RU2808478C2 - Systems and methods for treating eye diseases - Google Patents

Systems and methods for treating eye diseases Download PDF

Info

Publication number
RU2808478C2
RU2808478C2 RU2021119548A RU2021119548A RU2808478C2 RU 2808478 C2 RU2808478 C2 RU 2808478C2 RU 2021119548 A RU2021119548 A RU 2021119548A RU 2021119548 A RU2021119548 A RU 2021119548A RU 2808478 C2 RU2808478 C2 RU 2808478C2
Authority
RU
Russia
Prior art keywords
eyelid
energy
eye
light
treatment device
Prior art date
Application number
RU2021119548A
Other languages
Russian (ru)
Other versions
RU2021119548A (en
Inventor
Брайан С. КЕЛЛЕХЕР
Джон СЛЕЙТ
Майкл Берк
Марк ПЕТЕРСЕН
Дэвид ЭШБО
Дэн ВЭНС
Original Assignee
Алькон Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алькон Инк. filed Critical Алькон Инк.
Publication of RU2021119548A publication Critical patent/RU2021119548A/en
Application granted granted Critical
Publication of RU2808478C2 publication Critical patent/RU2808478C2/en

Links

Images

Abstract

FIELD: medicine.
SUBSTANCE: system for the treatment of eyelids, meibomian glands. A system for treating eyes of a mammal that has an eyelid includes: a portable device having: an instrument body with a fastening latch and an electrical connecting pin; a control switch that controls a power converter comprising a device emitting light energy at wavelengths including a first wavelength selected to pass through the eyelid and a second wavelength selected to be absorbed by the eyelid for heating; and an actuator controlled by a compression control button to move the movable casing away from the instrument body, the movable casing being configured to hold and supply light energy through the movable casing; an attachable component having: a fastening tongue configured to connect to a fastening latch of the instrument body; an outer eyelid pad configured to be placed in front of or on the outer surface of the eyelid, wherein the outer eyelid pad is made of a transparent material that transmits light energy delivered by the movable casing; and a backplate configured to be positioned behind or on the inner surface of the eyelid, the backplate being made of or covered with an energy reflective material configured to receive a first wavelength of light energy transmitted through the eyelid and reflect it back into the eyelid. Moreover, when the eyelid is located between the outer eyelid pad and the back plate, light energy from the energy converter heats the target tissue area of the eyelid sufficiently to melt meibomian gland secretions within the area of meibomian glands located within or adjacent to the target tissue area. Moreover, when the movable casing moves away from the instrument body, the movable casing forces the outer eyelid gasket to move towards the back plate and compress the eyelid to squeeze out the meibomian glands.
EFFECT: use of this invention will improve the treatment of meibomian gland dysfunction and blepharitis.
7 cl, 28 dwg

Description

Перекрестные ссылки на родственные заявкиCross references to related applications

[0001] Данная заявка испрашивает приоритет предварительной заявки на патент США № 62/776,333, поданной 6 декабря 2018 г., которая включена в данный документ посредством ссылки. Испрашивается приоритет вышеупомянутой даты подачи. [0001] This application claims benefit from U.S. Provisional Patent Application No. 62/776,333, filed December 6, 2018, which is incorporated herein by reference. The priority of the above-mentioned filing date is claimed.

Предпосылки изобретенияBACKGROUND OF THE INVENTION

[0002] Настоящее изобретение относится к медицинским устройствам и способам их применения. Более конкретно, настоящее изобретение относится к системам, способам и устройству, используемым для диагностики и лечения болезней глаз, таких как дисфункция мейбомиевых желез и блефарит, обычно затрагивающих веки, мейбомиевы железы, протоки, устья и окружающую ткань. [0002] The present invention relates to medical devices and methods for using them. More specifically, the present invention relates to systems, methods and apparatus used for the diagnosis and treatment of eye diseases such as meibomian gland dysfunction and blepharitis, typically affecting the eyelids, meibomian glands, ducts, orifices and surrounding tissue.

[0003] Дисфункция мейбомиевых желез (MGD), как предполагается, является наиболее частой причиной испарительной болезни сухого глаза, уровень распространенности которой, как показывают исследования, составляет от 20% до 60% общей численности населения. MGD связана с неспособностью мейбомиевых желез вырабатывать достаточное количество нормальных выделений (называемых секретом мейбомиевых желез). Секрет мейбомиевых желез представляет собой богатую липидами необходимую составляющую здоровой слезной пленки. Если секрет мейбомиевых желез не присутствует в слезной пленке в достаточном количестве, пленка легко испаряется, что приводит к испарительной болезни сухого глаза. У некоторых пациентов может наблюдаться повышенная вязкость и температура плавления секрета мейбомиевых желез, что приводит к сгущению секрета мейбомиевых желез, который не вытекает из желез свободно. Кроме того, канал, или проток, в мейбомиевой железе может становиться гиперкератинизированным, что приводит к избыточному образованию продуктов распада клеток и со временем способствует закупорке железы. Когда железы становятся хронически закупоренными (застойными), они могут атрофироваться и больше не обладать способностью вырабатывать или выделять секрета мейбомиевых желез. [0003] Meibomian gland dysfunction (MGD) is believed to be the most common cause of evaporative dry eye disease, with prevalence rates estimated to range from 20% to 60% of the general population. MGD is caused by the inability of the meibomian glands to produce enough normal secretions (called meibomian gland secretions). Meibomian gland secretions are a lipid-rich essential component of a healthy tear film. If the meibomian gland secretion is not present in the tear film in sufficient quantity, the film evaporates easily, leading to evaporative dry eye disease. Some patients may experience increased viscosity and melting point of meibomian gland secretions, resulting in thickening of meibomian gland secretions that do not flow freely from the glands. In addition, the channel, or duct, in the meibomian gland can become hyperkeratinized, which leads to excess production of cellular waste products and, over time, contributes to blockage of the gland. When the glands become chronically blocked (congested), they may atrophy and no longer have the ability to produce or secrete meibomian gland secretions.

[0004] Блефарит представляет собой распространенное хроническое воспалительное заболевание, затрагивающее веко и край века и часто связанное с MGD. Исследования показывают распространенность блефарита в общей численности населения в диапазоне от 12% до 47% с большей распространенностью среди лиц старшего возраста. В дополнение к некоторым причинным факторам, связанным с MGD, блефарит может отчасти вызываться распространением некоторых бактерий внутри и вокруг глаза и века. Продукты жизнедеятельности бактерий, как предполагается, раздражают глаз, приводя к дополнительному воспалению и вызывая дискомфорт у пациента. Дополнительно некоторую роль в усилении воспаления мейбомиевых желез или сальных желез внутри или вокруг глаз могут играть несколько типов обыкновенных клещей. Воспаление, вызванное этими факторами, может приводить к дополнительному сужению протоков мейбомиевых желез, ограничивая вытекание из желез секрета мейбомиевых желез и обостряя болезнь. [0004] Blepharitis is a common chronic inflammatory disease affecting the eyelid and eyelid margin and is often associated with MGD. Studies show the prevalence of blepharitis in the general population ranging from 12% to 47%, with a higher prevalence among older adults. In addition to some of the causative factors associated with MGD, blepharitis can be caused in part by the spread of certain bacteria in and around the eye and eyelid. The bacterial products are thought to irritate the eye, leading to additional inflammation and discomfort to the patient. Additionally, several types of mites may play a role in increasing inflammation of the meibomian glands or sebaceous glands in or around the eyes. Inflammation caused by these factors can lead to further narrowing of the meibomian gland ducts, limiting the flow of meibomian gland secretions from the glands and exacerbating the disease.

[0005] Диагностику дисфункции мейбомиевых желез можно осуществить многими способами. Типичные подходы включают измерение времени разрыва слезной пленки (TBUT), окрашивание различных поверхностей глаза и обследование мейбомиевых желез и их выделений. Одной общей методикой, используемой для обследования самих желез, является выворачивание века и размещение источника света под вывернутым веком (на наружной поверхности века) при одновременном обследовании «просвечивающегося» изображения желез, создаваемого светом, проходящим через веко. Это изображение можно наблюдать невооруженным глазом, через биомикроскоп или с помощью фотокамеры. Здоровые железы выглядят как продолговатые, относительно прямолинейные образования, тогда как дисфункциональные железы могут выглядеть извилистыми и раздутыми, а атрофированные железы проявляют отсутствие непрерывности между массой железы и протоком или устьем. В некоторых случаях на вывернутое веко или через него проецируют инфракрасное излучение и для осмотра мейбомиевых желез используют ИК-чувствительную фотокамеру. Недостатком этих методик просвечивания является то, что они требуют выворачивания века, что неудобно для большинства пациентов и может быть затруднительно выполнить клиническому врачу в отношении некоторых век. [0005] Diagnosis of meibomian gland dysfunction can be accomplished in many ways. Typical approaches include measuring tear breakup time (TBUT), staining various ocular surfaces, and examining the meibomian glands and their secretions. One common technique used to examine the glands themselves is to invert the eyelid and place a light source under the inverted eyelid (on the outer surface of the eyelid) while examining the "see-through" image of the glands created by light passing through the eyelid. This image can be observed with the naked eye, through a biomicroscope or using a camera. Healthy glands appear as elongated, relatively straight structures, whereas dysfunctional glands may appear tortuous and swollen, and atrophied glands exhibit a lack of continuity between the gland mass and the duct or ostium. In some cases, infrared light is projected onto or through the everted eyelid and an IR-sensitive camera is used to examine the meibomian glands. The disadvantage of these transillumination techniques is that they require eversion of the eyelid, which is uncomfortable for most patients and may be difficult for the clinician to perform on some eyelids.

[0006] Другой общеизвестной методикой диагностики MGD является приложение давления к веку при одновременном наблюдении протоков или устьев мейбомиевых желез вдоль края века обычно с помощью увеличительных средств, таких как биомикроскоп. В ответ на приложенное давление здоровые железы вырабатывают прозрачный маслянистый секрет. Железы, являющиеся частично дисфункциональными, вырабатывают меньше маслянистой жидкости и/или мутную маслянистую жидкость. Железы, являющиеся более серьезно дисфункциональными (застойными), вырабатывают пастообразный секрет, который можно выдавить лишь при приложении в веку более значительного давления. Железы, которые являются полностью атрофированными или содержат прегражденные устья, не вырабатывают никакой маслянистой жидкости даже под высоким давлением. [0006] Another well-known technique for diagnosing MGD is the application of pressure to the eyelid while observing the ducts or orifices of the meibomian glands along the edge of the eyelid, usually using magnifying means such as a biomicroscope. In response to applied pressure, healthy glands produce a clear, oily secretion. Glands that are partially dysfunctional produce less oily fluid and/or a cloudy oily fluid. Glands that are more seriously dysfunctional (congested) produce a pasty secretion that can only be squeezed out when greater pressure is applied to the eyelid. Glands that are completely atrophied or have blocked openings do not produce any oily fluid even under high pressure.

[0007] MGD и блефарит являются хроническими болезнями с ограниченным эффективным лечением. Один из наиболее общих рекомендованных способов лечения представляет собой наложение горячего компресса и массаж (с использованием компресса или кончиков пальцев) в области века. Намеченной целью лечения горячим компрессом является нагрев уплотненных мейбомиевых желез, в которых находится сгущенный секрет мейбомиевых желез, что приводит к размягчению секрета мейбомиевых желез и таким образом к более легкому выделению из протоков. Этот способ, как предполагается, устраняет закупорку протоков и таким образом позволяет протокам продолжать нормальные выделения и поддерживать более здоровую слезную пленку. Пациентам обычно предписывают прикладывать горячую салфетку или другой горячий компресс к веку в течение пяти - десяти минут несколько раз в день. Однако эффективность такого подхода может быть ограниченной. [0007] MGD and blepharitis are chronic diseases with limited effective treatments. One of the most common recommended treatments is applying a hot compress and massaging (using a compress or fingertips) to the eyelid area. The intended goal of hot compress treatment is to heat the compacted meibomian glands, which contain thickened meibomian gland secretions, causing the meibomian glands secretions to soften and thus allow easier discharge from the ducts. This method is supposed to clear the blockage of the ducts and thus allow the ducts to continue normal secretions and maintain a healthier tear film. Patients are usually instructed to apply a hot pad or other hot compress to the eyelid for five to ten minutes several times a day. However, the effectiveness of this approach may be limited.

[0008] Амбулаторное лечение MGD часто ограничивается сжатием пораженных век с целью выдавливания секрета мейбомиевых желез из закупоренных или уплотненных желез. Большинство клинических врачей используют для приложения давления к наружной поверхности века кончик пальца или ватную палочку, но иногда они также используют тампон или плоское металлическое приспособление (иногда называемое «лопаткой Мастрота») на внутренней части века с одновременным надавливанием на наружную часть века с целью выдавливания секрета мейбомиевых желез. Все эти методики являются неудобными для клинических врачей и болезненными для большинства пациентов. [0008] Outpatient treatment for MGD is often limited to squeezing the affected eyelids to squeeze out meibomian gland secretions from the blocked or hardened glands. Most clinicians use a fingertip or a cotton swab to apply pressure to the outer eyelid, but sometimes they also use a swab or flat metal device (sometimes called a Mastrota paddle) on the inside of the eyelid while applying pressure to the outer eyelid to force out secretions. meibomian glands. All of these techniques are inconvenient for clinicians and painful for most patients.

[0009] В другом способе амбулаторного лечения используют интенсивные импульсы света (IPL) около глаз и век. Такое лечение, как указывается, приводит к положительной динамике симптомов сухого глаза через несколько сеансов, однако его механизм не является понятным, а оборудование является дорогостоящим. [0009] Another outpatient treatment method uses intense pulses of light (IPL) near the eyes and eyelids. This treatment has been shown to improve dry eye symptoms after a few sessions, but the mechanism is not understood and the equipment is expensive.

[0010] Еще одним способом амбулаторного лечения является система TearScience LipiFlow(r), в которой под веками размещают нагревательные элементы и автоматизированное внешнее устройство управления поддерживает нагревательные элементы при заданной температуре с одновременным приложением давления к наружным векам по предварительно определенной схеме с помощью надувных камер. Эта система является дорогостоящей и не позволяет клиническому врачу управлять лечением так, чтобы осуществлять визуальное наблюдение за краем века и протоками мейбомиевых желез, а также изменять уровень нагрева и сжатия во время процедуры таким образом, чтобы оптимизировать результат лечения. Такое управление лечением клиническим врачом может быть важным, однако в системе TearScience отсутствует. [0010] Another outpatient treatment option is the TearScience LipiFlow(r) system, in which heating elements are placed under the eyelids and an automated external control device maintains the heating elements at a predetermined temperature while applying pressure to the outer eyelids in a predetermined pattern using inflatable bladders. This system is expensive and does not allow the clinician to control the treatment to visually monitor the eyelid margin and meibomian gland ducts, or to vary the level of heat and compression during the procedure in a manner that optimizes treatment outcome. This kind of clinical management of care can be important, but is missing from the TearScience system.

[0011] Пациенты также могут пользоваться каплями физиологического раствора или искусственными слезами для уменьшения недомогания, связанного с сухим глазом, однако такой подход не способен вылечить дисфункцию мейбомиевых желез и лежащее в ее основе воспаление. Дополнительно или альтернативно для уменьшения бактериальной нагрузки внутри и около века могут быть прописаны антибиотики. Доступны антибиотики местного и перорального применения, в том числе производные тетрациклина для перорального применения, сокращающие количество некоторых бактерий и обеспечивающие мягкий противовоспалительный эффект; однако введение антибиотиков может вызывать побочные эффекты или неблагоприятные аллергические реакции, и данный подход часто является недостаточным для обеспечения достаточного долговременного ослабления блефарита и MGD. Для уменьшения воспаления могут быть прописаны кортикостероиды; однако длительное применение этих стероидов повышает риск вредных изменений кортекса хрусталика, скачков внутриглазного давления и инфекций, вызванных подавлением иммунитета. [0011] Patients can also use saline drops or artificial tears to relieve dry eye discomfort, but this approach does not cure meibomian gland dysfunction and underlying inflammation. Additionally or alternatively, antibiotics may be prescribed to reduce the bacterial load in and around the eyelid. Topical and oral antibiotics are available, including oral tetracycline derivatives, which reduce the number of some bacteria and provide a mild anti-inflammatory effect; however, administration of antibiotics may cause side effects or adverse allergic reactions, and this approach is often insufficient to provide sufficient long-term relief of blepharitis and MGD. Corticosteroids may be prescribed to reduce inflammation; however, long-term use of these steroids increases the risk of harmful changes in the lens cortex, surges in intraocular pressure, and infections due to immune suppression.

[0012] Поэтому существует потребность в усовершенствованных способах и устройствах для диагностики и лечения дисфункции мейбомиевых желез и блефарита. [0012] Therefore, there is a need for improved methods and devices for diagnosing and treating meibomian gland dysfunction and blepharitis.

