 иллюстрирует примерный гибридный кабель, включающий в себя внутреннюю оболочку одиночного слоя, непосредственно прилегающую к герметизированной металлической трубе, содержащей несколько оптических волокон, а также электропроводящий слой в соответствии с вариантом осуществления изобретения.[69] Figure 5 illustrates an exemplary hybrid cable including a single layer inner cladding immediately adjacent to an encapsulated metal conduit containing multiple optical fibers, as well as an electrically conductive layer in accordance with an embodiment of the invention.

[70] Обратимся к Фигуре 5, где гибридный 500 кабель включает в себя сердцевину 40 оптоволокна, гибридную 43 внутреннюю оболочку, слой 46 оплетки и внешнюю 48 оболочку. Гибридный 500 кабель может быть аналогичен такому варианту осуществления оптических кабелей, как оптический кабель 300, как было описано ранее применительно к Фигуре 3, за исключением того, что гибридный 500 кабель включает в себя проводящий 44 слой, расположенный между гибридной 43 внутренней оболочкой, изготовленной из ПА или ПЭ, из промежуточной 45 оболочки, изготовленной из ПЭ или керамизирующегося кремнийорганического каучука, изолирующей проводящий 44 слой от слоя 46 оплетки. Сходно помеченные элементы могут быть такими, как было описано ранее, и здесь они не будет описаны, для краткости.[70] Referring to Figure 5, the hybrid 500 cable includes an optical fiber core 40, a hybrid 43 inner cladding, a braid layer 46, and an outer 48 cladding. The hybrid cable 500 may be similar to an optical cable embodiment such as the optical cable 300 as previously described in connection with Figure 3, except that the hybrid cable 500 includes a conductive layer 44 located between a hybrid 43 inner jacket made of PA or PE, from an intermediate shell 45 made of PE or ceramized silicone rubber, insulating the conductive layer 44 from the braided layer 46. Similar labeled elements may be as previously described and will not be described here for the sake of brevity.

[71] Гибридный 500 кабель может быть сконфигурирован для подачи электрических сигналов и/или электроэнергии с использованием проводящего 44 слоя. Электрические сигналы и/или электроэнергия могут представлять собой постоянный ток (DC) или переменный ток (AC). Например, гибридный 500 кабель может переносить, по большей мере, постоянный ток (DC) при 48В и переменный ток (AC), по большей мере, при 380В, что, таким образом, позволяет классифицировать его как кабель низкого напряжения. В некоторых случаях, слой 46 оплетки может быть заземлен и использован в качестве обратной цепи для системы подачи электропитания с использованием гибридного 500 кабеля. В различных вариантах осуществления, проводящий 44 слой осуществлен с использованием нескольких электропроводящий проводов 38.[71] The hybrid 500 cable may be configured to carry electrical signals and/or power using a conductive 44 layer. Electrical signals and/or electrical power may be direct current (DC) or alternating current (AC). For example, a hybrid 500 cable can carry mostly direct current (DC) at 48V and alternating current (AC) mostly at 380V, thus qualifying it as a low voltage cable. In some cases, the braid layer 46 may be grounded and used as a return circuit for the power delivery system using the hybrid 500 cable. In various embodiments, the conductive layer 44 is implemented using multiple electrically conductive wires 38.

[72] В некоторых вариантах осуществления, электропроводящие провода 38 имеют круглое, сплошное поперечное сечение. В одном варианте осуществления, электропроводящие провода 38 осуществлены с использованием элементарной меди (Cu). В другом варианте осуществления, электропроводящие провода 38 осуществлены с использованием элементарного алюминия (Al). Состав материала электропроводящих проводов 38 не ограничен элементарными металлами и также может быть образован из сплавов металлов, и т.п.[72] In some embodiments, the electrically conductive wires 38 have a circular, solid cross-section. In one embodiment, electrically conductive wires 38 are made using elemental copper (Cu). In another embodiment, the electrically conductive wires 38 are made using elemental aluminum (Al). The material composition of the electrically conductive wires 38 is not limited to elemental metals, but may also be formed from metal alloys and the like.

[73] Гибридная 43 внутренняя оболочка может быть аналогичной внутренней 42 оболочке, которая была описана ранее. В качестве альтернативы, гибридная 43 внутренняя оболочка может отличаться, с учетом электрических предназначений проводящего 44 слоя. Толщина и состав материала сердцевины 41 оптоволокна может зависеть от требований электрической изоляции сердцевины 41 оптоволокна. Например, в стандартных гибридных кабелях могут быть использованы многослойные внутренние оболочки или толстых однородных ПЭ–слоев, для обеспечения электрической изоляции между стандартным проводящим слоем и стандартной сердцевиной оптоволокна.[73] The hybrid inner shell 43 may be similar to the inner shell 42 that was previously described. Alternatively, the hybrid 43 inner shell may be different, taking into account the electrical purposes of the conductive 44 layer. The thickness and material composition of the optical fiber core 41 may depend on the electrical insulation requirements of the optical fiber core 41. For example, standard hybrid cables may use multilayer inner jackets or thick, uniform PE layers to provide electrical insulation between the standard conductive layer and the standard fiber core.