СУЩНОСТЬ ИЗОБРЕТЕНИЯSUMMARY OF THE INVENTION

[0013] Описанные в данном документе варианты осуществления могут удовлетворять одной или нескольким определенным выше потребностям и могут преодолевать один или несколько недостатков современных способов лечения MGD и блефарита. Каждая из различных реализаций систем, способов и устройств в пределах объема прилагаемой формулы изобретения имеет несколько аспектов, ни один из которых по отдельности не является единственно ответственным за желательные признаки, описанные в данном документе. Без ограничения объема приложенной формулы изобретения в данном документе описаны некоторые отличительные признаки. [0013] The embodiments described herein may satisfy one or more of the needs identified above and may overcome one or more disadvantages of current treatments for MGD and blepharitis. Each of the various implementations of systems, methods and devices within the scope of the appended claims has several aspects, none of which, individually, are solely responsible for the desirable features described herein. Without limiting the scope of the appended claims, certain features are described herein.

[0014] Настоящее изобретение в целом относится к терапевтическим системам, способам и устройствам, применимым для лечения век, мейбомиевых желез, протоков и окружающей ткани. Подробности одной или нескольких реализаций предмета изобретения, описанного в данной заявке, изложены в приведенных ниже сопроводительных графических материалах и описании. Другие признаки, варианты осуществления и преимущества станут очевидными из описания, графических материалов и формулы изобретения. [0014] The present invention generally relates to therapeutic systems, methods and devices useful for treating the eyelids, meibomian glands, ducts and surrounding tissue. Details of one or more embodiments of the subject matter described in this application are set forth in the accompanying drawings and description below. Other features, embodiments and advantages will become apparent from the description, drawings and claims.

[0015] В одном аспекте предоставляется устройство для лечения глаза млекопитающего, который имеет веко, при этом устройство содержит: преобразователь энергии, содержащий устройство, излучающее световую энергию с несколькими длинами волн, включая первую длину волны, выбранную для прохождения через веко, и вторую длину волны, выбранную для поглощения веком для нагрева; переднюю пластину, выполненную с возможностью размещения вблизи наружной поверхности века, эта передняя пластина выполнена из прозрачного материала, пропускающего длины волн света, излучаемого преобразователем энергии, причем передняя пластина дополнительно содержит датчики, выполненные с возможностью предоставления информации о положении века относительно передней пластины; заднюю пластину, выполненную с возможностью размещения вблизи внутренней поверхности века, эта задняя пластина выполнена из отражающего энергию материала или покрыта отражающим энергию материалом, выполненным с возможностью приема первой волны световой энергии, пропущенной через веко, и ее отражения обратно в веко, причем задняя пластина дополнительно содержит датчики, выполненные с возможностью предоставления информации о положении века относительно передней пластины; и при этом, когда веко расположено между передней пластиной и задней пластиной и световая энергия из преобразователя энергии нагревает целевую область ткани в достаточной степени для расплавления секрета мейбомиевых желез внутри мейбомиевых желез, расположенных в целевой области ткани или смежно с ней. [0015] In one aspect, a device is provided for treating the eye of a mammal that has an eyelid, the device comprising: an energy converter comprising a device emitting light energy at multiple wavelengths, including a first wavelength selected to pass through the eyelid and a second wavelength waves selected to be absorbed by the eyelid for heating; a front plate configured to be placed adjacent to the outer surface of the eyelid, this front plate being made of a transparent material transmitting wavelengths of light emitted by the energy converter, the front plate further comprising sensors configured to provide information about the position of the eyelid relative to the front plate; a backplate configured to be positioned proximate the inner surface of the eyelid, the backplate being made of or covered with an energy reflective material configured to receive a first wave of light energy transmitted through the eyelid and reflecting it back into the eyelid, the backplate further contains sensors configured to provide information about the position of the eyelid relative to the anterior plate; and wherein the eyelid is positioned between the anterior plate and the posterior plate and light energy from the energy converter heats the target tissue area sufficiently to melt meibomian gland secretions within the meibomian glands located in or adjacent to the target tissue area.

[0016] В вариантах осуществления устройство дополнительно содержит привод, соединенный с передней пластиной и задней пластиной, выполненный с возможностью осуществления относительного перемещения между передней пластиной и задней пластиной для сжатия века для выжимки мейбомиевых желез. В вариантах осуществления привод дополнительно выполнен с возможностью управления количеством световой энергии, излучаемой из преобразователя энергии на второй длине волны, и управления таким образом нагревом целевой ткани. В вариантах осуществления привод представляет собой по меньшей мере одно из рычага, кнопки, колеса, ползуна и переключателя. [0016] In embodiments, the device further comprises an actuator coupled to the front plate and the back plate, configured to effect relative movement between the front plate and the back plate to compress the eyelid to squeeze out the meibomian glands. In embodiments, the actuator is further configured to control the amount of light energy emitted from the energy converter at the second wavelength, and thereby control heating of the target tissue. In embodiments, the actuator is at least one of a lever, a button, a wheel, a slider, and a switch.

[0017] В вариантах осуществления преобразователь энергии дополнительно выполнен с возможностью предоставления световой энергии на третьей длине волны, выбранной для бактериологической обработки. В вариантах осуществления преобразователь энергии содержит по меньшей мере одно из светодиода, лазера, лампы накаливания, ксеноновой лампы, галогенной лампы, люминесцентной лампы, разрядной лампы высокой интенсивности и газоразрядной лампы. [0017] In embodiments, the energy converter is further configured to provide light energy at a third wavelength selected for bacteriological treatment. In embodiments, the power converter comprises at least one of an LED, a laser, an incandescent lamp, a xenon lamp, a halogen lamp, a fluorescent lamp, a high intensity discharge lamp, and a gas discharge lamp.

[0018] В вариантах осуществления устройство дополнительно содержит устройство визуализации для осмотра века во время лечения. В вариантах осуществления устройство дополнительно содержит один или несколько компонентов, выбранных из группы, состоящей из: дисплея или приборной доски, выполненных с возможностью отображения состояния устройства; устройства измерения температуры, выполненного с возможностью измерения различных температур века, в том числе температур внутренней и/или наружной поверхностей века; регистратора данных; диктофона; батареи, выполненной с возможностью обеспечения питания компонентов устройства; средств зарядки батареи; устройства управления; печатной схемной платы; и схемы связи между экраном и преобразователем энергии. [0018] In embodiments, the device further comprises an imaging device for viewing the eyelid during treatment. In embodiments, the device further comprises one or more components selected from the group consisting of: a display or instrument panel configured to display the status of the device; a temperature measuring device configured to measure various temperatures of the eyelid, including temperatures of the inner and/or outer surfaces of the eyelid; data logger; voice recorder; a battery configured to provide power to the components of the device; battery charging means; control devices; printed circuit board; and communication circuits between the screen and the energy converter.

[0019] В другом связанном аспекте предоставляется способ лечения болезни глаза млекопитающего, способ включает: размещение экрана вблизи внутренней поверхности века, этот экран выполнен из энергопоглощающего материала или покрыт энергопоглощающим материалом, причем экран дополнительно содержит датчики, выполненные с возможностью предоставления информации о положении века относительно экрана; размещение преобразователя энергии снаружи века млекопитающего, этот преобразователь энергии выполнен с возможностью представления световой энергии на одной или нескольких длинах волн; размещение поверхности передачи энергии снаружи века, эта поверхность передачи энергии содержит датчики, выполненные с возможностью предоставления информации о положении века относительно поверхности передачи энергии; осуществление относительного перемещения между поверхностью передачи энергии и экраном с целью изменения пространственной взаимосвязи между поверхностью передачи энергии и экраном; направление световой энергии из преобразователя энергии к экрану на первой длине волны, выбранной для нагрева энергопоглощающего материала; и нагревание энергопоглощающего материала световой энергией для нагрева целевой области ткани в достаточной степени для расплавления секрета мейбомиевых желез внутри мейбомиевых желез, расположенных в целевой области ткани или смежно с ней. [0019] In another related aspect, a method of treating a disease of the eye of a mammal is provided, the method comprising: placing a screen near the inner surface of the eyelid, the screen being made of or covered with an energy-absorbing material, the screen further comprising sensors configured to provide information about the position of the eyelid relative to screen; placing an energy converter on the outside of the mammal's eyelid, the energy converter being configured to represent light energy at one or more wavelengths; placing the energy transfer surface on the outside of the eyelid, this energy transmission surface includes sensors configured to provide information about the position of the eyelid relative to the energy transfer surface; effecting a relative movement between the power transfer surface and the screen to change the spatial relationship between the power transfer surface and the screen; directing light energy from the energy converter to the screen at a first wavelength selected to heat the energy-absorbing material; and heating the energy-absorbing material with light energy to heat the target tissue area sufficiently to melt meibomian gland secretions within the meibomian glands located in or adjacent to the target tissue area.

[0020] В вариантах осуществления способ дополнительно включает направление световой энергии из преобразователя энергии к наружной поверхности века на второй длине волны, выбранной для нагрева целевой области ткани внутри века. В вариантах осуществления способ дополнительно включает направление световой энергии из преобразователя энергии к глазу на третьей длине волны, выбранной для бактериологической обработки. [0020] In embodiments, the method further includes directing light energy from the energy converter to the outer surface of the eyelid at a second wavelength selected to heat a target tissue area within the eyelid. In embodiments, the method further includes directing light energy from the energy converter to the eye at a third wavelength selected for bacteriological treatment.

[0021] В вариантах осуществления способ дополнительно включает сжатие века между поверхностью передачи энергии и экраном. В вариантах осуществления способ дополнительно включает сосредоточение сжатия на ячмене или прыще с целью лечения гордеолума. В вариантах осуществления способ дополнительно включает сосредоточение сжатия на закупоренной железе с целью лечения халазиона. [0021] In embodiments, the method further includes compressing the eyelid between the energy transfer surface and the screen. In embodiments, the method further includes focusing the compression on the stye or pimple for the purpose of treating hordeolum. In embodiments, the method further includes focusing compression on the blocked gland to treat the chalazion.

[0022] В вариантах осуществления предохранитель, электрически соединенный с преобразователем энергии, предотвращает или прерывает появление световой энергии, если экран и связанный узел присоединены к устройству и выровнены с ним неправильно. [0022] In embodiments, a fuse electrically coupled to the power converter prevents or interrupts the occurrence of light energy if the shield and associated assembly are not attached to and aligned with the device incorrectly.

[0023] В вариантах осуществления относительное перемещение между поверхностью передачи энергии и экраном включает перемещение поверхности передачи энергии относительно экрана. В вариантах осуществления относительное перемещение между поверхностью передачи энергии и экраном включает скользящее перемещение поверхности передачи энергии относительно экрана. В вариантах осуществления осуществление относительного перемещения между поверхностью передачи энергии и экраном включает приведение в действие привода, соединенного с поверхностью передачи энергии. В вариантах осуществления приведение в действие привода включает нажатие кнопки. В вариантах осуществления осуществление относительного перемещения между поверхностью передачи энергии и экраном включает осуществление скольжения поверхности передачи энергии относительно экрана. [0023] In embodiments, the relative movement between the power transfer surface and the screen includes movement of the power transfer surface relative to the screen. In embodiments, the relative movement between the power transfer surface and the screen includes sliding movement of the power transfer surface relative to the screen. In embodiments, effecting relative movement between the power transfer surface and the screen includes operating an actuator coupled to the power transfer surface. In embodiments, actuating the actuator involves pressing a button. In embodiments, effecting relative movement between the power transfer surface and the screen includes causing the power transfer surface to slide relative to the screen.

[0024] В вариантах осуществления для излучения световой энергии преобразователем энергии положение века относительно положений экрана и поверхности передачи энергии должно находиться в пределах предварительно определенного диапазона. [0024] In embodiments, for the energy converter to emit light energy, the position of the eyelid relative to the positions of the screen and the energy transmission surface must be within a predetermined range.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВBRIEF DESCRIPTION OF GRAPHIC MATERIALS

[0025] Вышеупомянутые аспекты, а также другие признаки, аспекты и преимущества настоящего изобретения будут описаны ниже в связи с различными вариантами осуществления со ссылкой на сопроводительные графические материалы. Однако изображенные варианты осуществления представляют собой лишь примеры и не предназначены для ограничения. Везде в графических материалах подобные символы обычно обозначают подобные компоненты, если иное не обусловлено контекстом. Следует отметить, что относительные размеры следующих фигур не обязательно вычерчены в масштабе. [0025] The above aspects, as well as other features, aspects and advantages of the present invention will be described below in connection with various embodiments with reference to the accompanying drawings. However, the illustrated embodiments are examples only and are not intended to be limiting. Throughout graphical materials, similar symbols generally indicate similar components unless the context requires otherwise. It should be noted that the relative sizes of the following figures are not necessarily drawn to scale.

[0026] На фиг. 1A представлена схема в поперечном разрезе системы 10 глаза млекопитающего. [0026] In FIG. 1A is a cross-sectional diagram of a mammalian eye system 10.

[0027] На фиг. 1B представлен вид поверхностей на обратной стороне верхнего и нижнего век, на котором показаны мейбомиевы железы со здоровыми, закупоренными и атрофированными железами. [0027] In FIG. 1B is a view of the surfaces on the back of the upper and lower eyelids, showing the meibomian glands with healthy, clogged, and atrophied glands.

[0028] На фиг. 2A представлена структурная схема одного варианта осуществления устройства для лечения глаза согласно некоторым вариантам осуществления. [0028] In FIG. 2A is a block diagram of one embodiment of an eye treatment device according to some embodiments.

[0029] На фиг. 2B представлена структурная схема другого варианта осуществления устройства для лечения глаза. [0029] In FIG. 2B is a block diagram of another embodiment of an eye treatment device.

[0030] На фиг. 2С представлена структурная схема другого варианта осуществления устройства для лечения глаза, содержащего склеральный экран. [0030] In FIG. 2C is a block diagram of another embodiment of an eye treatment device comprising a scleral shield.

[0031] На фиг. 2D представлена структурная схема другого варианта осуществления офтальмологического устройства, содержащего склеральный экран с элементами формирования изображения. [0031] In FIG. 2D is a block diagram of another embodiment of an ophthalmic device comprising a scleral screen with imaging elements.

[0032] На фиг. 2Е представлен увеличенный вид в поперечном разрезе части варианта осуществления, представленного на фиг. 2D. [0032] In FIG. 2E is an enlarged cross-sectional view of a portion of the embodiment shown in FIG. 2D.

[0033] На фиг. 2F представлен вид спереди варианта осуществления, показанного на фиг. 2E. [0033] In FIG. 2F is a front view of the embodiment shown in FIG. 2E.

[0034] На фиг. 2G представлена структурная схема другого варианта осуществления офтальмологического устройства, подобного устройству на фиг. 2D. [0034] In FIG. 2G is a block diagram of another embodiment of an ophthalmic device similar to the device in FIG. 2D.

[0035] На фиг. 2H представлена структурная схема другого варианта осуществления офтальмологического устройства, подобного устройству на фиг. 2C. [0035] In FIG. 2H is a block diagram of another embodiment of an ophthalmic device similar to the device in FIG. 2C.

[0036] На фиг. 3A представлена структурная схема варианта осуществления устройства для диагностики и лечения глаза. [0036] In FIG. 3A is a block diagram of an embodiment of an apparatus for diagnosing and treating an eye.

[0037] На фиг. 3B представлен увеличенный вид одного варианта осуществления склерального экрана, показанного на фиг. 3A. [0037] In FIG. 3B is an enlarged view of one embodiment of the scleral shield shown in FIG. 3A.

[0038] На фиг. 4А представлен схематический вид сбоку в плане одного варианта осуществления устройства для лечения глаза. [0038] In FIG. 4A is a schematic side plan view of one embodiment of an eye treatment device.

[0039] На фиг. 4В представлен схематический вид спереди в плане модулей преобразователя энергии и волновода, содержащихся в варианте осуществления устройства для лечения глаза, представленном на фиг. 4А. [0039] In FIG. 4B is a schematic front plan view of the power converter and waveguide modules contained in the embodiment of the eye treatment device shown in FIG. 4A.

[0040] На фиг. 4С представлен схематический вид сбоку в плане варианта осуществления устройства для лечения глаза, представленного на фиг. 4А, которое показано в применении. [0040] In FIG. 4C is a schematic side plan view of an embodiment of the eye treatment device shown in FIG. 4A, which is shown in application.

[0041] На фиг. 4D представлен схематический вид сбоку в плане другого варианта осуществления устройства для лечения глаза. [0041] In FIG. 4D is a schematic side plan view of another embodiment of an eye treatment device.

[0042] На фиг. 4E представлен перспективный вид оптических элементов в другом варианте осуществления устройства для лечения глаза. [0042] In FIG. 4E is a perspective view of optical elements in another embodiment of an eye treatment device.