[74] Поэтому, для специалиста в данной области техники может быть не сразу очевидно будет ли достаточной для обеспечения требуемой электрической изоляции тонкая внутренняя оболочка одиночного слоя, осуществленная с использованием материала, отличного от ПЭ–материала. Авторы настоящей заявки выполнили испытания для проверки того, что тонкие внутренние оболочки одиночных слоев, осуществленные с использованием альтернативных материалов, таких как полиамидные (ПА) материалы, обеспечивают достаточную электрическую изоляцию между сердцевиной оптоволокна и проводящим слоем. В одном варианте осуществления, гибридная 43 внутренняя оболочка содержит нейлон 6. Возможная выгода гибридного 500 кабеля состоит в том, что гибридную 43 внутреннюю оболочку можно сделать тоньше, чем стандартные внутренние оболочки, как обеспечено стандартом CEI EN 50363–0 (2006) при поддержании также электрической изоляции проводящего 44 слоя. Толщина этого слоя зависит от уровня изоляции, требуемой конкретным передаваемым током. В качестве примера, для 12 или 24В постоянного тока, достаточно внутренняя 43 оболочка толщиной 0,5 мм.[74] Therefore, it may not be immediately obvious to one skilled in the art whether a thin inner shell of a single layer made using a material other than PE material will be sufficient to provide the required electrical insulation. The present inventors have performed tests to verify that thin inner claddings of single layers made using alternative materials such as polyamide (PA) materials provide sufficient electrical insulation between the fiber core and the conductive layer. In one embodiment, the hybrid 43 inner sheath comprises nylon 6. A possible benefit of the hybrid 500 cable is that the hybrid 43 inner sheath can be made thinner than standard inner sheaths, as provided by CEI EN 50363–0 (2006) while maintaining also electrical insulation conductive 44 layers. The thickness of this layer depends on the level of insulation required by the particular current being transmitted. As an example, for 12 or 24V DC, an inner shell 43 with a thickness of 0.5 mm is sufficient.

[75] В различных вариантах осуществления, промежуточная 45 оболочка содержит такой ПЭ–материал, как HDPE. В других вариантах осуществления, особенно когда требуется огнестойкость, промежуточная 45 оболочка может содержать ПЭ–материал и стекловолокно или слюдяную ленту (ленты), либо только стекловолокно или слюдяную ленту (ленты), или керамизирующийся кремнийорганический каучук[75] In various embodiments, the intermediate shell comprises a PE material such as HDPE. In other embodiments, especially when fire resistance is required, the intermediate shell may comprise PE material and fiberglass or mica tape(s), or only fiberglass or mica tape(s), or ceramized silicone rubber.

[76] В дополнение к сходно помеченным размерам, которые могут быть такими, как было описано ранее, гибридный 500 кабель включает в себя вторую 93 толщину внутренней оболочки, толщину 94 проводящего слоя и толщину 95 промежуточной оболочки. Вторая 93 толщина внутренней оболочки может быть аналогичной первой 92 толщине внутренней оболочки, как было описано ранее, дополнительно с возможным учетом электрической изоляции между сердцевиной 40 оптоволокна и проводящим 44 слоем. Толщина 95 промежуточной оболочки может быть аналогичной ранее описанной второй 93 толщине внутренней оболочки. Однако, для заданного применения, не является строгим требованием, чтобы толщина 95 промежуточной оболочки была такой же, большей или меньшей, чем вторая 93 толщина внутренней оболочки.[76] In addition to similarly labeled dimensions, which may be as previously described, the hybrid cable 500 includes a second inner jacket thickness 93, a conductive layer thickness 94, and an intermediate jacket thickness 95. The second 93 thickness of the inner cladding may be similar to the first 92 thickness of the inner cladding as previously described, further possibly accounting for electrical insulation between the optical fiber core 40 and the conductive 44 layer. The thickness 95 of the intermediate shell may be similar to the previously described second 93 thickness of the inner shell. However, for a given application, it is not a strict requirement that the thickness 95 of the intermediate shell be the same, greater or lesser than the second 93 thickness of the inner shell.

[77] В различных вариантах осуществления, толщина 94 проводящего слоя составляет 0,5–6 мм, а в некоторых вариантах осуществления находится в диапазоне примерно 0,6–3,6 мм. Например, полнофункциональные проводники можно использовать от 85 мм2 (AWG, американский калибр проволоки 3/0) до 2,08 мм2 (AWG 14). В одном варианте осуществления, толщина 94 проводящего слоя составляет примерно 0,6 мм. В другом варианте осуществления, толщина 94 проводящего слоя составляет примерно 1 мм. Например, если проводящий 44 слой осуществлен с использованием двадцати медных (Cu) проволок с диаметром 1 мм, площадь поперечного сечения меди может составлять примерно 15 мм2.[77] In various embodiments, the thickness of the conductive layer 94 is 0.5-6 mm, and in some embodiments is in the range of about 0.6-3.6 mm. For example, full-featured conductors can be used from 85 mm 2 (AWG, American wire gauge 3/0) to 2.08 mm 2 (AWG 14). In one embodiment, the thickness of the conductive layer 94 is approximately 0.6 mm. In another embodiment, the thickness of the conductive layer 94 is approximately 1 mm. For example, if the conductive layer 44 is made using twenty copper (Cu) wires with a diameter of 1 mm, the cross-sectional area of the copper may be approximately 15 mm 2 .

[78] Следует отметить, что состав материала проводящего 44 слоя может повлиять на требуемую площадь поперечного сечения проводящего 44 слоя. Например, для проводящего 44 слоя, который осуществлен с использованием алюминия, могут потребоваться алюминиевые проволоки, которые имеют диаметр примерно в 1,65 раз больше, чем электрически эквивалентный проводящий 44 слой, осуществленный с использованием медных проволок.[78] It should be noted that the material composition of the conductive layer 44 may affect the required cross-sectional area of the conductive layer 44. For example, a conductive layer 44 that is made using aluminum may require aluminum wires that have a diameter of about 1.65 times larger than an electrically equivalent conductive layer 44 made using copper wires.

[79] Гибридный 500 кабель имеет первый 599 диаметр гибридного кабеля, который зависит от сочетания первого 90 диаметра сердцевины оптоволокна, второй 93 толщины внутренней оболочки, толщины 94 проводящего слоя, толщины 95 промежуточной оболочки, толщины 96 слоя оплетки и толщины 97 внешней оболочки. В различных вариантах осуществления, первый 599 диаметр гибридного кабеля составляет 7–35 мм, а в некоторых вариантах осуществления находится в диапазоне примерно 7,4–31,2 мм. В одном варианте осуществления, первый 599 диаметр гибридного кабеля составляет примерно 15,5 мм для гибридного 500 кабеля, включающего в себя 48 оптических волокон.[79] A hybrid cable 500 has a first 599 hybrid cable diameter that is dependent on a combination of a first 90 fiber core diameter, a second 93 inner cladding thickness, a conductive layer thickness 94, an intermediate cladding thickness 95, a braid layer thickness 96, and an outer cladding thickness 97. In various embodiments, the first 599 diameter of the hybrid cable is 7-35 mm, and in some embodiments is in the range of about 7.4-31.2 mm. In one embodiment, the first 599 diameter of the hybrid cable is approximately 15.5 mm for a hybrid cable 500 including 48 optical fibers.

[80] Как и для предыдущего варианта осуществления оптических кабелей, первый 599 диаметр гибридного кабеля для гибридного 500 кабеля может быть значительно меньше, чем диаметры стандартного гибридного кабеля. Аналогично, гибридный 500 кабель может быть единственно пригодным для неблагоприятных условий окружающей среды и может отвечать большому количеству стандартов защита.[80] As with the previous embodiment of optical cables, the first 599 hybrid cable diameter for a hybrid 500 cable can be significantly smaller than the diameters of a standard hybrid cable. Likewise, a hybrid 500 cable may be the only one suitable for harsh environmental conditions and can meet a wide range of protection standards.

[81] Фигура 6 иллюстрирует примерный гибридный кабель, включающий в себя внутреннюю оболочку одиночного слоя, непосредственно прилегающую к герметизированной металлической трубе, содержащей две или более труб для волокна, каждая из которых содержит несколько оптических волокон, а также электропроводящий слой в соответствии с вариантом осуществления изобретения.[81] Figure 6 illustrates an exemplary hybrid cable including a single layer inner jacket immediately adjacent to an encapsulated metal conduit containing two or more fiber conduits, each containing multiple optical fibers, and an electrically conductive layer in accordance with an embodiment inventions.

[82] Обратимся к Фигуре 6, где гибридный 600 кабель включает в себя сердцевину 41 оптоволокна, гибридную 43 внутреннюю оболочку, проводящий 44 слой, промежуточную 45 оболочку, слой 46 оплетки и внешнюю 48 оболочку. Гибридный 600 кабель может быть аналогичным гибридному 500 кабелю, как было описано ранее применительно к Фигуре 5, за исключением использования сердцевины 41 оптоволокна, которая включает в себя несколько комплектов оптических волокон, содержащихся в трубах 18 для волокна. Сердцевина 41 оптоволокна гибридного 600 кабеля может быть, как было описано ранее, такой как, например, применительно к Фигуре 4. Аналогично помеченные элементы могут быть такими, как было описано ранее, и они здесь не будут описаны, для краткости.[82] Referring to Figure 6, the hybrid 600 cable includes an optical fiber core 41, a hybrid 43 inner cladding, a conductive layer 44, an intermediate cladding 45, a braid layer 46, and an outer 48 cladding. The hybrid cable 600 may be similar to the hybrid cable 500 as previously described in connection with Figure 5, except for the use of an optical fiber core 41 that includes multiple sets of optical fibers contained in fiber conduits 18. The fiber core 41 of the hybrid cable 600 may be as previously described, such as, for example, in relation to Figure 4. Likewise labeled elements may be as previously described and will not be described here for the sake of brevity.

[83] Как было сказано ранее, второй 91 диаметр сердцевины оптоволокна может быть сходным или отличным, например, от первого 90 диаметра сердцевины оптоволокна гибридного 500 кабеля. В результате, второй 699 диаметр гибридного кабеля для гибридного 600 кабеля может быть больше, чем первый 599 диаметр гибридного кабеля для гибридного 500 кабеля для заданного количества оптических волокон 10. Как было описано ранее, это лишь общий принцип, а не строгое требование.[83] As previously stated, the second 91 optical fiber core diameter may be similar or different, for example, from the first 90 optical fiber core diameter of the hybrid 500 cable. As a result, the second 699 hybrid cable diameter for a hybrid 600 cable can be greater than the first 599 hybrid cable diameter for a hybrid 500 cable for a given number of optical fibers 10. As previously described, this is only a general principle and not a strict requirement.

[84] Следует отметить, что в некоторых кабелях согласно варианту осуществления, слой оплетки преимущественно может иметь пониженную толщину, или его можно полностью удалить, из–за металлической трубы сердцевины оптоволокна. Например, металлическая труба достаточной толщины может улучшить структурные свойства сердцевины оптоволокна так, что для достижения тех же общих свойств можно использовать более тонкий слой оплетки или совсем не использовать слой оплетки. Это может выгодно привести к снижению общей толщины кабелей согласно варианту осуществления, при поддержании желаемых структурных свойств и уровней огне–, водо– и химической защиты, по сравнению со стандартными кабелями.[84] It should be noted that in some cables according to an embodiment, the braid layer may advantageously have a reduced thickness, or may be completely removed, due to the metallic fiber core tube. For example, a metal pipe of sufficient thickness can improve the structural properties of the optical fiber core such that a thinner layer of braid or no layer of braid can be used to achieve the same overall properties. This may advantageously result in a reduction in the overall thickness of the cables of an embodiment, while maintaining desired structural properties and levels of fire, water and chemical protection, compared to standard cables.