[0043] На фиг. 4F-H представлены виды спереди, сбоку и в поперечном разрезе призматического элемента, представленного на фиг. 4E. На фиг. 4I-L представлены виды спереди, в поперечном разрезе, сбоку и в перспективе элемента в виде формирующей линзы, представленного на фиг. 4E. [0043] In FIG. 4F-H are front, side and cross-sectional views of the prismatic element shown in FIG. 4E. In fig. 4I-L are front, cross-sectional, side, and perspective views of the forming lens element of FIG. 4E.

[0044] На фиг. 4M и 4N представлены теоретические графические представления картин облученности, генерируемых оптическими элементами, представленными на фиг. 4E. [0044] In FIG. 4M and 4N are theoretical graphical representations of the irradiance patterns generated by the optical elements shown in FIG. 4E.

[0045] На фиг. 5А представлен схематический вид сбоку в плане дополнительного варианта осуществления устройства для лечения глаза. [0045] In FIG. 5A is a schematic side plan view of a further embodiment of an eye treatment device.

[0046] На фиг. 5В представлен схематический вид спереди в плане варианта осуществления устройства для лечения глаза, представленного на фиг. 5А. [0046] In FIG. 5B is a schematic front plan view of an embodiment of the eye treatment device shown in FIG. 5A.

[0047] На фиг. 5С-F представлены виды сбоку, сверху, спереди и в перспективе частей другого варианта осуществления устройства. [0047] In FIG. 5C-F show side, top, front and perspective views of parts of another embodiment of the device.

[0048] На фиг. 5G и 5Н представлены теоретические графические представления картин облученности, генерируемых оптическими элементами, представленными на фиг. 5С-F. [0048] In FIG. 5G and 5H are theoretical graphical representations of the irradiance patterns generated by the optical elements shown in FIG. 5C-F.

[0049] На фиг. 6 представлен схематический вид сбоку в плане варианта осуществления системы для лечения глаза, содержащей устройство для лечения глаза и склеральный экран. [0049] In FIG. 6 is a schematic side plan view of an embodiment of an eye treatment system comprising an eye treatment device and a scleral shield.

[0050] На фиг. 7А-7Н представлены схематические виды спереди в плане и сбоку различных вариантов осуществления склерального экрана. [0050] In FIG. 7A-7H are schematic front plan and side views of various scleral shield embodiments.

[0051] На фиг. 8 представлен схематический вид сбоку в плане другого варианта осуществления устройства для лечения глаза. [0051] In FIG. 8 is a schematic side plan view of another embodiment of an eye treatment device.

[0052] На фиг. 9 представлен схематический вид сбоку в плане другого варианта осуществления устройства для лечения глаза, содержащего один или несколько охлаждающих механизмов. [0052] In FIG. 9 is a schematic side plan view of another embodiment of an eye treatment device comprising one or more cooling mechanisms.

[0053] На фиг. 10 представлен схематический вид сбоку в плане другого варианта осуществления устройства для лечения глаза, содержащего один или несколько предохранительных датчиков. [0053] In FIG. 10 is a schematic side plan view of another embodiment of an eye treatment device including one or more safety sensors.

[0054] На фиг. 11А представлен схематический вид сбоку в плане другого варианта осуществления устройства для лечения глаза. [0054] In FIG. 11A is a schematic side plan view of another embodiment of an eye treatment device.

[0055] На фиг. 11В представлен схематический вид сбоку в плане другого варианта осуществления устройства для лечения глаза. [0055] In FIG. 11B is a schematic side plan view of another embodiment of an eye treatment device.

[0056] На фиг. 12 представлен схематический вид сбоку в плане другого варианта осуществления устройства для лечения глаза, содержащего вибрационные средства. [0056] In FIG. 12 is a schematic side plan view of another embodiment of an eye treatment device comprising vibration means.

[0057] На фиг. 13 представлена схема одного варианта осуществления системы для лечения глаза при использовании человеком. [0057] In FIG. 13 is a diagram of one embodiment of a system for treating an eye for human use.

[0058] На фиг. 14А представлен схематический вид сбоку в плане варианта осуществления системы для лечения глаза. [0058] In FIG. 14A is a schematic side plan view of an embodiment of an eye treatment system.

[0059] На фиг. 14В представлен схематический вид спереди в плане части варианта осуществления системы для лечения глаза, представленного на фиг. 14А. [0059] In FIG. 14B is a schematic front plan view of a portion of the embodiment of the eye treatment system shown in FIG. 14A.

[0060] На фиг. 15А представлен схематический вид сбоку варианта осуществления контрольно-измерительной системы для лечения глаза. [0060] In FIG. 15A is a schematic side view of an embodiment of an eye treatment monitoring system.

[0061] На фиг. 15В представлен вид спереди в разрезе по линии А-А варианта осуществления, показанного на фиг. 15А. [0061] In FIG. 15B is a front cross-sectional view along line AA of the embodiment shown in FIG. 15A.

[0062] На фиг. 15C представлен вид спереди варианта осуществления, показанного на фиг. 15А. [0062] In FIG. 15C is a front view of the embodiment shown in FIG. 15A.

[0063] На фиг. 15D представлен вид сбоку в разрезе по линии В-В варианта осуществления, представленного на фиг. 15А. [0063] In FIG. 15D is a cross-sectional side view along line B-B of the embodiment shown in FIG. 15A.

[0064] На фиг. 16A-O показаны характерные конфигурации поверхностей передачи энергии, склеральных экранов и кронштейнов системы, которые задают отверстие, обеспечивающее возможность осмотра одного или обоих краев века во время приложения тепла и сжатия к части века, проходящего лечение. [0064] In FIG. 16A-O show representative configurations of the energy transfer surfaces, scleral shields, and brackets of the system that define an opening allowing one or both eyelid margins to be viewed while heat and compression are applied to the portion of the eyelid being treated.

[0065] На фиг. 17A-C показан вариант осуществления модуля преобразователя энергии в комбинации с модулем волновода энергии и поверхностью передачи энергии. [0065] In FIG. 17A-C show an embodiment of a power converter module in combination with a power waveguide module and a power transfer surface.

[0066] На фиг. 17D показано графическое представление распределения облученности инфракрасным светом через веко для варианта осуществления, представленного на фиг. 17A-C. [0066] In FIG. 17D is a graphical representation of the distribution of infrared light irradiance across the eyelid for the embodiment shown in FIG. 17A-C.

[0067] На фиг. 17E-F изображен элемент поверхности передачи энергии, содержащей определенное покрытие. [0067] In FIG. 17E-F illustrate an element of a power transmission surface containing a particular coating.

[0068] На фиг. 17G представлено графическое представление распределения облученности инфракрасным светом через веко для варианта осуществления, содержащего определенное покрытие на части поверхности передачи энергии. [0068] In FIG. 17G is a graphical representation of the distribution of infrared light irradiance across the eyelid for an embodiment comprising a specific coating on a portion of the energy transfer surface.

[0069] На фиг. 17H показано распределение облученности зеленовато-желтым светом на наружной поверхности века для варианта осуществления, содержащего определенное покрытие на части поверхности передачи энергии. [0069] In FIG. 17H shows the distribution of irradiance with greenish-yellow light on the outer surface of the eyelid for an embodiment containing a certain coating on a portion of the energy transfer surface.

[0070] На фиг. 18А и 18В представлены виды спереди и сбоку другого варианта осуществления устройства для лечения глаза. [0070] In FIG. 18A and 18B are front and side views of another embodiment of an eye treatment device.

[0071] На фиг. 19 представлен вид, показывающий один вариант осуществления передней пластины одноразовой части. [0071] In FIG. 19 is a view showing one embodiment of a front plate of a disposable part.

[0072] На фиг. 20 показан один вариант осуществления дисплея устройства для лечения глаза, на котором показаны подробности момента времени плавления. [0072] In FIG. 20 shows one embodiment of an eye treatment device display showing melting timing details.

[0073] На фиг. 21A и 21B представлены виды, на которых показан один вариант осуществления устройства для лечения глаза, содержащего подвижный оптический волновод. [0073] In FIG. 21A and 21B are views showing one embodiment of an eye treatment device including a movable optical waveguide.

[0074] На фиг. 22 показаны дополнительные элементы одноразовой части, содержащей элементы конструкции передней пластины. [0074] In FIG. 22 shows additional elements of the disposable portion containing the front plate structural elements.

[0075] На фиг. 23 представлен покомпонентный вид одноразовой части, представленной на фиг. 22. [0075] In FIG. 23 is an exploded view of the disposable part shown in FIG. 22.

[0076] На фиг. 24 показаны дополнительные элементы одноразовой части, содержащей теплоизоляцию датчиков задней пластины. [0076] In FIG. 24 shows additional elements of the disposable part containing thermal insulation for the backplate sensors.

[0077] На фиг. 25 показан график пульсации, или чередования, источника света и фотокамеры. [0077] In FIG. Figure 25 shows a graph of the pulsation, or alternation, of the light source and the camera.

[0078] На фиг. 26A и 26B показаны варианты осуществления фотокамеры, используемые для осмотра и/или фотографирования поверхности века и края века с целью обнаружения закупоренных мейбомиевых желез. [0078] In FIG. 26A and 26B illustrate camera embodiments used to inspect and/or photograph the eyelid surface and eyelid margin for the purpose of detecting obstructed meibomian glands.

[0079] На фиг. 27 показан другой вариант осуществления задней пластины, содержащей нагревательную часть для нагрева века. [0079] In FIG. 27 shows another embodiment of a backplate including a heating portion for heating the eyelid.

[0080] На фиг. 28A и 28B показаны виды спереди и сбоку другого варианта осуществления устройства для лечения глаза, в котором одноразовую часть можно поворачивать между положениями для лечения верхнего и нижнего век. [0080] In FIG. 28A and 28B show front and side views of another embodiment of an eye treatment device in which the disposable portion is rotatable between positions for treating the upper and lower eyelids.

ПОДРОБНОЕ ОПИСАНИЕDETAILED DESCRIPTION

[0081] В следующем подробном описании делается отсылка к сопроводительным графическим материалам, образующим часть настоящего изобретения. В графических материалах подобные символы обычно обозначают подобные компоненты, если иное не обусловлено контекстом. Иллюстративные варианты осуществления, описанные в подробном описании, графических материалах и формуле изобретения, не подразумеваются как ограничивающие. Другие варианты осуществления могут использоваться или в них могут делаться другие изменения без выхода за пределы сущности или объема предмета изобретения, представленного в данном документе. Будет легко понять, что аспекты настоящего изобретения, в целом описанные в данном документе и изображенные на фигурах, могут быть скомпонованы, заменены, скомбинированы или спроектированы в широком разнообразии различных конфигураций, которые все подразумеваются явно и образуют часть настоящего изобретения. [0081] In the following detailed description, reference is made to the accompanying drawings forming a part of the present invention. In graphical materials, similar symbols generally indicate similar components unless the context requires otherwise. The exemplary embodiments described in the detailed description, drawings and claims are not intended to be limiting. Other embodiments may be used or other changes may be made therein without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present invention generally described herein and depicted in the figures may be arranged, substituted, combined or designed in a wide variety of different configurations, all of which are expressly intended to form part of the present invention.

[0082] Терминология, используемая в данном документе, имеет целью лишь описание конкретных вариантов осуществления и не предназначена для ограничения настоящего изобретения. Специалистам в данной области техники будет понятно, что если предполагается конкретное количество заявляемого элемента, это намерение будет в явном виде упомянуто в формуле изобретения, а в отсутствие такого упоминания такое намерение отсутствует. Например, в рамках данного документа формы единственного числа также предназначены включать и множественное число, если иное в явном виде не обусловлено контекстом. В рамках данного документа выражение «и/или» включает любые и все комбинации одного или нескольких связанных с ним перечисленных предметов. Также будет понятно, что термины «содержит», «содержащий», «имеет», «имеющий», «включает» и «включающий» при использовании в данном описании указывают наличие заявленных признаков, объектов, этапов, операций, элементов и/или компонентов, но не исключают наличие или добавление одного или нескольких других признаков, объектов, этапов, операций, элементов, компонентов и/или их групп. Такие выражения, как «по меньшей мере один из», предшествующие перечню элементов, изменяют весь перечень элементов и не изменяют отдельные элементы этого перечня. [0082] The terminology used herein is intended only to describe specific embodiments and is not intended to limit the present invention. Those skilled in the art will appreciate that if a specific amount of a claimed element is intended, that intent will be expressly mentioned in the claims, and in the absence of such mention, there is no such intent. For example, throughout this document, singular forms are intended to include the plural unless the context clearly requires otherwise. As used herein, the expression “and/or” includes any and all combinations of one or more related listed items. It will also be understood that the terms “comprises”, “comprising”, “has”, “having”, “includes” and “comprising” when used herein indicate the presence of the claimed features, objects, steps, operations, elements and/or components , but do not exclude the presence or addition of one or more other features, objects, stages, operations, elements, components and/or their groups. Expressions such as “at least one of” preceding a list of elements modify the entire list of elements and do not change individual elements of that list.

[0083] Для содействия описанию устройств и способов, описанных в данном документе, используются некоторые термины для отношений и направлений. Термины «соединенный» и «связанный», а также их варианты, используемые в данном документе, включают прямые соединения, такие как образованные неотделимо, приклеенные или иначе присоединенные непосредственно к другому элементу, на или в другом элементе и т. д., а также опосредованные соединения, в которых между соединенным элементами расположены один или несколько элементов. Термины «соединенный» и «связанный» могут относиться к постоянному или непостоянному (т. е. разъемному) соединению. [0083] To assist in the description of the devices and methods described herein, certain relationship and directional terms are used. The terms "connected" and "bonded", as well as variations thereof, as used herein, include direct connections, such as integrally formed, bonded or otherwise attached directly to, on or in another element, etc., as well as indirect connections in which one or more elements are located between the connected elements. The terms "connected" and "coupled" can refer to a permanent or non-permanent (i.e., detachable) connection.

[0084] Термин «прикрепленный» и его варианты в рамках данного документа включают способы, с помощью которых элемент непосредственно прикрепляют к другому элементу, как, например, приклеивают, привинчивают или иначе крепят непосредственно к другому элементу, на или в другом элементе и т. д., а также к опосредствованным средствам прикрепления двух элементов друг к другу, где между скрепленными элементами расположены один или несколько элементов. [0084] The term “attached” and variations thereof as used herein include methods by which an element is directly attached to another element, such as by being glued, screwed or otherwise attached directly to, on or in another element, etc. etc., as well as indirect means of attaching two elements to each other, where one or more elements are located between the fastened elements.

[0085] Термины «ближний» и «дальний» являются относительными терминами, используемыми в данном документе для описания положения с точки зрения медицинского работника, осуществляющего лечение пациента. Например, в сравнении с термином «дальний», «ближний» относится к положению, расположенному ближе к медицинскому работнику, тогда как дальний конец расположен ближе к пациенту во время лечения. Например, дальние концы устройств, описанных в данном документе, противостоят ближним концам тех же устройств, и дальний конец устройства часто включает, например, конец, приспособленный для размещения у века пациента. [0085] The terms “near” and “far” are relative terms used herein to describe a situation from the point of view of a healthcare professional treating a patient. For example, compared to the term "distant", "near" refers to a position closer to the healthcare provider, while the far end is located closer to the patient during treatment. For example, the distal ends of the devices described herein are opposed to the proximal ends of the same devices, and the distal end of the device often includes, for example, an end adapted to be positioned against a patient's eyelid.

[0086] «Преобразователь» представляет собой термин, используемый в данном документе для описания элемента, принимающего одну форму энергии и преобразующего ее в другую форму. Например, источник света может принимать электрическую энергию и вырабатывать световую энергию. Аналогично ультразвуковой преобразователь может принимать электрическую энергию и вырабатывать ультразвуковую энергию. [0086] "Transducer" is a term used herein to describe an element that takes one form of energy and converts it into another form. For example, a light source can receive electrical energy and produce light energy. Similarly, an ultrasonic transducer can receive electrical energy and produce ultrasonic energy.

[0087] Термин «свет» в рамках данного документа относится не только к энергии в видимой области спектра, но также к энергии в инфракрасной и ультрафиолетовой частях спектра электромагнитной энергии. [0087] The term “light” as used herein refers not only to energy in the visible region of the spectrum, but also to energy in the infrared and ultraviolet portions of the electromagnetic energy spectrum.

[0088] Термин «волновод» в рамках данного документа относится к любым средствам, оказывающим влияние на распространение, распределение или траекторию электромагнитной энергии, такой как свет, ультразвуковой энергии и радиочастотной энергии. В рамках данного документа в это широкое определение волновода включены такие оптические элементы, как дифракторы, рефракторы, рассеиватели и т.п. [0088] The term "waveguide" as used herein refers to any means that influences the propagation, distribution, or trajectory of electromagnetic energy, such as light, ultrasonic energy, and radio frequency energy. For the purposes of this document, this broad definition of waveguide includes optical elements such as diffractors, refractors, scatterers, and the like.