[85] Фигура 7 иллюстрирует примерный способ изготовления оптического кабеля в соответствии с вариантом осуществления изобретения. Способ 700 можно использовать для изготовления любого из оптических кабелей или гибридных кабелей, описанных в настоящей работе. Например, способ 700 можно использовать для изготовления варианта осуществления оптических кабелей, как было описано применительно к Фигуре 3, таких как оптический кабель 300. Следующие этапы способа 700 можно выполнять в любом порядке, и их не следует рассматривать как исчерпывающие. К способу 700 могут быть добавлены дополнительные этапы, а один или более этапы могут быть удалены из способа 700, как может быть ясным для обычного специалиста в данной области техники. Этапы способа 700 необязательно следует выполнять последовательно, и любое количество этапов способа 700 можно выполнять одновременно.[85] Figure 7 illustrates an exemplary method for manufacturing an optical cable in accordance with an embodiment of the invention. The method 700 can be used to manufacture any of the optical cables or hybrid cables described herein. For example, method 700 can be used to manufacture an embodiment of optical cables as described in connection with Figure 3, such as optical cable 300. The following steps of method 700 can be performed in any order and should not be considered exhaustive. Additional steps may be added to method 700, and one or more steps may be removed from method 700, as may be apparent to one of ordinary skill in the art. The steps of method 700 need not be performed sequentially, and any number of steps of method 700 may be performed simultaneously.

[86] Этап 701 изготовления оптического кабеля включает в себя обеспечение нескольких оптических волокон, которые затем герметизируют в металлической трубе на этапе 702. Пространства в металлической трубе между оптическими волокнами заполняют (необязательно) наполнителем на этапе 703. Наполнитель можно наносить до, во время или после этапа 702. В одном варианте осуществления, этапы 702 и 703 выполняют одновременно.[86] Optical cable manufacturing step 701 includes providing multiple optical fibers, which are then sealed in a metal pipe at step 702. The spaces in the metal pipe between the optical fibers are optionally filled with filler at step 703. The filler may be applied before, during, or after step 702. In one embodiment, steps 702 and 703 are performed simultaneously.

[87] Способ 700 изготовления оптического кабеля дополнительно включает в себя необязательный этап 704 нанесения адгезионного слоя поверх внешней поверхности металлической трубы. Например, адгезионный слой может представлять грунтовку, которая подготавливает внешнюю поверхность металлической трубы для непосредственного спаивания с последующим слоем. Внешняя поверхность металлической трубы представляет собой большую внешнюю поверхность металлической трубы, а адгезионный слой можно наносить так, чтобы большая внешняя поверхность была почти полностью покрыта адгезионным слоем, а впоследствии и припаяна к такому слою, как внутренняя оболочка.[87] The optical cable manufacturing method 700 further includes the optional step 704 of applying an adhesive layer over the outer surface of the metal pipe. For example, the adhesive layer may be a primer that prepares the outer surface of the metal pipe for direct soldering to a subsequent layer. The outer surface of the metal pipe is the large outer surface of the metal pipe, and the adhesive layer can be applied so that the large outer surface is almost completely covered with the adhesive layer, and subsequently soldered to such a layer as the inner shell.

[88] Этап 705 изготовления оптического кабеля включает в себя формирование внутренней оболочки поверх адгезионного слоя и внешней поверхности металлической трубы. Если этап 704 опущен, то этап 705 включает в себя формирование внутренней оболочки лишь поверх внешней поверхности металлической трубы. Внутренняя оболочка может быть образована с использованием процесса прессования. Если внутренняя оболочка представляет собой многослойную внутреннюю оболочку, то можно использовать параллельный процесс прессования. Если внутренняя оболочка содержит смесь материалов, то можно использовать процесс прессования соединения.[88] Optical cable manufacturing step 705 includes forming an inner sheath over an adhesive layer and an outer surface of a metal pipe. If step 704 is omitted, then step 705 includes forming an inner shell just over the outer surface of the metal pipe. The inner shell can be formed using a pressing process. If the inner shell is a multi-layer inner shell, then a parallel pressing process can be used. If the inner shell contains a mixture of materials, then a compound compression process can be used.

[89] Этап 706 изготовления оптического кабеля включает в себя формирование слоя оплетки поверх внутренней оболочки. Слой оплетки может быть образован путем намотки нескольких несущих компонентов, для формирования вокруг внутренней оболочки структуры, близкой к спирали. Как было описано ранее, несущие компоненты могут представлять собой скругленные металлические проволоки, трапецоидальные металлические проволоки, полимерные проволоки, диэлектрические стержни, и т.п. В качестве альтернативы, слой оплетки может быть образован из гофрированной металлической ленты, которую можно наносить в продольном направлении. В некоторых вариантах осуществления, слой оплетки содержит несколько слоев, образованных на нескольких этапах.[89] Optical cable manufacturing step 706 includes forming a braided layer over an inner sheath. The braid layer can be formed by winding several load-bearing components to form a helix-like structure around the inner shell. As previously described, the supporting components may be rounded metal wires, trapezoidal metal wires, polymer wires, dielectric rods, and the like. Alternatively, the braid layer may be formed from corrugated metal tape, which can be applied in the longitudinal direction. In some embodiments, the braid layer contains multiple layers formed in multiple steps.

[90] Способ 700 изготовления оптического кабеля дополнительно включает в себя необязательный этап 707 заполнения пустоты в слое оплетки наполнителем. Этап 708 включает в себя формирование внешней оболочки поверх слоя оплетки и наполнителя оплетки, если задействован необязательный этап 707. Внешняя оболочка может быть образована с использованием процесса прессования. Аналогично этапу 705, внешняя оболочка также может быть образована с использованием прессование биметааллического профиля или процесса прессования соединения, где это применимо.[90] The optical cable manufacturing method 700 further includes the optional step 707 of filling a void in a braided layer with filler. Step 708 includes forming an outer shell over the braid layer and braid filler if optional step 707 is involved. The outer shell may be formed using a compression molding process. Similar to step 705, the outer shell may also be formed using a bimetallic extrusion or compound extrusion process, where applicable.

[91] Фигура 8 иллюстрирует другой примерный способ изготовления оптического кабеля в соответствии с вариантом осуществления изобретения. Способ 800 можно использовать для изготовления любой из оптических кабелей или гибридных кабелей, описанных в настоящей работе. Например, способ 800 можно использовать для изготовления варианта осуществления оптических кабелей, как было описано применительно к Фигуре 4, таких как оптический кабель 400. Следующие этапы способа 800 можно выполнять в любом порядке, и их не следует рассматривать как исчерпывающие. К способу 800 можно добавлять дополнительные этапы, и из способа 800 можно удалять один или более этапов, как может стать ясным обычному специалисту в данной области техники. Этапы способа 800 необязательно выполняются последовательно, и любое количество этапов способа 800 можно выполнять одновременно.[91] Figure 8 illustrates another exemplary method for manufacturing an optical cable in accordance with an embodiment of the invention. The method 800 can be used to manufacture any of the optical cables or hybrid cables described herein. For example, method 800 can be used to manufacture an embodiment of optical cables as described in connection with Figure 4, such as optical cable 400. The following steps of method 800 can be performed in any order and should not be considered exhaustive. Additional steps may be added to method 800, and one or more steps may be removed from method 800, as will be apparent to one of ordinary skill in the art. The steps of method 800 are not necessarily performed sequentially, and any number of steps of method 800 may be performed simultaneously.

[92] Этап 801 изготовления оптического кабеля включает в себя обеспечение нескольких комплектов оптических волокон, при их последующей герметизации в соответствующих трубах для волокон на этапе 802. На этапе 803 пространства между оптическими волокнами в каждой из труб для волокна можно необязательно заполнять наполнителем трубы для волокна. Трубы для волокна могут быть образованы с использованием процесса прессования. Этапы 802 и 803 в некоторых вариантах осуществления можно выполнять одновременно. В одном варианте осуществления, этапы 802 и 803 выполняют одновременно с использованием параллельного процесса прессования.[92] Optical cable manufacturing step 801 includes providing multiple sets of optical fibers, which are then sealed into respective fiber tubes at step 802. At step 803, the spaces between the optical fibers in each of the fiber tubes may optionally be filled with fiber tube filler. . Fiber tubes can be formed using a pressing process. Steps 802 and 803 may be performed simultaneously in some embodiments. In one embodiment, steps 802 and 803 are performed simultaneously using a parallel pressing process.

[93] Этап 804 изготовления оптического волокна включает в себя герметизацию трубы для волокна в металлической трубе. Необязательный этап 805 включает в себя заполнение пространства между трубами для волокна наполнителем. Как и для этапов 702 и 703 способа 700, этапы 804 и 804 можно выполнять в любом порядке, а в одном варианте осуществления их выполняют одновременно. Остальные этапы способа 800 отражают этапы 704–708 способа 700.[93] Optical fiber fabrication step 804 includes sealing a fiber tube into a metal tube. An optional step 805 includes filling the space between the fiber tubes with filler. As with steps 702 and 703 of method 700, steps 804 and 804 can be performed in any order, and in one embodiment, they are performed simultaneously. The remaining steps of method 800 mirror steps 704–708 of method 700.

[94] Фигура 9 иллюстрирует примерный способ изготовления гибридного кабеля в соответствии с вариантом осуществления изобретения. Способ 900 можно использовать для изготовления любого из гибридных кабелей, описанных в настоящей работе. Например, способ 900 можно использовать для изготовления варианта осуществления гибридных кабелей, как было описано применительно к Фигурам 5 и 6, таких как гибридный 500 кабель и гибридный 600 кабель. Следующие этапы способа 900 можно выполнять в любом порядке, и их не следует рассматривать как исчерпывающие. К способу 900 можно добавлять дополнительные этапы, и из способа 900 можно удалять один или более этапов, как может стать ясным обычному специалисту в данной области техники. Этапы способа 900 необязательно следует выполнять последовательно, и любое количество этапов способа 900 можно выполнять одновременно.[94] Figure 9 illustrates an exemplary method for manufacturing a hybrid cable in accordance with an embodiment of the invention. Method 900 can be used to make any of the hybrid cables described herein. For example, the method 900 can be used to manufacture an embodiment of hybrid cables as described in connection with Figures 5 and 6, such as a hybrid cable 500 and a hybrid cable 600. The following steps of method 900 can be performed in any order and should not be considered exhaustive. Additional steps may be added to method 900, and one or more steps may be removed from method 900, as will be apparent to one of ordinary skill in the art. The steps of method 900 need not be performed sequentially, and any number of steps of method 900 may be performed simultaneously.

[95] Первые этапы способа 900 отражают этапы 701–705 способа 700. В качестве альтернативы, этапы 801–805 способа 800 можно выполнять вслед за этапами 704 и 705 способа 700. Этап 905 выполняют после выполнения этапа 705 в любом случае, и он включает в себя формирование проводящего слоя поверх внутренней оболочки. Проводящий слой может быть образован способом, аналогичным способу для слоя оплетки, как было описано ранее. Необязательный этап 907 включает в себя заполнение пустот в проводящем слое наполнителем.[95] The first steps of method 900 mirror steps 701-705 of method 700. Alternatively, steps 801-805 of method 800 may be performed following steps 704 and 705 of method 700. Step 905 is performed after step 705 in any case and includes involves the formation of a conductive layer on top of the inner shell. The conductive layer can be formed in a manner similar to that for the braid layer as described previously. An optional step 907 includes filling voids in the conductive layer with filler.