[0089] Термин «длина оптического пути» используется в данном документе для описания длины пути (например, в срезе ткани), по которому проходит энергия. [0089] The term "optical path length" is used herein to describe the length of the path (eg, in a tissue section) along which energy travels.

[0090] Варианты осуществления, описанные в данном документе, относятся к офтальмологическим устройствам, системам и способам. Устройства, системы и способы, описанные в данном документе, могут быть использованы для лечения мейбомиевых желез, протоков, устьев и окружающей ткани, и в частности они направлены на лечение MGD, блефарита и болезней, имеющих физиологическую взаимосвязь с MGD и блефаритом, таких как испарительная болезнь сухого глаза. На фиг. 1A представлена схема системы 10 глаза млекопитающего в поперечном разрезе, которая содержит глазное яблоко 20 и окружающую анатомию века. Как упоминается в данном описании и как определено на фиг. 1A, «центральная окулярная ось» 30 представляет собой центральную ось, проходящую через центр роговицы 22, радужной оболочки 24, зрачка 25, хрусталика 26 и стекловидного тела 28 глазного яблока 20. Система 10 глаза содержит верхнее веко 12, нижнее веко 14 и ресницы 16. В ткани каждого века 12, 14 находятся мейбомиевы железы 18, каждая из которых содержит устье, или проток, 19. В системах 10 здорового глаза мейбомиевы железы 18 выделяют из протоков 19 вещество, называемое секретом мейбомиевых желез, которое содержит главным образом липиды и белки. Секрет мейбомиевых желез образует часть слезной пленки, покрывающей поверхность глазного яблока 20. [0090] The embodiments described herein relate to ophthalmic devices, systems and methods. The devices, systems and methods described herein can be used to treat meibomian glands, ducts, ostia and surrounding tissue, and in particular they are directed to the treatment of MGD, blepharitis and diseases having a physiological relationship with MGD and blepharitis, such as evaporative dry eye disease. In fig. 1A is a cross-sectional diagram of a mammalian eye system 10 that includes the eyeball 20 and surrounding eyelid anatomy. As referred to herein and as defined in FIG. 1A, the “central ocular axis” 30 is a central axis passing through the center of the cornea 22, iris 24, pupil 25, lens 26, and vitreous 28 of the eyeball 20. The eye system 10 includes an upper eyelid 12, a lower eyelid 14, and eyelashes 16. In the tissue of each eyelid 12, 14 there are meibomian glands 18, each of which contains an orifice, or duct, 19. In the systems 10 of a healthy eye, the meibomian glands 18 secrete from the ducts 19 a substance called meibomian gland secretion, which contains mainly lipids and proteins . The secretion of the meibomian glands forms part of the tear film covering the surface of the eyeball 20.

[0091] На фиг. 1B представлен вид внутренней части века, на котором показаны мейбомиевы железы со здоровыми, закупоренными и атрофированными железами. Хроническая закупорка желез связана с MGD и некоторыми формами блефарита и может приводить к закупориванию протоков и/или атрофии желез. Воспаление, связанное с MGD или блефаритом, может, в свою очередь, вызывать дополнительное сужение протоков 19 желез, приводящее к сокращению секреции мейбомиевых желез и, соответственно, уменьшению количества липидов в слезной пленке. Слезная пленка с пониженным содержанием липидов может быстро испаряться и приводить к испарительному сухому глазу. Сокращенная слезная пленка также может быть связана с повышенными уровнями бактерий внутри и вокруг глаза. Такие бактерии могут усугублять воспаление сами по себе или посредством некоторых продуктов их жизнедеятельности, раздражающих глаз. Считается, что уберечь железы от постоянной атрофии можно путем периодической чистки хронически закупоренных желез. [0091] In FIG. Figure 1B is a view of the inside of the eyelid showing the meibomian glands with healthy, clogged, and atrophied glands. Chronic blocked glands are associated with MGD and some forms of blepharitis and can lead to blocked ducts and/or gland atrophy. Inflammation associated with MGD or blepharitis may, in turn, cause additional narrowing of the ducts of the 19 glands, leading to a reduction in meibomian gland secretion and, accordingly, a decrease in the amount of lipids in the tear film. Tear film with low lipid content can evaporate quickly and lead to evaporative dry eye. A reduced tear film may also be associated with increased levels of bacteria in and around the eye. Such bacteria can aggravate inflammation on their own or through certain waste products that irritate the eyes. It is believed that the glands can be protected from permanent atrophy by periodically cleaning chronically clogged glands.

[0092] Еще одним фактором, который, как предполагается, способствует блефариту, является присутствие клещей Demodex folliculorum и Demodex brevis, которых обычно находят у большинства людей и, как сообщается, в больших количествах - у лиц, страдающих блефаритом. Эти клещи могут жить в фолликулах волос ресниц и бровей, а также в мейбомиевых железах и сальных железах. Само их присутствие может приводить к воспалению у некоторых лиц, однако также предполагается, что эти клещи могут переносить некоторые бактерии, которые могут выделяться в область века в ходе их жизненного цикла, приводя к дополнительному воспалению. [0092] Another factor that is believed to contribute to blepharitis is the presence of Demodex folliculorum and Demodex brevis mites, which are commonly found on most people and are reported in large numbers in individuals suffering from blepharitis. These mites can live in the hair follicles of eyelashes and eyebrows, as well as in the meibomian glands and sebaceous glands. Their very presence may lead to inflammation in some individuals, but it is also believed that these mites may carry some bacteria that may be released into the eyelid area during their life cycle, leading to additional inflammation.

[0093] На фиг. 2A представлена структурная схема устройства 100 для лечения глаза согласно различным вариантам осуществления. Как показано на фиг. 2A, изображенное устройство 100 для лечения глаза содержит модуль 110 источника питания, модуль 120 преобразователя энергии, модуль 130 волновода энергии и поверхность 140 передачи энергии (также называемую прижимным элементом). В некоторых вариантах осуществления модуль 130 волновода энергии может быть необязательным. В других вариантах осуществления модуль 120 преобразователя энергии и модуль 130 волновода энергии могут быть объединены в одном блоке. [0093] In FIG. 2A is a block diagram of an eye treatment device 100 according to various embodiments. As shown in FIG. 2A, the illustrated eye treatment device 100 includes a power supply module 110, a power converter module 120, an energy waveguide module 130, and a power transfer surface 140 (also called a pressure member). In some embodiments, energy waveguide module 130 may be optional. In other embodiments, the energy converter module 120 and the energy waveguide module 130 may be combined in a single unit.

[0094] Модуль 110 источника питания согласно различным вариантам осуществления предоставляет энергию в модуль 120 преобразователя энергии. Модуль 110 источника питания может содержать любую структуру, выполненную с возможностью подачи питания в один или несколько других компонентов устройства 100 для лечения глаза. В некоторых вариантах осуществления модуль 110 источника питания содержит одноразовую батарею, перезаряжаемую батарею, солнечный элемент, модуль преобразования мощности, такой как источник питания или преобразователь мощности, или механизм передачи питания, такой как шнур, вывод или разъем, выполненный с возможностью приема переменного тока или постоянного тока из внешнего источника. [0094] Power supply module 110 according to various embodiments provides power to power converter module 120. The power supply module 110 may include any structure configured to supply power to one or more other components of the eye treatment device 100. In some embodiments, the power supply module 110 includes a disposable battery, a rechargeable battery, a solar cell, a power conversion module such as a power supply or power converter, or a power transmission mechanism such as a cord, lead, or connector configured to receive alternating current or DC from an external source.

[0095] Модуль 120 преобразователя энергии может содержать один или несколько преобразователей энергии, выполненных с возможностью излучения одной или нескольких форм или типов энергии. Например, как более подробно описано ниже, в некоторых вариантах осуществления преобразователи энергии излучают фотонную, акустическую, радиочастотную, электрическую, магнитную, электромагнитную, колебательную, инфракрасную или ультразвуковую энергию. В некоторых вариантах осуществления модуль 120 преобразователя энергии генерирует несколько типов энергии одновременно или в предварительно определенном порядке. [0095] Energy converter module 120 may include one or more energy converters configured to emit one or more forms or types of energy. For example, as described in more detail below, in some embodiments, energy transducers emit photonic, acoustic, radio frequency, electrical, magnetic, electromagnetic, vibrational, infrared, or ultrasonic energy. In some embodiments, power converter module 120 generates multiple types of power simultaneously or in a predetermined order.

[0096] Модуль 130 волновода энергии содержит одну или несколько конструкций, выполненных с возможностью контроля или фокусировки направления излучения энергии из преобразователей энергии. Например, модуль 130 волновода энергии может содержать один или несколько отражателей, рефракторов, дифракторов или рассеивателей (более подробно описанных ниже), приспособленных для фокусировки фотонной энергии в требуемой области, или другие конструкции для конфигурирования и направления излучения энергии, такие как ультразвуковые рупоры или волоконная оптика. [0096] Energy waveguide module 130 includes one or more structures configured to control or focus the direction of energy emission from energy converters. For example, energy waveguide module 130 may include one or more reflectors, refractors, diffractors, or diffusers (described in more detail below) adapted to focus photon energy into a desired area, or other structures for configuring and directing energy emission, such as ultrasonic horns or fiber optics. optics.

[0097] Устройство 100 для лечения глаза, представленное на фиг. 2A, может также преимущественно содержать поверхность 140 передачи энергии, приспособленную дополнительно направлять энергию, генерируемую модулем 120 преобразователя энергии, в требуемую область. Например, поверхность 140 передачи энергии может содержать одну или несколько линз, приспособленных фокусировать энергию, генерируемую модулем 120 преобразователя энергии. [0097] The eye treatment device 100 shown in FIG. 2A may also advantageously include a power transfer surface 140 adapted to further direct the power generated by the power converter module 120 to a desired area. For example, the power transfer surface 140 may include one or more lenses adapted to focus the energy generated by the power converter module 120.

[0098] В некоторых вариантах осуществления модуль 130 волновода энергии и поверхность 140 передачи энергии также могут предотвращать или ограничивать передачу энергии, генерируемой модулем 120 преобразователя энергии, в конкретные области глаза. Поверхность 140 передачи энергии может содержать области, по существу непрозрачные для энергии или не передающие энергию, вырабатываемую модулем 120 преобразователя энергии, и области, прозрачные для энергии или передающие энергию, вырабатываемую модулем 120 преобразователя энергии. Модули устройства 100 для лечения глаза более подробно описаны ниже в отношении других вариантов осуществления настоящего изобретения и могут содержать другие компоненты. [0098] In some embodiments, the energy waveguide module 130 and the energy transfer surface 140 can also prevent or limit the transfer of energy generated by the energy converter module 120 to specific areas of the eye. The power transmission surface 140 may include regions that are substantially energy opaque or do not transmit energy generated by the power converter module 120 and regions that are energy transparent or transmit the energy generated by the power converter module 120 . The modules of the eye treatment device 100 are described in more detail below with respect to other embodiments of the present invention and may contain other components.

[0099] На фиг. 2B представлена структурная схема устройства 100 для лечения глаза согласно различным вариантам осуществления. Фиг. 2B подобна фиг. 2А и содержит модуль 110 источника питания, модуль 120 преобразователя энергии, необязательный модуль 130 волновода энергии и поверхность 140 передачи энергии. Поверхность 140 передачи энергии может являться по существу сплошной или может содержать элементы, отнесенные от других частей поверхности 140 передачи энергии или устройства 100 для лечения глаза. Например, поверхность 140 передачи энергии может содержать добавочный элемент, расположенный на некотором расстоянии от сплошной части поверхности 140 передачи энергии. Например, на фиг. 2B добавочный элемент 143 изображен как подобная сетке конструкция, отнесенная от основной части поверхности 140 передачи энергии (если она присутствует). Добавочный элемент 143 может содержать поверхность, по меньшей мере частично прозрачную для требуемой энергии, генерируемой модулем 120 преобразователя энергии, при этом с сохранением зазора между основной частью поверхности 140 передачи энергии (если она присутствует), или волноводом энергии (если он присутствует), или модулем преобразователя энергии и поверхностью 12, 14 века. Зазор, создаваемый добавочным элементом 143, может быть полезен, например, для обеспечения пути для принудительного воздушного охлаждения века. Дополнительно прижатие добавочного элемента 143 к поверхности века может уменьшать длину оптического пути для нагрева века 12, 14 и/или целевых составных частей внутри века. Уменьшение длины оптического пути может являться преимущественным для нагрева ткани вследствие повышения выхода излучения, уменьшения рассеяния, согласования показателей преломления и увеличения интегральной плотности потока. Добавочный элемент 143 может быть выполнен из материала с низкой удельной теплоемкостью, такого как тонкая проволочная или пластмассовая сетка или перфорированная тонкая металлическая или пластмассовая поверхность, и может иметь такую структуру, чтобы соответствовать форме века при приложении давления к поверхности века. В одном варианте осуществления добавочный элемент 143 может иметь такую структуру, что при его прижатии как к верхнему, так и к нижнему веку он может распределять приложенное давление или равномерно, или неравномерно по совмещенным поверхностям верхнего и нижнего века. Например, в одном варианте осуществления добавочный элемент 143 может прикладывать меньшее давление к центральной окулярной оси 30 и большее давление где-либо еще, что может быть желательно в случаях, когда давление, неоднократно прикладываемое к векам выше центральной окулярной оси, может, как предполагают, увеличивать вероятность развития осложнения, известного как коническая роговица. В другом варианте осуществления добавочный элемент 143 может активно нагреваться или охлаждаться. [0099] In FIG. 2B is a block diagram of an eye treatment device 100 according to various embodiments. Fig. 2B is similar to FIG. 2A and includes a power supply module 110, a power converter module 120, an optional power waveguide module 130, and a power transfer surface 140. The energy transfer surface 140 may be substantially continuous or may contain elements separated from other portions of the energy transfer surface 140 or the eye treatment device 100. For example, the power transfer surface 140 may include an additional element located at some distance from the solid portion of the power transfer surface 140. For example, in FIG. 2B, the accessory element 143 is depicted as a mesh-like structure spaced from the main portion of the power transfer surface 140 (if present). The additional element 143 may include a surface that is at least partially transparent to the desired energy generated by the energy converter module 120, while maintaining a gap between the main portion of the energy transfer surface 140 (if present), or the energy waveguide (if present), or energy converter module and surface of the 12th, 14th centuries. The clearance created by the extension 143 may be useful, for example, to provide a path for forced air cooling of the eyelid. Additionally, pressing the extension member 143 against the eyelid surface may reduce the optical path length for heating the eyelid 12, 14 and/or target components within the eyelid. Reducing the optical path length may be advantageous for tissue heating due to increased radiation yield, reduced scattering, refractive index matching, and increased integrated fluence. The extension member 143 may be made of a low specific heat material, such as fine wire or plastic mesh or a perforated thin metal or plastic surface, and may be structured to conform to the shape of the eyelid when pressure is applied to the surface of the eyelid. In one embodiment, the attachment 143 may be structured such that when pressed against both the upper and lower eyelids, it can distribute the applied pressure either uniformly or unevenly across the aligned surfaces of the upper and lower eyelids. For example, in one embodiment, the accessory element 143 may apply less pressure to the central ocular axis 30 and more pressure elsewhere, which may be desirable in cases where pressure repeatedly applied to the eyelids above the central ocular axis may be expected to increase the likelihood of developing a complication known as conical cornea. In another embodiment, the additional element 143 may be actively heated or cooled.

[00100] На фиг. 2С представлена структурная схема другого варианта осуществления устройства 100 для лечения глаза, содержащего модуль 110 источника питания, модуль 120 преобразователя энергии, необязательный модуль 130 волновода энергии, поверхность 140 передачи энергии и склеральный экран 300 (также называемый задней пластиной). В этом варианте осуществления одно или несколько век 12, 14 располагают между поверхностью 140 передачи энергии и склеральным экраном 300. [00100] In FIG. 2C is a block diagram of another embodiment of an eye treatment device 100 comprising a power supply module 110, a power converter module 120, an optional power waveguide module 130, a power transfer surface 140, and a scleral shield 300 (also referred to as a backplate). In this embodiment, one or more eyelids 12, 14 are positioned between the energy transfer surface 140 and the scleral shield 300.

[00101] Модуль 120 преобразователя энергии может содержать один или несколько преобразователей энергии, выполненных с возможностью излучения одной или нескольких форм или типов энергии. Например, как более подробно описано ниже, в некоторых вариантах осуществления преобразователи энергии излучают фотонную, акустическую, радиочастотную, электрическую, магнитную, электромагнитную, колебательную, инфракрасную или ультразвуковую энергию. В некоторых вариантах осуществления модуль 120 преобразователя энергии генерирует несколько типов энергии одновременно или в предварительно определенном порядке. Необязательный модуль волновода энергии может быть включен для контроля или фокусировки направления излучения энергии из преобразователей энергии, как описано выше. [00101] Energy converter module 120 may include one or more energy converters configured to emit one or more forms or types of energy. For example, as described in more detail below, in some embodiments, energy transducers emit photonic, acoustic, radio frequency, electrical, magnetic, electromagnetic, vibrational, infrared, or ultrasonic energy. In some embodiments, power converter module 120 generates multiple types of power simultaneously or in a predetermined order. An optional energy waveguide module may be included to control or focus the direction of energy emission from the energy converters, as described above.

[00102] Устройство 100 для лечения глаза, представленное на фиг. 2C, может также преимущественно содержать поверхность 140 передачи энергии, приспособленную дополнительно направлять энергию, генерируемую модулем 120 преобразователя энергии, в требуемую область. Поверхность 140 передачи энергии может содержать одну или несколько линз, приспособленных фокусировать энергию, генерируемую модулем 120 преобразователя энергии. Поверхность 140 передачи энергии (и/или добавочный элемент 143, показанный на фиг. 2B) может быть выполнена с возможностью перемещения по пути 145 перемещения с целью регулировки (например, фокусировки) некоторых свойств передачи энергии, и/или вхождения в контакт с поверхностью века 12, 14, и/или приложения давления к веку 12, 14. Путем приложения давления к веку 12, 14 с одновременным сохранением склерального экрана 300 в фиксированной пространственной взаимосвязи с другими частями устройства 100 для лечения глаза веко 12, 14 можно сжать, таким образом, уменьшив длину оптического пути для нагрева века 12, 14 и/или целевых составных частей внутри века. Уменьшение длины оптического пути является преимущественным для нагрева ткани вследствие повышения выхода излучения, уменьшения рассеяния, согласования показателей преломления и увеличения интегральной плотности потока. Веко может быть сжато задней пластиной 300, прижимающей или придавливающей веко к прижимному элементу. Или же веко можно сжать путем прижатия или придавливания века прижимным элементом к задней пластине 300. [00102] The eye treatment device 100 shown in FIG. 2C may also advantageously include a power transfer surface 140 adapted to further direct the power generated by the power converter module 120 to a desired area. The power transfer surface 140 may include one or more lenses adapted to focus the energy generated by the power converter module 120. The energy transfer surface 140 (and/or the additional element 143 shown in Fig. 2B) may be configured to move along the movement path 145 to adjust (eg, focus) certain energy transfer properties, and/or come into contact with the surface of the eyelid 12, 14, and/or applying pressure to the eyelid 12, 14. By applying pressure to the eyelid 12, 14 while maintaining the scleral shield 300 in a fixed spatial relationship with other parts of the eye treatment device 100, the eyelid 12, 14 can be compressed, thereby , reducing the optical path length for heating the eyelid 12, 14 and/or target components within the eyelid. Reducing the optical path length is advantageous for tissue heating due to increased radiation yield, reduced scattering, refractive index matching, and increased integrated fluence. The eyelid may be compressed by the back plate 300 pressing or pressing the eyelid against the pressure member. Alternatively, the eyelid may be compressed by pressing or pressing the eyelid with the pressure member against the back plate 300.

[00103] В некоторых вариантах осуществления модуль 120 преобразователя энергии может одновременно генерировать несколько типов энергии, таких как фотонная, акустическая, радиочастотная, электрическая, магнитная, электромагнитная, колебательная, инфракрасная или ультразвуковая энергия. Например, первая энергия может нагревать наружную поверхность века, тогда как вторая энергия может проникать глубже в ткань века и/или взаимодействовать со склеральным экраном способами, которые более подробно описаны ниже. [00103] In some embodiments, energy converter module 120 can simultaneously generate multiple types of energy, such as photonic, acoustic, radio frequency, electrical, magnetic, electromagnetic, vibrational, infrared, or ultrasonic energy. For example, the first energy may heat the outer surface of the eyelid, while the second energy may penetrate deeper into the eyelid tissue and/or interact with the scleral shield in ways that are described in more detail below.

[00104] На фиг. 2D представлена структурная схема другого варианта осуществления устройства 100 для лечения глаза, содержащего модуль 110 источника питания, модуль 120 преобразователя энергии, необязательный модуль 130 волновода энергии, поверхность 140 передачи энергии и склеральный экран 300, подобный представленному на фиг. 2С. В некоторых вариантах осуществления склеральный экран 300 может дополнительно содержать преобразователь 155 изображения, встроенный в склеральный экран 300. На фиг. 2Е показан увеличенный вид в поперечном разрезе преобразователя 155 изображения, встроенного в склеральный экран 300, при этом веко 14 расположено смежно с преобразователем 155 изображения. В показанном варианте осуществления преобразователь 155 изображения является отражающим. Энергия 170 освещения, которая может представлять собой, например, видимый или инфракрасный свет, проходит через веко 14 и, таким образом, через мейбомиевы железы 18, а затем по оптическому пути 175 через передающий энергию материал 185, поскольку она отражается от отражающих поверхностей 180, в конечном итоге выходя из преобразователя 155 изображения над краем 14а века. Будет понятно, что получаемое в результате изображение, выходящее из преобразователя 155 изображения, будет представлять собой теневое изображение, или просвечивающееся изображение, той части века 14, которая является смежной с преобразователем 155 изображения и освещается энергией 170 освещения. Таким образом, преобразователь 155 изображения обеспечивает возможность просмотра просвечивающегося изображения 190 внутренней стороны века 14 при прямой визуализации или с помощью увеличительного элемента или фотокамеры, которые совокупно показаны как устройство визуализации, или средства 160 визуализации, без необходимости выворачивать веко. На фиг. 2F представлен вид спереди того же варианта осуществления, что и на фиг. 2Е, на котором показаны просвечивающиеся изображения 190 мейбомиевых желез. [00104] In FIG. 2D is a block diagram of another embodiment of an eye treatment device 100 comprising a power supply module 110, a power converter module 120, an optional energy waveguide module 130, a power transfer surface 140, and a scleral shield 300 similar to that shown in FIG. 2C. In some embodiments, the scleral screen 300 may further include an image converter 155 built into the scleral screen 300. In FIG. 2E is an enlarged cross-sectional view of an image transducer 155 integrated into the scleral screen 300, with the eyelid 14 positioned adjacent to the image transducer 155. In the illustrated embodiment, the image converter 155 is reflective. Illumination energy 170, which may be visible or infrared light, for example, passes through the eyelid 14 and thus through the meibomian glands 18, and then along the optical path 175 through the energy transfer material 185 as it is reflected from the reflective surfaces 180. eventually emerging from the image converter 155 over the edge of the 14a century. It will be understood that the resulting image output from image converter 155 will be a shadow image, or see-through image, of that portion of eyelid 14 that is adjacent to image converter 155 and illuminated by illumination energy 170. Thus, the image converter 155 allows the translucent image 190 of the inside of the eyelid 14 to be viewed by direct imaging or by a magnifying element or camera, collectively shown as an imaging device or imaging tool 160, without having to evert the eyelid. In fig. 2F is a front view of the same embodiment as in FIG. 2E, which shows transillumination images of 190 meibomian glands.

[00105] Преобразователь 155 изображения может содержать набор зеркальных поверхностей или призму, имеющую отражающие поверхности. Альтернативно преобразователь изображения может содержать отклоняющий лучи элемент, такой как оптический волновод, оптоволоконный жгут, датчик изображения или некоторая их комбинация. Будет понятно, что в преобразователь 155 изображения могут быть включены различные требуемые оптические свойства, такие как проецирование, угловое смещение или увеличение изображения. Эти свойства могут быть достигнуты, например, путем искривления отражающих поверхностей 180, путем формирования поверхностей из передающего материала 185 и/или путем изменения показателя преломления, путем изменения плотности и распределения волоконных элементов в жгуте или с помощью какой-либо их комбинации. В тех вариантах осуществления, где преобразователь 155 изображения содержит датчик изображения, этот датчик может относиться к типу CCD, CMOS, люминесцентному концентратору (такому, как изготовленный в Университете Иоганна Кеплера, Линц, Австрия) или датчику любого типа, выполненному с возможностью захвата данных просвечивания и их перевода в визуальную, оптическую или электрическую информацию. [00105] The image converter 155 may include a set of mirror surfaces or a prism having reflective surfaces. Alternatively, the image converter may include a beam deflecting element such as an optical waveguide, an optical fiber bundle, an image sensor, or some combination thereof. It will be appreciated that various desired optical properties, such as projection, angular shift, or image magnification, may be included in the image converter 155. These properties can be achieved, for example, by curving the reflective surfaces 180, by shaping the surfaces from the transmission material 185 and/or by changing the refractive index, by changing the density and distribution of the fiber elements in the tow, or by some combination thereof. In those embodiments where image converter 155 includes an image sensor, the sensor may be a CCD type, a CMOS type, a fluorescent concentrator type (such as those manufactured by Johannes Kepler University, Linz, Austria), or any type of sensor capable of capturing transillumination data and their translation into visual, optical or electrical information.

[00106] В некоторых вариантах осуществления визуализация края 14а века во время диагностики и лечения века 14 обеспечивает значительную выгоду. Например, как описано выше, расположение века 14 между поверхностью 140 передачи энергии и склеральным экраном 300, содержащим преобразователь 155 изображения, обеспечивает возможность визуализации просвечивающегося изображения века и мейбомиевых желез. Как показано на фиг. 1B, морфология здоровых, закупоренных и атрофированных желез является достаточно различимой, чтобы позволять диагностику состояния каждой железы путем просмотра просвечивающегося изображения желез. Возвращаясь к фиг. 2D, состояние желез также можно оценить без просвечивания путем наблюдения края 14а века, при этом перемещая поверхность 140 передачи энергии по пути 145 перемещения для прижатия к веку 14. По мере сжатия века 14 наблюдают край 14а века и состояние железы оценивают по качеству и количеству выделений из протоков 19, как обсуждено ранее. [00106] In some embodiments, visualization of the 14a eyelid margin during diagnosis and treatment of the 14th eyelid provides significant benefit. For example, as described above, the positioning of the eyelid 14 between the energy transfer surface 140 and the scleral shield 300 containing the image transducer 155 allows for the imaging of a translucent image of the eyelid and meibomian glands. As shown in FIG. 1B, the morphology of healthy, obstructed, and atrophied glands is sufficiently distinct to allow diagnosis of the condition of each gland by viewing a transillumination image of the glands. Returning to FIG. 2D, the condition of the glands can also be assessed without transillumination by observing the edge of the 14a eyelid, while moving the energy transfer surface 140 along the movement path 145 to press against the eyelid 14. As the eyelid 14 contracts, the edge of the 14a eyelid is observed and the condition of the gland is assessed by the quality and quantity of the secretions of the ducts 19, as discussed earlier.

[00107] Если после диагностики необходимо лечение, устройство 100 для лечения глаза можно повторно расположить вдоль века 14 так, что преобладающая часть пораженных желез располагается между поверхностью 140 передачи энергии и склеральным экраном 300. После совершенного расположения поверхность 140 передачи энергии можно перемещать по пути 145 перемещения, вводя в контакт с поверхностью века 12, 14 и/или продолжая перемещение до склерального 300 экрана и приложения давления к веку 12, 14. [00107] If treatment is necessary after diagnosis, the eye treatment device 100 can be repositioned along the eyelid 14 so that the majority of the affected glands are located between the energy transfer surface 140 and the scleral shield 300. Once positioned, the energy transfer surface 140 can be moved along the path 145 movement, bringing into contact with the surface of the eyelid 12, 14 and/or continuing movement to the scleral screen 300 and applying pressure to the eyelid 12, 14.

[00108] Возвращаясь к фиг. 2D, между веком 12, 14 и поверхностью 140 передачи энергии может быть расположена необязательная связующая среда 195. Связующая среда 195 может представлять собой текучую среду, гель, крем и т. п. и может содержать такое средство, как глицерин, который может повышать эффективность пропускания света в веко и целевую ткань путем уменьшения рассеяния света и улучшения передачи света путем уменьшения несогласованности показателей преломления между веком 12, 14 и поверхностью 140 передачи энергии. Это также может способствовать уменьшению рассеяния гидратированными частями поверхности кожи века, такими как роговой слой. [00108] Returning to FIG. 2D, an optional coupling medium 195 may be disposed between the eyelid 12, 14 and the energy transfer surface 140. The coupling medium 195 may be a fluid, gel, cream, or the like, and may contain an agent such as glycerin, which may enhance efficacy. transmitting light into the eyelid and target tissue by reducing light scattering and improving light transmission by reducing refractive index mismatch between the eyelid 12, 14 and the energy transfer surface 140. It may also help reduce scattering by hydrated parts of the eyelid skin surface, such as the stratum corneum.

[00109] На фиг. 2G представлена структурная схема другого варианта осуществления устройства 100 для лечения глаза, содержащего модуль 110 источника питания, модуль 120 преобразователя энергии, необязательный модуль 130 волновода энергии, поверхность 140 передачи энергии и преобразователь 155 изображения, встроенный в склеральный экран 300. Преобразователь 155 изображения позволяет перенаправить по меньшей мере часть энергии от поверхности 140 передачи энергии ко внутренней стороне века 14. Например, веко 14 может быть расположено между поверхностью 140 передачи энергии и склеральным экраном 300, содержащим преобразователь 155 изображения. Поверхность 140 передачи энергии направляет энергию к по меньшей мере одному из наружной стороны века и преобразователя 155 изображения. Преобразователь 155 изображения имеет возможность перенаправить энергию от поверхности 140 передачи энергии ко внутренней стороне века. Преимуществом направления энергии через преобразователь 155 изображения ко внутренней поверхности века является то, что оно может обеспечивать эффективный способ доставки энергии, а значит и тепла, на по меньшей мере часть внутренней поверхности, смежной с краем века. Путем сочетания этого способа нагрева (посредством преобразователя 155 изображения) со способом нагрева, в котором энергия направляется через веко, можно оптимизировать общую эффективность нагрева внутренней поверхности века и добиться предпочтительного дополнительного нагрева внутренней поверхности, смежной с краем века, поскольку она представляет собой зону, в которой могут возникать значительные закупорка и непроходимость. Дополнительный датчик температуры может быть расположен возле ткани внутренней поверхности века смежно с краем века, там, где может происходить предпочтительный дополнительный нагрев (описанный и изображенный ниже со ссылкой на фиг. 3A). [00109] In FIG. 2G is a block diagram of another embodiment of an eye treatment device 100 comprising a power supply module 110, a power converter module 120, an optional power waveguide module 130, a power transfer surface 140, and an image converter 155 integrated into the scleral shield 300. The image converter 155 allows for redirection at least a portion of the energy from the energy transfer surface 140 to the inside of the eyelid 14. For example, the eyelid 14 may be located between the energy transfer surface 140 and the scleral screen 300 containing the image transducer 155. The energy transfer surface 140 directs energy to at least one of the outer side of the eyelid and the image converter 155. The image transducer 155 has the ability to redirect energy from the energy transfer surface 140 to the inside of the eyelid. An advantage of directing energy through the image transducer 155 to the inner surface of the eyelid is that it can provide an efficient method of delivering energy, and therefore heat, to at least a portion of the inner surface adjacent to the edge of the eyelid. By combining this heating method (via the image converter 155) with a heating method in which energy is directed through the eyelid, it is possible to optimize the overall heating efficiency of the inner surface of the eyelid and achieve preferential additional heating of the inner surface adjacent to the edge of the eyelid, since this is the area in which which may cause significant blockage and obstruction. An additional temperature sensor may be located near the tissue of the inner surface of the eyelid adjacent to the edge of the eyelid, where preferential additional heating may occur (described and depicted below with reference to Fig. 3A).