[96] Этап 908 формирования гибридного кабеля включает в себя формирование промежуточной оболочки поверх проводящего слоя. Промежуточная оболочка может быть образована способом, аналогичным способу для внутренней оболочки, как было описано ранее. Этап 909 включает в себя формирование слоя оплетки поверх промежуточной оболочки и аналогичен по концепции этапу 706 способа 700 за исключением того, что слой оплетки формируют поверх другой оболочки. Остальные этапы способа 900 отражают этапы 707–708 способа 700.[96] The step 908 of forming a hybrid cable includes forming an intermediate jacket on top of the conductive layer. The intermediate shell may be formed in a manner similar to that for the inner shell as previously described. Step 909 involves forming a layer of braid over the intermediate shell and is similar in concept to step 706 of method 700 except that the layer of braid is formed over another shell. The remaining steps of method 900 mirror steps 707–708 of method 700.

[97] В приведенной ниже Таблице I подытожены несколько диаметров кабеля и отношений волокно/диаметр, которые могут быть связаны с конкретным количеством задействованных оптических волокон. Например, как описано в вышеприведенных вариантах осуществления, возможно некоторое изменение в выбранных толщинах каждого из слоев, из–за конкретных конструкционных соображений. В Таблице I подытожены возможные диапазоны диаметров (а следовательно, отношения волокно/диаметр), соответствующие количеству задействованных оптических волокон. Значения, представленные в Таблице I, представляют несколько примерных конфигураций варианта осуществления оптических кабелей и варианта осуществления гибридных кабелей. Однако, заданные значения не следует рассматривать как ограничивающие, поскольку на практике возможно, что эти значения могут выходить за пределы этих диапазонов.[97] Table I below summarizes several cable diameters and fiber/diameter ratios that can be associated with the specific number of optical fibers involved. For example, as described in the above embodiments, some variation in the selected thicknesses of each of the layers is possible due to specific design considerations. Table I summarizes the possible ranges of diameters (and hence fiber/diameter ratios) corresponding to the number of optical fibers involved. The values presented in Table I represent several exemplary configurations of an optical cable embodiment and a hybrid cable embodiment. However, the specified values should not be considered limiting, since in practice it is possible that these values may fall outside these ranges.

Таблица ITable I

ТипType № волоконFiber no. Возможные диаметрыPossible diameters Возможные отношения число волокон/диаметрPossible fiber number/diameter ratios Мин.Min. Макс.Max. Макс.Max. Мин.Min. ОптическиеOptical 1212 5,6 мм5.6 mm 18,2 мм18.2 mm 2,14 волокон/мм2.14 fibers/mm 0,66 волокон/мм0.66 fibers/mm 13–4813–48 7,1 мм7.1 mm 19,7 мм19.7 mm 6,76 волокон/мм6.76 fibers/mm 0,66 волокон/мм0.66 fibers/mm 49–9649–96 8,4 мм8.4 mm 21,0 мм21.0 mm 11,43 волокон/мм11.43 fibers/mm 2,33 волокон/мм2.33 fibers/mm ГибридныеHybrid 1212 7,4 мм7.4 mm 28,4 мм28.4 mm 1,62 волокон/мм1.62 fibers/mm 0,42 волокон/мм0.42 fibers/mm 13–4813–48 8,9 мм8.9 mm 29,9 мм29.9 mm 5,39 волокон/мм5.39 fibers/mm 0,43 волокон/мм0.43 fibers/mm 49–9649–96 10,2 мм10.2 mm 31,2 мм31.2 mm 9,41 волокон/мм9.41 fibers/mm 1,57 волокон/мм1.57 fibers/mm

[98] Также следует отметить, что хотя кабели согласно варианту осуществления преимущественно обеспечивают повышенные отношения число волокон/диаметр, по сравнению со стандартными кабелями, некоторые из возможных отношений число волокон/диаметр, показанные в Таблице 1101, ниже, чем подобные отношения для стандартного кабеля. Для некоторых особо ответственных применений, толщины различных слоев кабелей согласно варианту осуществления могут быть повышены, для улучшения защиты и/или структурных свойств кабеля, что может, в свою очередь, привести к более низкому отношению число волокон/диаметр. Поэтому, в этих ответственных применениях, кабели согласно варианту осуществления могут не быть более тонкими, чем стандартные кабели, но могут обеспечить улучшенные свойства, по сравнению со стандартными кабелями.[98] It should also be noted that while the cables of the embodiment advantageously provide increased fiber/diameter ratios compared to standard cables, some of the possible fiber/diameter ratios shown in Table 1101 are lower than those for a standard cable . For some critical applications, the thicknesses of the various layers of cables according to an embodiment may be increased to improve the protection and/or structural properties of the cable, which may in turn result in a lower fiber count/diameter ratio. Therefore, in these demanding applications, the cables of an embodiment may not be thinner than standard cables, but may provide improved properties compared to standard cables.

[99] Здесь подытожены примерные варианты осуществления изобретения. Другие варианты осуществления также можно понять из всей полноты спецификации, а также формулы изобретения, поданной в настоящей работе.[99] Exemplary embodiments of the invention are summarized herein. Other embodiments can also be understood from the entire specification as well as the claims filed herein.

[100] Тогда как данное изобретение было описано применительно к иллюстративным вариантам осуществления, данное описание не следует рассматривать в ограничительном смысле. Различные модификации и сочетания иллюстративных вариантов осуществления, а также другие варианты осуществления изобретения станут ясными специалистам в данной области техники при обращении к описанию. Поэтому, подразумевается, что прилагаемая формула изобретения охватывает любые такие модификации или варианты осуществления.[100] While the present invention has been described in connection with illustrative embodiments, this description should not be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will become apparent to those skilled in the art upon reference to the description. Therefore, the appended claims are intended to cover any such modifications or embodiments.