[00110] На фиг. 2H представлена структурная схема другого варианта осуществления устройства 100 для лечения глаза, содержащего модуль 110 источника питания, модуль 120 преобразователя энергии, необязательный модуль 130 волновода энергии, поверхность 140 передачи энергии и склеральный экран 300, подобный представленному на фиг. 2С. В некоторых вариантах осуществления склеральный экран 300 может дополнительно содержать преобразующее энергию покрытие 194, выполненное с возможностью активации определенными типами энергии, проходящей через веко. В одном варианте осуществления преобразующее энергию покрытие 194 выполнено с возможностью преобразования направления энергии обратно к внутренней стороне века с использованием той же формы энергии, что и первоначально прошедшая через веко. В другом варианте осуществления преобразующее энергию покрытие 194 может изменять тип энергии и направлять или излучать измененную энергию в предпочтительном направлении. В одном варианте осуществления это покрытие является фосфоресцирующим. Например, энергия, пропускаемая через веко, может представлять собой видимый или инфракрасный свет с длиной волны, легко проходящей через ткань с небольшим поглощением, и когда эта энергия достигает преобразующего энергию покрытия 194, фосфоресцирующий материал излучает световую энергию другой длины волны, которая легче поглощается тканью, смежной с покрытием, которая в предпочтительном варианте осуществления представляет собой внутреннюю поверхность века, содержащую мейбомиевы железы. В другом варианте осуществления определенная форма энергии, поглощенная покрытием, запускает экзотермическую химическую реакцию, которая может нагревать внутреннюю поверхность века. Некоторые варианты осуществления, представленные на фиг. 2А-2Н, могут также содержать одно или несколько из следующего: склеральный экран с кронштейнами, отражающий формирователь изображения, встроенный в склеральный экран, дисплей различных температур, расходную часть, соединитель и схему для осуществления связи между устройством и расходной частью с целью идентификации расходной части и предотвращения ее повторного использования, регистратор данных, диктофон и фотокамеру с возможностью записи и/или передачи, которая приводится в действие энергией определенных типов, проходящей через веко. В одном варианте осуществления преобразующее энергию покрытие 194 выполнено с возможностью преобразования направления энергии обратно к внутренней стороне века с использованием той же формы энергии, что и первоначально прошедшая через веко. В другом варианте осуществления преобразующее энергию покрытие 194 может изменять тип энергии и направлять или излучать измененную энергию в предпочтительном направлении. В одном варианте осуществления это покрытие представляет собой фосфоресцирующий материал, который активируется энергией, пропускаемой через веко от поверхности 140 передачи энергии. Например, энергия, пропускаемая через веко, может представлять собой видимый или инфракрасный свет с длиной волны, легко проходящей через ткань с небольшим поглощением, и когда эта энергия достигает преобразующего энергию покрытия 194, фосфоресцирующий материал излучает световую энергию другой длины волны, которая легче поглощается тканью, смежной с покрытием, которая в предпочтительном варианте осуществления представляет собой внутреннюю поверхность века, содержащую мейбомиевы железы. В другом варианте осуществления определенная форма энергии, поглощенная покрытием, запускает экзотермическую химическую реакцию, которая может нагревать внутреннюю поверхность века. [00110] In FIG. 2H is a block diagram of another embodiment of an eye treatment device 100 comprising a power supply module 110, a power converter module 120, an optional power waveguide module 130, a power transfer surface 140, and a scleral shield 300 similar to that shown in FIG. 2C. In some embodiments, the scleral shield 300 may further include an energy converting coating 194 configured to be activated by certain types of energy passing through the eyelid. In one embodiment, the energy conversion coating 194 is configured to convert energy back toward the inside of the eyelid using the same form of energy that originally passed through the eyelid. In another embodiment, the energy conversion coating 194 can change the type of energy and direct or emit the changed energy in a preferred direction. In one embodiment, this coating is phosphorescent. For example, the energy transmitted through the eyelid may be visible or infrared light of a wavelength that easily passes through the tissue with little absorption, and when this energy reaches the energy conversion coating 194, the phosphorescent material emits light energy of a different wavelength that is more easily absorbed by the tissue adjacent to the coating, which in a preferred embodiment is the inner surface of the eyelid containing the meibomian glands. In another embodiment, a certain form of energy absorbed by the coating triggers an exothermic chemical reaction that can heat the inner surface of the eyelid. Some embodiments shown in FIGS. 2A-2H may also include one or more of the following: a scleral screen with brackets, a reflective imager built into the scleral screen, a multi-temperature display, a consumable part, a connector, and circuitry for communicating between the device and the consumable part for the purpose of identifying the consumable part. and preventing its reuse, a data logger, a voice recorder and a camera with recording and/or transmission capabilities that is powered by certain types of energy passing through the eyelid. In one embodiment, the energy conversion coating 194 is configured to convert energy back toward the inside of the eyelid using the same form of energy that originally passed through the eyelid. In another embodiment, the energy conversion coating 194 can change the type of energy and direct or emit the changed energy in a preferred direction. In one embodiment, this coating is a phosphorescent material that is activated by energy transmitted through the eyelid from the energy transfer surface 140. For example, the energy transmitted through the eyelid may be visible or infrared light of a wavelength that easily passes through the tissue with little absorption, and when this energy reaches the energy conversion coating 194, the phosphorescent material emits light energy of a different wavelength that is more easily absorbed by the tissue adjacent to the coating, which in a preferred embodiment is the inner surface of the eyelid containing the meibomian glands. In another embodiment, a certain form of energy absorbed by the coating triggers an exothermic chemical reaction that can heat the inner surface of the eyelid.

[00111] На фиг. 3A представлен схематический вид сбоку в плане одного варианта осуществления устройства 200 для лечения глаза. Устройство 200 для лечения глаза, показанное на фиг. 3A, показано для расположения относительно глазного яблока 20 с целью лечения века 14 от MGD, блефарита и других заболеваний. В некоторых вариантах осуществления устройство 200 для лечения глаза выполнено с возможностью нагрева внутренней и/или наружной поверхностей века с одновременным сжатием века. По мере передачи тепла из устройства 200 для лечения глаза в систему 10 глаза, в частности в подвергаемую лечению ткань, такую как мейбомиевы железы, нагрев может размягчать секрет мейбомиевых желез и таким образом позволять легче выдавливать секрет мейбомиевых желез во время массажа или упражнений для глаз. Устройство 200 для лечения глаза может включать конфигурации модулей, изображенных на фиг. 2А-2Н, наряду с дополнительными компонентами, применяемыми в работе устройства 200 для лечения глаза. [00111] In FIG. 3A is a schematic side plan view of one embodiment of an eye treatment device 200. The eye treatment device 200 shown in FIG. 3A is indicated for placement relative to the eyeball 20 for the purpose of treating eyelid 14 for MGD, blepharitis and other diseases. In some embodiments, the eye treatment device 200 is configured to heat the inner and/or outer surfaces of the eyelid while simultaneously compressing the eyelid. As heat is transferred from the eye treatment device 200 to the eye system 10, particularly to the tissue being treated, such as the meibomian glands, the heat may soften the meibomian gland secretions and thus allow the meibomian gland secretions to be more easily squeezed out during massage or eye exercises. The eye treatment device 200 may include the module configurations shown in FIG. 2A-2H, along with additional components used in the operation of the eye treatment device 200.

[00112] Устройство 200 для лечения глаза может содержать корпус 202, соединенный со съемной, или расходной, частью 260, которая может быть соединена с корпусом 202 средствами 186 крепления, которые могут представлять собой штифты, направляющие, защелки и т. п. Корпус 202 может содержать модуль 110 источника питания, необязательное устройство 212 управления, модуль 120 преобразователя энергии и поверхность 140 передачи энергии, выполненную с возможностью относительного перемещения по пути 145 перемещения относительно модуля 120 преобразователя энергии. Альтернативно поверхность 140 передачи энергии может быть связана с модулем 120 преобразователя энергии и необязательно терморегулирующей конструкцией 220 или может составлять их часть, и совместно они могут быть выполнены с возможностью относительного перемещения относительно корпуса 202 или других частей устройства 200 для лечения глаза. Перемещение поверхности 140 передачи энергии и связанных частей может осуществляться, например, с использованием привода 182. Модуль 120 преобразователя энергии согласно некоторым вариантам осуществления, таким как показанные на фиг. 3A, может содержать светодиодное устройство, образованное из одного или нескольких из светодиодного излучателя 207, светодиодной линзы 208, терморегулирующей конструкции 220 и задающего устройства 209 модуля преобразователя энергии. Корпус 202 может дополнительно содержать средства 160 визуализации для улучшенного текущего контроля края века во время диагностики и лечения, дисплей или приборную доску 218, на которых показываются различные температуры века, например температуры внутренней и/или наружной поверхности, регистратор 214 данных, диктофон 213 и схему 226а для осуществления связи между устройством и схемой 226b расходной части с целью идентификации типа расходной части, обеспечения нахождения расходной части в надлежащем выравнивании и/или предотвращения повторного использования расходной части. Расходная часть 260 может содержать склеральный экран 300, который может быть расположен между веком 12, 14 и глазным яблоком 20, чтобы защищать чувствительные структуры системы 10 глаза (как показано на фиг. 1). Например, склеральный экран может быть расположен над склерой 21 и роговицей 22, а также может обеспечивать защиту другой внутренней структуры глаза, такой как радужная оболочка 24, зрачок 25, хрусталик 26 и другие светочувствительные структуры системы 10 глаза. Использование склерального экрана 300 может повышать безопасность и снижать вероятность достижения и повреждения чувствительных структур глаза вредными световыми излучениями из модуля 120 преобразователя энергии. Склеральный экран 300 может быть образован из энергопоглощающего материала и/или может содержать энергопоглощающую лицевую поверхность 302. В любом случае, энергия, пропускаемая через веко, которая поглощается склеральным экраном 300 или энергопоглощающей лицевой поверхностью 302, может нагревать экран или лицевую поверхность, соответственно, и таким образом обеспечивать нагрев внутренней поверхности века. Задняя поверхность и края склерального экрана 300 предпочтительно выполнены из такого материала и с помощью такого процесса, которые обеспечивают гладкую, не содержащую заусенцев отделку, которая не может вызывать повреждение, или снижает вероятность повреждения, роговицы или других чувствительных структур глаза. В одном предпочтительном варианте осуществления задняя поверхность и края покрыты вспененным материалом Teflon(r) (ePTFE). Склеральный экран 300 также может содержать один или несколько датчиков 310 температуры для текущего контроля температуры, а также датчики 221 усилия или давления для текущего контроля величины усилия или давления, прикладываемого к веку. Датчики 310 и 221 могут соединяться со схемой в корпусе 202 электрическими проводниками, такими как провода 420. На фиг. 3В показан один вариант осуществления склерального экрана 300, дополнительно содержащий преобразователь 155 изображения, который, как описано ранее, позволяет осматривать внутреннюю сторону века 14 и мейбомиевы железы за веком. В некоторых вариантах осуществления склеральный экран 300 может дополнительно содержать средства передачи данных и/или встроенный источник питания, которые оба более подробно обсуждены ниже как средства 320 передачи данных и встроенный источник 330 питания, например на фиг. 7А. В качестве дополнительного пояснения, склеральный экран 300 может быть соединен с корпусом 202 различными способами, например одним или несколькими проводами 420, причем эти провода содержат изоляцию с достаточной механической прочностью для того, чтобы служить в качестве кронштейнов 262. Дополнительно некоторые варианты осуществления могут содержать схему 226а и 226b для осуществления связи межу устройством и расходной частью. [00112] The eye treatment device 200 may include a housing 202 coupled to a removable, or consumable, portion 260 that may be coupled to the housing 202 by means of attachment 186, which may be pins, guides, latches, or the like. Housing 202 may include a power supply module 110, an optional control device 212, a power converter module 120, and a power transfer surface 140 movable relative to a movement path 145 relative to the power converter module 120. Alternatively, the energy transfer surface 140 may be coupled to or constitute a part of the energy converter module 120 and optionally the thermostatic structure 220, and together may be relatively movable with respect to the housing 202 or other parts of the eye treatment device 200. Movement of the power transfer surface 140 and associated parts may be accomplished, for example, using an actuator 182. The power converter module 120 according to some embodiments, such as those shown in FIG. 3A may include an LED device formed from one or more of an LED emitter 207, an LED lens 208, a temperature control structure 220, and a power converter module driver 209. Housing 202 may further include visualization means 160 for improved monitoring of the eyelid margin during diagnosis and treatment, a display or instrument panel 218 showing various eyelid temperatures, such as inner and/or outer surface temperatures, a data logger 214, a voice recorder 213, and a circuit diagram. 226a to communicate between the device and the consumable circuit 226b to identify the type of consumable, ensure that the consumable is in proper alignment, and/or prevent reuse of the consumable. The consumable portion 260 may include a scleral shield 300 that may be positioned between the eyelid 12, 14 and the eyeball 20 to protect the sensitive structures of the eye system 10 (as shown in FIG. 1). For example, the scleral shield may be located over the sclera 21 and cornea 22, and may also provide protection to other internal structures of the eye, such as the iris 24, pupil 25, lens 26, and other light-sensitive structures of the eye system 10. Use of the scleral shield 300 may improve safety and reduce the likelihood of harmful light emissions from the energy converter module 120 reaching and damaging sensitive structures of the eye. The scleral shield 300 may be formed from an energy-absorbing material and/or may include an energy-absorbing facial surface 302. In either case, energy transmitted through the eyelid that is absorbed by the scleral shield 300 or the energy-absorbing facial surface 302 may heat the shield or facial surface, respectively, and thus ensuring heating of the inner surface of the eyelid. The back surface and edges of the scleral shield 300 are preferably made from a material and process that provides a smooth, burr-free finish that does not cause damage to, or reduce the likelihood of damage to, the cornea or other sensitive structures of the eye. In one preferred embodiment, the back surface and edges are covered with Teflon(r) foam (ePTFE). The scleral screen 300 may also include one or more temperature sensors 310 for monitoring temperature, as well as force or pressure sensors 221 for monitoring the amount of force or pressure applied to the eyelid. Sensors 310 and 221 may be coupled to circuitry in housing 202 by electrical conductors, such as wires 420. In FIG. 3B shows one embodiment of a scleral screen 300 further comprising an image transducer 155 that, as previously described, allows viewing of the inside of the eyelid 14 and the meibomian glands behind the eyelid. In some embodiments, the scleral screen 300 may further include communication means and/or an integrated power supply, both of which are discussed in more detail below as communication means 320 and an integrated power supply 330, such as in FIG. 7A. By way of further clarification, scleral shield 300 may be connected to housing 202 in various ways, such as by one or more wires 420, which wires comprise insulation with sufficient mechanical strength to serve as brackets 262. Additionally, some embodiments may include circuitry 226a and 226b for communication between the device and the consumable part.

[00113] В некоторых вариантах осуществления перед светодиодным излучателем 207 может использоваться линза 208, такая как светодиодная линза. В некоторых вариантах осуществления светодиодная линза 208 может представлять собой линзу специальной формы, используемую для управления направлением и интенсивностью светодиодного излучателя 207 к требующей лечения ткани и/или склеральному экрану 300. В некоторых вариантах осуществления поверхность 140 передачи энергии может действовать как линза или использоваться в сочетании с линзой, чтобы фокусировать и направлять энергию из модуля 120 преобразователя энергии или светодиодного излучателя 207 к требующим лечения областям. [00113] In some embodiments, a lens 208, such as an LED lens, may be used in front of the LED emitter 207. In some embodiments, the LED lens 208 may be a specially shaped lens used to control the direction and intensity of the LED emitter 207 toward the tissue requiring treatment and/or the scleral shield 300. In some embodiments, the energy transfer surface 140 may act as a lens or be used in combination with a lens to focus and direct energy from the energy converter module 120 or LED emitter 207 to the areas requiring treatment.

[00114] Каждый из этих компонентов или по отдельности, или в комбинации с другими компонентами любой из вариантов осуществления, описанных в данном документе. [00114] Each of these components, either individually or in combination with other components of any of the embodiments described herein.

[00115] Устройство 200 для лечения глаза может содержать модуль 110 источника питания для предоставления питания в различные компоненты устройства 200 для лечения глаза и может быть электрически соединен с некоторыми или всеми компонентами. В некоторых вариантах осуществления модуль 110 источника питания представляет собой батарею, действующую или как обычные батареи, или как перезаряжаемые батареи, которые можно соединять с подзарядной системой. В других вариантах осуществления модуль 110 источника питания может быть соединен с внешним источником питания, таким как электрическая розетка или питание от внешней батареи. В некоторых вариантах осуществления модуль 110 источника питания может быть электрически соединен с устройством 212 управления для приема команд с устройства 212 управления с целью подачи электроэнергии на различные компоненты устройства 200 для лечения глаза. [00115] The eye treatment device 200 may include a power supply module 110 for providing power to various components of the eye treatment device 200 and may be electrically coupled to some or all of the components. In some embodiments, the power supply module 110 is a battery, operating either as conventional batteries or as rechargeable batteries that can be coupled to a charging system. In other embodiments, the power supply module 110 may be connected to an external power source, such as an electrical outlet or power from an external battery. In some embodiments, power supply module 110 may be electrically coupled to control device 212 to receive commands from control device 212 to provide electrical power to various components of eye treatment device 200.

[00116] В некоторых вариантах осуществления, содержащих устройство 212 управления, устройство 212 управления может принимать входные команды от пользователя (например, посредством устройства 270 пользовательского интерфейса, такого как кнопка, переключатель, сенсорный экран, голосовые команды, с другого модуля или устройства, такого как смартфон) для излучения света из светодиодного излучателя 207. При приеме от пользователя входных команд устройство 212 управления может давать модулю 110 источника питания команду на доставку энергии в задающее устройство 209 модуля преобразователя энергии или из него, что позволяет светодиодному излучателю 207 преобразовывать электроэнергию из модуля 110 источника питания в другую форму электромагнитной энергии (такую, как свет). Таким образом, задающее устройство 209 модуля преобразователя энергии и светодиодный излучатель 207 могут действовать как преобразователь электроэнергии, принимаемой из модуля 110 источника питания. [00116] In some embodiments containing a control device 212, the control device 212 may receive input commands from a user (e.g., through a user interface device 270 such as a button, switch, touch screen, voice commands, from another module or device, such like a smartphone) to emit light from the LED emitter 207. Upon receiving input commands from a user, the control device 212 may instruct the power supply module 110 to deliver power to or from the power converter module driver 209, which allows the LED emitter 207 to convert electrical power from the module 110 power source into another form of electromagnetic energy (such as light). Thus, the power converter module driver 209 and the LED emitter 207 can act as a converter of power received from the power supply module 110.

[00117] Задающее устройство 209 модуля преобразователя энергии может содержать любую схему питания и управления светодиода, выполненную как фактическая печатная схемная плата, интегральная схема или дискретные компоненты. В некоторых вариантах осуществления оно выполняет функцию задающего устройства светодиода, подающего управляемые ток, напряжение или уровень мощности через светодиодный излучатель 207 в рамках технических условий светодиода для обеспечения от него требуемой интенсивности освещения. Необязательно печатная схемная плата светодиода может включать функцию широтно-импульсной модуляции, схему PID или аналогичную схему для модуляции эффективной интенсивности излучения в зависимости от времени с целью достижения требуемого нагрева целевой области века. [00117] The power converter module driver 209 may include any LED power and control circuitry implemented as an actual printed circuit board, integrated circuit, or discrete components. In some embodiments, it functions as an LED driver that supplies a controlled current, voltage, or power level through the LED emitter 207 within the LED's specifications to produce the required lighting intensity from it. Optionally, the LED printed circuit board may include a pulse width modulation function, PID circuit, or similar circuitry for modulating the effective irradiation intensity as a function of time to achieve the desired heating of the target area of the eyelid.

[00118] Светодиодный излучатель 207 составляет часть модуля 120 преобразователя энергии одного типа, который может быть приспособлен для излучения света с надлежащей длиной волны, необходимой для требуемого лечения. Лечение может включать одно или несколько из следующего: диагностику век 12, 14 путем освещения внутренней и/или наружной поверхностей, краев век и/или мейбомиевых желез за веками; нагрев целевой области ткани системы 10 глаза (например, мейбомиевых желез за веками 12, 14); и антибактериальную обработку для уничтожения бактерий в системе 10 глаза. Следует отметить, что описания различных устройств в данном документе (в том числе устройства 200 для лечения глаза) являются примерными и неограничивающими. Таким образом, например, хотя в данном подробном описании упоминаются конкретные элементы и схемы, выполняющие конкретные функции, это не ограничивает настоящее описание данными частными вариантами осуществления. Например, хотя упоминаются светодиоды, могут использоваться другие источники света, такие как лампа накаливания, ксеноновая, галогенная лампа, разрядная лампа высокой интенсивности, лампа с холодным катодом, флуоресцентные, лазерные и другие источники света или источники энергии. Аналогично, хотя упоминаются устройство 212 управления и задающее устройство 209 модуля преобразователя энергии, будет понятно, что устройство управления может быть встроено в схему задающего устройства для источника излучения или схему для твердотельного или другого источника питания, или для получения требуемого результата могут использоваться другие конфигурации. Кроме того, некоторые или все функции, описанные как обрабатываемые устройством 212 управления или находящиеся под его управлением, могут быть реализованы с использованием дискретной логики, аналоговой схемы или их комбинации. Кроме того, хотя различные варианты осуществления, такие как устройство 200 для лечения глаза, изображены схематически, они могут быть выполнены во множестве портативных или стационарных конфигураций с необязательными поверхностями для захвата, конструкциями для манипуляций и управления и т. п. Кроме того, устройства, описанные в данном документе, могут быть предназначены для использования в самых разнообразных обстановках, включая домашнее использование и использование в кабинете врача-офтальмолога, медицинской клинике или другом учреждении здравоохранения. [00118] The LED emitter 207 forms part of one type of power converter module 120 that may be configured to emit light of the appropriate wavelength needed for the desired treatment. Treatment may include one or more of the following: diagnosing the eyelids 12, 14 by illuminating the inner and/or outer surfaces, eyelid margins, and/or meibomian glands behind the eyelids; heating the target tissue area of the eye system 10 (for example, the meibomian glands behind the eyelids 12, 14); and antibacterial treatment to kill bacteria in the eye system 10. It should be noted that the descriptions of various devices herein (including the eye treatment device 200) are exemplary and non-limiting. Thus, for example, although this detailed description makes reference to specific elements and circuits that perform specific functions, it does not limit the present description to these particular embodiments. For example, although LEDs are mentioned, other light sources may be used, such as incandescent, xenon, halogen, high intensity discharge, cold cathode, fluorescent, laser, and other light or energy sources. Likewise, while the control device 212 and the power converter module driver 209 are mentioned, it will be understood that the control device may be incorporated into the driver circuit for the radiation source or the circuit for the solid state or other power source, or other configurations may be used to obtain the desired result. In addition, some or all of the functions described as being processed or controlled by control device 212 may be implemented using discrete logic, analog circuitry, or a combination thereof. In addition, although various embodiments, such as the eye treatment device 200, are depicted schematically, they may be configured in a variety of portable or stationary configurations with optional gripping surfaces, manipulation and control structures, and the like. In addition, devices described herein may be intended for use in a wide variety of settings, including home use and use in an eye doctor's office, medical clinic, or other health care setting.

[00119] В некоторых вариантах осуществления модуль 120 преобразователя энергии может альтернативно представлять собой лампу широкого спектра, такую как лампа накаливания, ксеноновая или галогенная лампа. Такие лампы широкого спектра можно использовать в сочетании с одним или несколькими цветовыми фильтрами для удаления определенных длин волн, не являющихся необходимыми для лечения болезни глаза, или удаления определенных длин волн, которые могут являться вредными для подвергаемой лечению ткани в целевой области (например, мейбомиевых железах 18) системы 10 глаза во время приложения энергии из модуля 120 преобразователя энергии к подвергаемой лечению ткани. [00119] In some embodiments, power converter module 120 may alternatively be a broad spectrum lamp, such as an incandescent, xenon, or halogen lamp. Such broad spectrum lamps can be used in combination with one or more color filters to remove certain wavelengths that are not necessary to treat an eye disease, or to remove certain wavelengths that may be harmful to treated tissue in the target area (eg, meibomian glands 18) of the eye system 10 during application of energy from the energy converter module 120 to the tissue being treated.

[00120] В некоторых вариантах осуществления энергия, излучаемая из модуля 110 источника питания, может быть преобразована в видимый свет и может излучаться светодиодным излучателем 207. Для некоторых вариантов осуществления желательно использовать свет с длиной волны, выбранной для: а) проникновения в веко на глубину мейбомиевой железы (например, обычно на приблизительно 1-2 мм у некоторых людей) или другой смежной целевой ткани века и поглощения там, b) сведения к минимуму количества света, проникающего за ткань века, и с) сведения к минимуму величины нагрева, возникающего на поверхности века. Например, в некоторых вариантах осуществления светодиодный излучатель 207 может излучать свет, имеющий длину волны в диапазоне 400-700 нм. В некоторых вариантах осуществления светодиодный излучатель 207 может излучать свет, представляющий по существу один цвет, выбранный для оптимального лечения мейбомиевых желез 18 в системе 10 глаза. В некоторых вариантах осуществления светодиодный излучатель 207 может излучать свет в некотором диапазоне длин волн, при этом длину волны выбирают на основе требований лечения пациента или на основе намеченного назначения конкретного этапа в многоэтапной схеме лечения. [00120] In some embodiments, the energy emitted from the power supply module 110 may be converted to visible light and may be emitted by the LED emitter 207. For some embodiments, it is desirable to use light with a wavelength selected to: a) penetrate the eyelid to a depth meibomian gland (e.g., typically approximately 1-2 mm in some individuals) or other adjacent target eyelid tissue and absorption there, b) minimizing the amount of light penetrating the eyelid tissue, and c) minimizing the amount of heat generated at surface of the eyelid. For example, in some embodiments, the LED emitter 207 may emit light having a wavelength in the range of 400-700 nm. In some embodiments, the LED emitter 207 may emit light representing substantially one color selected to optimally treat the meibomian glands 18 in the eye system 10. In some embodiments, the LED emitter 207 may emit light over a range of wavelengths, with the wavelength selected based on the treatment requirements of the patient or based on the intended purpose of a particular step in a multi-step treatment regimen.

[00121] В некоторых вариантах осуществления выбран источник освещения, излучающий длины волн в диапазоне 500-600 нм. При выборе длин волн в диапазоне 500-600 нм может учитываться множество соображений. Например, данный диапазон может быть выбран с целью достижения наивысшего поглощения световых лучей в ткани. Энергия света, падающая на кожу млекопитающих, отражается, пропускается или поглощается. Отражение зависит от свойств кожи, длины волны и угла падения. Световые лучи, достигающие поверхности кожи перпендикулярно к плоскости поверхности, отражаются в меньшей степени, чем достигающие кожи под косым углом. Пропускание света через кожу зависит от внутреннего рассеяния, длины волны и поглощения. Внутреннее рассеяние зависит от химических и физических свойств кожи и расположенных под ней тканей. Могут играть роль толщина века, плотность кератиноцитов, коллаген и жир. Поглощение в первую очередь зависит от концентрации и распределения определенных молекул, называемых хромофорами, которые, как правило, выборочно поглощают свет определенных длин волн. В коже человека основными хромофорами, поглощающими свет в видимой области спектра, являются оксигемоглобин, дезоксигемоглобин, различные меланины и, в некоторой степени, вода. Вода по существу не поглощает свет с длинами волн вплоть до темно-красной и инфракрасной части спектра. Меланины, как правило, обладают довольно высокой степенью поглощения в видимом спектре, которая постепенно сужается по мере увеличения длины волны. Два пика поглощения для оксигемоглобина наблюдаются при приблизительно 532 нм и 577 нм. Пик дезоксигемоглобина находится при приблизительно 550 нм. [00121] In some embodiments, a light source emitting wavelengths in the range of 500-600 nm is selected. There are many considerations that may come into play when selecting wavelengths in the 500-600 nm range. For example, a given range may be selected to achieve the highest absorption of light rays in the tissue. Light energy falling on the skin of mammals is reflected, transmitted, or absorbed. Reflection depends on the properties of the skin, wavelength and angle of incidence. Light rays that reach the skin surface perpendicular to the surface plane are reflected to a lesser extent than those that reach the skin at an oblique angle. The transmission of light through the skin depends on internal scattering, wavelength and absorption. Internal scattering depends on the chemical and physical properties of the skin and underlying tissues. Eyelid thickness, keratinocyte density, collagen, and fat may play a role. Absorption primarily depends on the concentration and distribution of certain molecules called chromophores, which tend to selectively absorb light of certain wavelengths. In human skin, the main chromophores that absorb light in the visible region of the spectrum are oxyhemoglobin, deoxyhemoglobin, various melanins and, to some extent, water. Water essentially does not absorb light with wavelengths up to the deep red and infrared portions of the spectrum. Melanins generally have a fairly high degree of absorption in the visible spectrum, which gradually narrows as the wavelength increases. Two absorption peaks for oxyhemoglobin are observed at approximately 532 nm and 577 nm. The peak of deoxyhemoglobin is at approximately 550 nm.

[00122] В различных вариантах осуществления на выбор длин волн также оказывают влияние технические ограничения. Выбранной является длина волны, которая может излучаться устройством, которая может быть легко получена в практической конфигурации с потребляемой мощностью и физической реализацией, подходящими для устройства, доставляющего световую энергию к веку. В случае светодиодов очень большой мощности в настоящее время имеются ограниченные возможности выбора, хотя усовершенствования в будущем вероятны. Например, компания «LED Engin Inc.» (Сан-Хосе, Калифорния) производит зеленые светодиоды в версии с мощностью 10 Вт, такие как LZ4-00G108, имеющие номинальную центральную/пиковую длину волны приблизительно 523 нм. Также доступны ограниченные количества с пиковыми длинами волн приблизительно 527 нм и 532 нм. [00122] In various embodiments, the choice of wavelengths is also influenced by technical limitations. The selected wavelength is a wavelength that can be emitted by the device that can be easily obtained in a practical configuration with power consumption and physical implementation suitable for a device delivering light energy to the eyelid. For very high power LEDs, there are currently limited choices available, although future improvements are likely. For example, LED Engine Inc. (San Jose, Calif.) produces green LEDs in 10-watt versions such as the LZ4-00G108, which have a nominal center/peak wavelength of approximately 523 nm. Also available in limited quantities with peak wavelengths of approximately 527 nm and 532 nm.

[00123] Различные варианты осуществления излучают длины волн в 500-700 нм части видимого спектра для получения требуемого эффекта нагрева ткани без избыточного пропускания через веко (и последующего нежелательного нагрева структур за веком) и без избыточного нагрева поверхности. Кроме того, излучаемые длины волн в этой части спектра видимого света исключают нежелательную часть электромагнитного спектра для вариантов осуществления, не содержащих склеральный экран, в том числе ультрафиолетовую, инфракрасную и синюю. [00123] Various embodiments emit wavelengths in the 500-700 nm portion of the visible spectrum to produce the desired tissue heating effect without excessive transmission through the eyelid (and subsequent unwanted heating of structures behind the eyelid) and without excessive surface heating. In addition, emitted wavelengths in this portion of the visible light spectrum exclude undesirable portions of the electromagnetic spectrum for non-scleral shield embodiments, including ultraviolet, infrared, and blue.

[00124] В некоторых вариантах осуществления свет с большими длинами волн используют для более глубокого проникновения в ткань. Например, свет «красного» и ближнего инфракрасного (БИК) диапазона с длинами волн 700-1000 нм легче проходит через веко, проникая глубже, чем длины волн в вышеописанных диапазонах. Имеется «оптическое окно» человеческой ткани приблизительно 800-900 нм, в котором энергия наиболее эффективно проходит через ткань и веки вследствие того, что поглощение хромофором находится на его низшем уровне. Для применения светолечения к векам без использования склерального экрана БИК с большей вероятностью не будет использоваться вследствие избыточного прохождения световой энергии через веко непосредственно в глаз, возможно оказывая влияние на чувствительные ткани глаза. Однако при использовании склерального экрана для защиты глаза БИК можно преимущественно использовать для прохождения через веко. Например, БИК с длиной волны 850 нм может проходить через веко и поглощаться склеральным экраном, который, в свою очередь, может нагревать смежную с ним ткань на внутренней поверхности века. Для полноты обсуждения следует отметить, что некоторые длины волн коротковолновой и средневолновой инфракрасной области (иногда называемых ИК-К и ИК-С) имеют более высокие уровни поглощения водой, чем наивысшее суммарное поглощение других хромофоров, обсужденных выше. В частности было показано, что столь высоким поглощением обладает длина волны 3000 нм. Таким образом, могут существовать варианты осуществления, в которых эта длина волны или другие длины волн в этой полосе безопасно используются со склеральным экраном или без него. Следует отметить, что при столь больших длинах волн имеются и другие «оптические окна» (в дополнение к упомянутому окну 800-900 нм), которые могут быть преимущественными для использования в некоторых вариантах осуществления. [00124] In some embodiments, longer wavelengths of light are used to penetrate deeper into tissue. For example, light in the “red” and near-infrared (NIR) ranges with wavelengths of 700-1000 nm passes more easily through the eyelid, penetrating deeper than wavelengths in the ranges described above. There is an "optical window" of human tissue of approximately 800-900 nm in which energy passes most efficiently through the tissue and eyelids due to the fact that the chromophore absorption is at its lowest level. For the application of light therapy to the eyelids without the use of a scleral shield, NIR is more likely not to be used due to excess light energy passing through the eyelid directly into the eye, possibly affecting the sensitive tissues of the eye. However, when using a scleral shield to protect the eye, NIR can be preferentially used to pass through the eyelid. For example, 850 nm NIR can pass through the eyelid and be absorbed by the scleral shield, which in turn can heat adjacent tissue on the inner surface of the eyelid. For completeness of discussion, it should be noted that some wavelengths of the short and mid-wave infrared (sometimes called IR-R and IR-S) have higher absorption levels in water than the highest total absorption of the other chromophores discussed above. In particular, it was shown that a wavelength of 3000 nm has such high absorption. Thus, there may be embodiments in which this wavelength or other wavelengths in this band are safely used with or without a scleral shield. It should be noted that at such long wavelengths there are other "optical windows" (in addition to the aforementioned 800-900 nm window) that may be advantageous for use in some embodiments.