Claims (34)

1. Оптический кабель, содержащий: 1. Optical cable containing: – множество оптических волокон, герметизированных в металлической трубе; – a plurality of optical fibers sealed in a metal pipe; – полимерную внутреннюю оболочку, окружающую металлическую трубу и функционально подключаемую к металлической трубе; и – a polymer inner shell surrounding the metal pipe and functionally connected to the metal pipe; And – внешнюю оболочку, окружающую полимерную внутреннюю оболочку, при этом металлическая труба является единственной металлической трубой в оптическом кабеле.– an outer sheath surrounding a polymer inner sheath, with the metal pipe being the only metal pipe in the optical cable. 2. Оптический кабель по п. 1, в котором полимерная внутренняя оболочка представляет собой одиночный однородный слой полиамида.2. Optical cable according to claim 1, in which the polymer inner sheath is a single homogeneous layer of polyamide. 3. Оптический кабель по п. 1, в котором полимерная внутренняя оболочка представляет собой одиночный однородный слой полиэтилена.3. Optical cable according to claim 1, in which the polymer inner sheath is a single homogeneous layer of polyethylene. 4. Оптический кабель по п. 1, в котором полимерная внутренняя оболочка содержит слой полиамида и слой полиэтилена, причем слой полиамида расположен радиально вовнутрь относительно слоя полиэтилена.4. The optical cable according to claim 1, in which the polymer inner sheath contains a layer of polyamide and a layer of polyethylene, and the polyamide layer is located radially inward relative to the polyethylene layer. 5. Оптический кабель по п. 1, в котором внешняя оболочка изготовлена из материала, выбранного из группы, состоящей из материала поливинилхлорида (ПВХ) и полимерного материала с малым выделением дыма и без выделения галогенов (LS0H).5. The optical cable according to claim 1, wherein the outer sheath is made of a material selected from the group consisting of a polyvinyl chloride (PVC) material and a low smoke halogen-free (LS0H) polymer material. 6. Оптический кабель по п. 1, в котором одиночный слой оплетки расположен между полимерной внутренней оболочкой и внешней оболочкой.6. The optical cable according to claim 1, in which a single layer of braid is located between the polymer inner sheath and the outer sheath. 7. Оптический кабель по п. 6, дополнительно содержащий: 7. Optical cable according to claim 6, additionally containing: – проводящий слой, расположенный поверх и физически контактирующий с полимерной внутренней оболочкой; и – a conductive layer located on top and in physical contact with the polymer inner shell; And – промежуточную оболочку, расположенную между проводящим слоем и одиночным слоем оплетки, причем оптический кабель сконфигурирован для передачи оптических сигналов по множеству оптических волокон, и в котором оптический кабель дополнительно сконфигурирован для пропускания электрического тока через проводящий слой.– an intermediate jacket disposed between the conductive layer and the single braid layer, wherein the optical cable is configured to transmit optical signals over a plurality of optical fibers, and wherein the optical cable is further configured to pass electrical current through the conductive layer. 8. Оптический кабель по п. 7, в котором промежуточная оболочка содержит полиэтилен или керамизирующийся кремнийорганический каучук.8. Optical cable according to claim 7, in which the intermediate sheath contains polyethylene or ceramized silicone rubber. 9. Оптический кабель по п. 1, причем оптический кабель сконфигурирован так, чтобы он был термо– и маслостойким согласно стандарту Международной электротехнической комиссии (IEC) IEC 60811–2–1 (2001).9. The optical cable according to claim 1, wherein the optical cable is configured to be heat and oil resistant according to International Electrotechnical Commission (IEC) standard IEC 60811-2-1 (2001). 10. Оптический кабель по п. 1, причем оптический кабель сконфигурирован так, чтобы он был огнестойким согласно стандарту Международной электротехнической комиссии (IEC) IEC 60331–25 (1999).10. The optical cable according to claim 1, wherein the optical cable is configured to be fire resistant according to International Electrotechnical Commission (IEC) standard IEC 60331–25 (1999). 11. Оптический кабель по п. 1, дополнительно содержащий: 11. Optical cable according to claim 1, additionally containing: – сердцевину оптоволокна, содержащую металлическую трубу, которая окружает множество оптических волокон и сконфигурирована для противодействия проникновению воды; – an optical fiber core comprising a metal tube that surrounds a plurality of optical fibers and is configured to resist water penetration; в котором полимерная внутренняя оболочка представляет собой однородную внутреннюю оболочку одиночного слоя, расположенную поверх и функционально подключаемую к сердцевине оптоволокна, причем однородная внутренняя оболочка одиночного слоя сконфигурирована так, чтобы она была химически стойкой; и wherein the polymeric inner cladding is a uniform single layer inner cladding disposed over and operably connected to a core of the optical fiber, wherein the uniform single layer inner cladding is configured to be chemically resistant; And в котором внешняя оболочка сконфигурирована так, чтобы она была огнеупорной.wherein the outer shell is configured to be fire resistant. 12. Оптический кабель по п. 11, дополнительно содержащий слой оплетки, расположенный между и физически контактирующий с однородной внутренней оболочкой одиночного слоя и внешней оболочкой.12. The optical cable of claim 11, further comprising a braided layer located between and physically contacting the uniform inner cladding of the single layer and the outer cladding. 13. Оптический кабель по п. 11, в котором: 13. Optical cable according to claim 11, in which: множество оптических волокон содержит некоторое количество оптических волокон; the plurality of optical fibers contains a number of optical fibers; оптический кабель имеет диаметр оптического кабеля; и the optical cable has the diameter of an optical cable; And количество оптических волокон, деленных на диаметр оптического кабеля, составляет более 3 волокон/мм.The number of optical fibers divided by the diameter of the optical cable is more than 3 fibers/mm. 14. Оптический кабель по п. 1, в котором полимерная внутренняя оболочка содержит полиамидную внутреннюю оболочку, причем полиамидная внутренняя оболочка непосредственно прикреплена к металлической трубе; 14. The optical cable according to claim 1, in which the polymer inner sheath contains a polyamide inner sheath, and the polyamide inner sheath is directly attached to the metal pipe; проводящий слой, расположенный поверх и физически контактирующий с полиамидной внутренней оболочкой; и a conductive layer located on top of and in physical contact with the polyamide inner shell; And промежуточную оболочку, расположенную поверх проводящего слоя, причем внешняя оболочка окружает промежуточную оболочку, причем оптический кабель сконфигурирован для передачи оптических сигналов по множеству оптических волокон, и при этом оптический кабель дополнительно сконфигурирован для пропускания электрического тока через проводящий слой.an intermediate cladding disposed over a conductive layer, wherein an outer cladding surrounds the intermediate cladding, wherein the optical cable is configured to transmit optical signals over a plurality of optical fibers, and wherein the optical cable is further configured to pass electrical current through the conductive layer. 15. Оптический кабель по п. 14, дополнительно содержащий слой оплетки, расположенный между промежуточной оболочкой и внешней оболочкой.15. The optical cable according to claim 14, further comprising a braided layer located between the intermediate sheath and the outer sheath. 16. Оптический кабель по п.1, в котором металлическая труба герметизирована путем сварки или прессования.16. The optical cable according to claim 1, in which the metal pipe is sealed by welding or pressing. 17. Оптический кабель по п.1, в котором между металлическим слоем и внешней оболочкой оптический кабель имеет только один однородный полимерный слой.17. Optical cable according to claim 1, in which between the metal layer and the outer sheath the optical cable has only one homogeneous polymer layer. 18. Оптический кабель по п.1, в котором металлическая труба герметизирована таким образом, что множество оптических волокон защищено от возгорания.18. The optical cable according to claim 1, wherein the metal tube is sealed such that the plurality of optical fibers are protected from fire. 19. Оптический кабель по п.14, в котором полиамидная внутренняя оболочка представляет собой единый однородный полиамидный слой.19. Optical cable according to claim 14, in which the polyamide inner sheath is a single homogeneous polyamide layer. 20. Оптический кабель по п.14, в котором металлическая труба герметизирована таким образом, что множество оптических волокон защищено от возгорания.20. The optical cable according to claim 14, wherein the metal tube is sealed such that the plurality of optical fibers are protected from fire. 21. Оптический кабель по п.14, в котором металлическая труба герметизирована путем сварки или прессования.21. The optical cable according to claim 14, in which the metal pipe is sealed by welding or pressing.
RU2019127911A 2018-09-12 2019-09-05 Optical cables for harsh environmental conditions RU2812728C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/129,481 2018-09-12
US16/129,481 US10606005B1 (en) 2018-09-12 2018-09-12 Optical cables having an inner sheath attached to a metal tube

Publications (2)

Publication Number Publication Date
RU2019127911A RU2019127911A (en) 2021-03-05
RU2812728C2 true RU2812728C2 (en) 2024-02-01

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020126969A1 (en) * 1998-07-23 2002-09-12 Bonja Jeffrey A. Optical fiber cable for use in harsh environments
US8111960B2 (en) * 2003-04-24 2012-02-07 Weatherford/Lamb, Inc. Fiber optic cable systems and methods to prevent hydrogen ingress
WO2013059315A1 (en) * 2011-10-17 2013-04-25 Schlumberger Canada Limited Dual use cable with fiber optic packaging for use in wellbore operations
US8805143B2 (en) * 2009-10-19 2014-08-12 Draka Comteq, B.V. Optical-fiber cable having high fiber count and high fiber density
US20180231729A1 (en) * 2015-08-11 2018-08-16 Corning Optical Communications LLC Optical fiber cable
EP2682951B1 (en) * 2012-07-05 2018-08-29 Prysmian S.p.A. Electrical cable resistant to fire, water and mechanical stresses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020126969A1 (en) * 1998-07-23 2002-09-12 Bonja Jeffrey A. Optical fiber cable for use in harsh environments
US8111960B2 (en) * 2003-04-24 2012-02-07 Weatherford/Lamb, Inc. Fiber optic cable systems and methods to prevent hydrogen ingress
US8805143B2 (en) * 2009-10-19 2014-08-12 Draka Comteq, B.V. Optical-fiber cable having high fiber count and high fiber density
WO2013059315A1 (en) * 2011-10-17 2013-04-25 Schlumberger Canada Limited Dual use cable with fiber optic packaging for use in wellbore operations
EP2682951B1 (en) * 2012-07-05 2018-08-29 Prysmian S.p.A. Electrical cable resistant to fire, water and mechanical stresses
US20180231729A1 (en) * 2015-08-11 2018-08-16 Corning Optical Communications LLC Optical fiber cable

Similar Documents

Publication Publication Date Title
US10606005B1 (en) Optical cables having an inner sheath attached to a metal tube
US9543059B2 (en) Subsea umbilical
US4547626A (en) Fire and oil resistant cable
US6472614B1 (en) Dynamic umbilicals with internal steel rods
US7324730B2 (en) Optical fiber cables for wellbore applications
US7763802B2 (en) Electrical cable
US20040050578A1 (en) Communications cable
US9660432B2 (en) Subsea umbilical
US5247599A (en) Steam resistant optical fiber cable
CN101656127B (en) Thin-wall crosslink low smoke cables for ships communication or control signal and preparation method thereof
US4722589A (en) Pressure resistant optical fiber cable
JPS61209410A (en) Optical fiber communication submarine cable
CN101656124B (en) Insulating ethylene propylene rubber LSOH electric power or control cable for ships and warships and processing method thereof
US4699459A (en) Joint for optical fiber submarine cables
RU2812728C2 (en) Optical cables for harsh environmental conditions
WO2013033305A1 (en) Cable and umbilical
CN212990766U (en) Submarine power optical communication composite cable
CA2602537C (en) Electrical cable
RU2456694C2 (en) Flat power cable
KR20200118648A (en) Pulling eye for submarine cable, method for installing for the same, and submarine cable having the same
NZ209204A (en) Screened fire and oil resistant cable construction