[00125] В некоторых вариантах осуществления источник освещения, излучающий синий или фиолетовый свет в диапазоне 400-450 нм, может быть использован для сокращения количества и/или устранения бактерий в системе 10 глаза. Известно, что воздействие видимого света, в частности света с длинами волн синей или фиолетовой области, вызывает инактивацию некоторых видов бактерий. Обычные бактерии включают S. aureus, S. epidermidis, B. oleronius и P. acnes. При выборе длин волн в диапазоне 400-450 нм может учитываться множество соображений. Например, важно, чтобы излучающий источник (светодиод) не излучал значительное количество энергии ниже приблизительно 400 нм, которая относятся к длинноволновому УФ спектру и может быть связана с раком кожи. [00125] In some embodiments, a light source emitting blue or violet light in the 400-450 nm range can be used to reduce and/or eliminate bacteria in the eye system 10. Exposure to visible light, particularly light with wavelengths in the blue or violet region, is known to inactivate certain types of bacteria. Common bacteria include S. aureus, S. epidermidis, B. oleronius and P. acnes. There may be many considerations when selecting wavelengths in the 400-450 nm range. For example, it is important that the emitting source (LED) does not emit significant amounts of energy below approximately 400 nm, which is in the long-wave UV spectrum and may be associated with skin cancer.

[00126] В другом варианте осуществления могут быть выбраны одна или несколько длин волн света, которые предпочтительно поглощаются наружным скелетом, внутренними структурами или яйцами клещей рода Demodex, с целью их уничтожения, инактивации или прерывания репродуктивных процессов. [00126] In another embodiment, one or more wavelengths of light may be selected that are preferentially absorbed by the exoskeleton, internal structures, or eggs of Demodex mites to kill, inactivate, or interrupt reproductive processes.

[00127] В некоторых вариантах осуществления источник освещения можно использовать для указания характеристик толщины и устойчивости слезной пленки. Например, модуль преобразователя энергии может содержать источник кобальтового синего, а средства 160 визуализации (например, окуляр) могут содержать желтый фильтр Враттена, и пациенту могут быть выданы флуоресцеиновые глазные капли, благодаря чему клинический врач может измерять время разрыва слезной пленки путем наблюдения поверхности глаза через фильтр Враттена. Альтернативно различные длины волн фотонной энергии могут направлять на поверхность или по поверхности глаза в присутствии или в отсутствие индикаторных глазных капель и устойчивость и/или толщину слезной пленки и/или липидного слоя можно определять с помощью или прямого визуального наблюдения, или захвата и обработки изображения. [00127] In some embodiments, a light source can be used to indicate tear film thickness and stability characteristics. For example, the energy converter module may contain a cobalt blue source, and the imaging means 160 (e.g., an eyepiece) may contain a yellow Wratten filter, and fluorescein eye drops may be provided to the patient, whereby the clinician can measure tear film breakup time by observing the ocular surface through Wratten filter. Alternatively, different wavelengths of photon energy can be delivered to or across the surface of the eye in the presence or absence of tracer eye drops, and the stability and/or thickness of the tear film and/or lipid layer can be determined by either direct visual observation or image capture and processing.

[00128] В другом варианте осуществления, где в качестве источника освещения используются светодиоды, светодиодный излучатель 207 может содержать один или несколько многоспектральных светодиодов или несколько светодиодов для излучения света с разной или одной длиной волны из каждого светодиода. В некоторых вариантах осуществления каждый светодиод светодиодного излучателя 207 выполнен с возможностью излучения света разной длины волны. Светодиодный излучатель 207 может излучать свет из каждого светодиода разного цвета или последовательно, или одновременно. Например, в некоторых вариантах осуществления светодиодный излучатель 207 может содержать систему из красного, зеленого и синего (RGB) светодиодов или другую многоспектральную светодиодную систему для излучения света различных длин волн в спектре видимого света и ИК спектре. В некоторых вариантах осуществления светодиоды светодиодного излучателя 207 могут быть выполнены с возможностью одновременного действия для излучения белого света. Альтернативно в некоторых вариантах осуществления пользователь может выбирать длину волны света, который необходимо излучать из многоспектральных светодиодов. Кроме того, можно изготовить светодиод с использованием специального фосфоресцирующего покрытия для получения наиболее эффективного выходного спектра относительно входной мощности. [00128] In another embodiment where LEDs are used as the illumination source, LED emitter 207 may include one or more multi-spectral LEDs or multiple LEDs for emitting light of different or the same wavelength from each LED. In some embodiments, each LED of the LED emitter 207 is configured to emit light of a different wavelength. The LED emitter 207 may emit light from each LED of a different color either sequentially or simultaneously. For example, in some embodiments, the LED emitter 207 may comprise a red, green, blue (RGB) LED system or other multi-spectral LED system for emitting light of various wavelengths in the visible light spectrum and the IR spectrum. In some embodiments, the LEDs of the LED emitter 207 may be configured to operate simultaneously to emit white light. Alternatively, in some embodiments, the user may select the wavelength of light to be emitted from the multispectral LEDs. In addition, the LED can be manufactured using a special phosphorescent coating to obtain the most efficient output spectrum relative to the input power.

[00129] В некоторых вариантах осуществления светодиодный излучатель 207 может содержать светодиодную матрицу высокой интенсивности. Светодиодная матрица высокой интенсивности как часть светодиодного излучателя 207 в некоторых вариантах осуществления может действовать при входной мощности в диапазоне приблизительно 0,5-75 Вт, но предпочтительно в диапазоне 1-10 Вт. Для содействия поддержанию температуры модуля 120 преобразователя энергии в пределах функциональных ограничений со светодиодным излучателем 207 может быть термически связана терморегулирующая конструкция 220 (такая как теплоотвод другая значительная тепловая масса). В конкретном варианте осуществления светодиодная матрица высокой интенсивности может излучать свет, имеющий длину волны приблизительно 500-600 нм. [00129] In some embodiments, the LED emitter 207 may comprise a high intensity LED array. The high intensity LED array as part of the LED emitter 207 in some embodiments can operate at an input power in the range of approximately 0.5-75 W, but preferably in the range of 1-10 W. To help maintain the temperature of the power converter module 120 within functional limits, a thermal control structure 220 (such as a heat sink or other significant thermal mass) may be thermally coupled to the LED emitter 207. In a specific embodiment, the high intensity LED array may emit light having a wavelength of approximately 500-600 nm.

[00130] Модуль 120 преобразователя энергии в некоторых вариантах осуществления может предоставлять электромагнитную энергию в подвергаемую лечению ткань в форме инфракрасной энергии, например в полосе БИК, как описано выше. Например, светодиодный излучатель 207 может представлять собой доступный на рынке светодиод, такой как LZ4-00R408, излучающий 850 нм БИК и изготавливаемый «LED Engin, Inc.» (Сан-Хосе). Дополнительно модуль 120 преобразователя энергии может представлять собой другой источник инфракрасной энергии вместо светодиодного источника света, такой как лампа накаливания, ксеноновая, галогенная лампа, лампа холодного накаливания или галогенная лампа широкого спектра, выполненный с возможностью излучения инфракрасной энергии к подвергаемому лечению месту ткани. [00130] Energy converter module 120 in some embodiments may provide electromagnetic energy to the tissue being treated in the form of infrared energy, such as the NIR band, as described above. For example, LED emitter 207 may be a commercially available LED such as LZ4-00R408, which emits 850 nm NIR and is manufactured by LED Engin, Inc. (San Jose). Additionally, the energy converter module 120 may be another infrared energy source instead of an LED light source, such as an incandescent, xenon, halogen, cold incandescent, or broad spectrum halogen lamp, configured to radiate infrared energy to the tissue site being treated.

[00131] Устройство 200 для лечения глаза может содержать отражатель (такой как отражатель 210 в описанных ниже других вариантах осуществления), который может действовать как волновод, направляя электромагнитную энергию (например, свет), излучаемую из модуля 120 преобразователя энергии. Отражатель может быть приспособлен направлять электромагнитную энергию равномерно из точечного источника, такого как, например, светодиодный излучатель 207, через поверхность 140 передачи энергии к целевому месту лечения пациента. [00131] The eye treatment device 200 may include a reflector (such as reflector 210 in other embodiments described below) that can act as a waveguide to direct electromagnetic energy (eg, light) emitted from the power converter module 120. The reflector may be adapted to direct electromagnetic energy uniformly from a point source, such as, for example, LED emitter 207, through the energy transfer surface 140 to a target patient treatment site.

[00132] Модуль 120 преобразователя энергии может содержать светодиодную линзу 208, которая может использоваться в сочетании со светодиодным излучателем 207 или другим источником электромагнитной энергии, чтобы направлять энергию к веку под требуемым углом или по требуемой схеме и с требуемой интенсивностью. [00132] The energy converter module 120 may include an LED lens 208 that may be used in conjunction with an LED emitter 207 or other electromagnetic energy source to direct energy to the eyelid at a desired angle or pattern and at a desired intensity.

[00133] На фиг. 3A показана поверхность 140 передачи энергии, образующая часть устройства 200 для лечения глаза. Поверхность 140 передачи энергии выполнена с возможностью относительного перемещения по пути 145 перемещения относительно модуля 120 преобразователя энергии. Поверхность 140 передачи энергии может быть расположена в корпусе 202 в местоположении, удаленном от модуля 120 преобразователя энергии, и расположена между модулем 120 преобразователя энергии и участком подвергаемой лечению ткани системы 10 глаза. При расположении таким образом поверхность 140 передачи энергии может пропускать, или принимать и передавать, электромагнитную энергию, передаваемую из модуля 120 преобразователя энергии. В некоторых вариантах осуществления поверхность передачи энергии может иметь вогнутую форму (относительно устройства 200 для лечения глаза), так, что поверхность 140 передачи энергии соответствует форме сомкнутых век 12, 14. Поверхность 140 передачи энергии может иметь такую форму, что любая электромагнитная энергия, исходящая из модуля 120 преобразователя энергии, должна проходить через поверхность 140 передачи энергии. [00133] In FIG. 3A shows an energy transfer surface 140 forming a part of the eye treatment device 200. The power transfer surface 140 is configured to be relatively movable along a movement path 145 relative to the power converter module 120. The energy transfer surface 140 may be located in the housing 202 at a location remote from the energy converter module 120 and located between the energy converter module 120 and the tissue portion of the eye system 10 being treated. When so positioned, the power transmission surface 140 can transmit, or receive and transmit, electromagnetic energy transmitted from the power converter module 120. In some embodiments, the energy transfer surface may be concavely shaped (relative to the eye treatment device 200) such that the energy transfer surface 140 conforms to the shape of the closed eyelids 12, 14. The energy transfer surface 140 may be shaped such that any electromagnetic energy emitted from the power converter module 120 must pass through the power transfer surface 140.

[00134] В некоторых вариантах осуществления поверхность 140 передачи энергии расположена смежно с веками 12, 14 и не находится в физическом контакте с веками 12, 14, но вместо этого переносит тепло к подвергаемой лечению ткани посредством излучения. Поверхность 140 передачи энергии может быть по существу прозрачной по отношению к требуемой электромагнитной энергии, передаваемой модулем 120 преобразователя энергии, чтобы обеспечивать возможность передачи энергии из модуля 120 преобразователя энергии без значительного препятствования достижению подвергаемой лечению ткани энергией требуемого типа или с требуемой длиной волны. В некоторых вариантах осуществления поверхность 140 передачи энергии может быть выполнена из оптической пластмассы, сапфира, стекла, фторида кальция или стекловолокна. Она может иметь простую для очистки наружную поверхность и может быть стойкой к механическим контактным повреждениям. Необязательно на поверхности 140 передачи энергии, в ней или смежно с ней может быть расположен датчик 310 температуры для обеспечения обратной связи по температуре для поверхности 140 передачи энергии и/или наружной поверхности века. [00134] In some embodiments, the energy transfer surface 140 is located adjacent to the eyelids 12, 14 and is not in physical contact with the eyelids 12, 14, but instead transfers heat to the tissue being treated through radiation. The energy transfer surface 140 may be substantially transparent to the desired electromagnetic energy transmitted by the energy converter module 120 to allow energy to be transferred from the energy converter module 120 without significantly preventing the energy of the desired type or wavelength from reaching the tissue being treated. In some embodiments, the energy transfer surface 140 may be made of optical plastic, sapphire, glass, calcium fluoride, or fiberglass. It may have an easy-to-clean outer surface and may be resistant to mechanical contact damage. Optionally, a temperature sensor 310 may be located on, within or adjacent to the energy transfer surface 140 to provide temperature feedback to the energy transfer surface 140 and/or the outer surface of the eyelid.

[00135] В некоторых вариантах осуществления поверхность 140 передачи энергии может быть приспособлена для работы совместно с модулем 120 преобразователя энергии так, чтобы отфильтровывать нежелательные длины волн, не давая им достигать подвергаемой лечению ткани или других частей системы 10 глаза. Например, в некоторых вариантах осуществления источник освещения может передавать электромагнитную энергию как в ИК спектре, так и в спектре видимого света. Поверхность 140 передачи энергии может использоваться для обеспечения возможности прохождения, например, энергии из спектра видимого света, но с отфильтровыванием энергии из ИК спектра. Аналогично, если требуется, чтобы подвергаемой лечению ткани достигала только энергия от одного цвета, поверхность 140 передачи энергии может использоваться в качестве полосового фильтра или использоваться с фильтром для ограничения прохождения энергии длин волн, отличных от требуемого цвета. [00135] In some embodiments, the energy transfer surface 140 may be configured to operate in conjunction with the energy converter module 120 to filter out unwanted wavelengths from reaching the tissue being treated or other parts of the eye system 10. For example, in some embodiments, the light source may transmit electromagnetic energy in both the IR and visible light spectrum. The energy transfer surface 140 may be used to allow the passage of, for example, energy from the visible light spectrum, but filter out energy from the IR spectrum. Likewise, if only energy from one color is desired to reach the tissue being treated, energy transfer surface 140 can be used as a bandpass filter or used with a filter to limit the passage of energy of wavelengths other than the desired color.

[00136] В некоторых вариантах осуществления поверхность 140 передачи энергии может быть приспособлена для вхождения в физический контакт с веками 12, 14. Как обсуждено выше, в некоторых вариантах осуществления поверхность 140 передачи энергии может быть выполнена с возможностью относительного перемещения по пути 145 перемещения относительно модуля 120 преобразователя энергии. Это позволяет модулю 120 преобразователя энергии находиться в неподвижной взаимосвязи с веком, в то время как поверхность 140 передачи энергии может перемещаться вперед, входя в контакт с веками 12, 14. Возможны альтернативные подходы к уменьшению пространства между наружной поверхностью век 12, 14 и поверхностью 140 передачи энергии. Например, модуль 120 преобразователя энергии и поверхность 140 передачи энергии могут вместе перемещаться к векам, при этом склеральный экран 300 остается в относительно неподвижном положении, или же склеральный экран 300 может перемещаться относительно других частей устройства. В любом случае, перемещение предпочтительно осуществляется вручную клиническим врачом, чтобы предоставлять клиническому врачу некоторую степень осязательной обратной связи. В некоторых вариантах осуществления устройство 200 для лечения глаза может содержать привод 182, такой как рычаг, кнопка, колесо, ползун или переключатель, предназначенный для перемещения поверхности 140 передачи энергии. [00136] In some embodiments, the energy transfer surface 140 may be adapted to come into physical contact with the eyelids 12, 14. As discussed above, in some embodiments, the energy transfer surface 140 may be configured to be relatively movable along a movement path 145 relative to the module 120 energy converter. This allows the energy converter module 120 to be in fixed relationship with the eyelid while the energy transfer surface 140 can move forward into contact with the eyelids 12, 14. Alternative approaches to reducing the space between the outer surface of the eyelids 12, 14 and the surface 140 are possible. energy transfer. For example, the energy converter module 120 and the energy transfer surface 140 may move together toward the eyelids while the scleral shield 300 remains in a relatively stationary position, or the scleral shield 300 may move relative to other parts of the device. In any case, the movement is preferably performed manually by the clinician to provide the clinician with some degree of tactile feedback. In some embodiments, the eye treatment device 200 may include an actuator 182, such as a lever, button, wheel, slide, or switch, for moving the energy transfer surface 140.

[00137] В некоторых вариантах осуществления по меньшей мере часть поверхности 140 передачи энергии может быть выполнена как одноразовый покровный элемент или наружная прокладка 147 для века, как показано на фиг. 3A. Предпочтительно такая наружная прокладка 147 для века встроена в расходную часть 260 устройства, при этом наружная прокладка 147 для века автоматически выравнивается и сажается на поверхность 140 передачи энергии при присоединении расходной части к корпусу 202. [00137] In some embodiments, at least a portion of the energy transfer surface 140 may be configured as a disposable cover member or outer eyelid liner 147, as shown in FIG. 3A. Preferably, such outer eyelid pad 147 is integrated into the consumable part 260 of the device, with the outer eyelid pad 147 automatically aligned and seated on the power transfer surface 140 when the consumable part is attached to the housing 202.

[00138] В некоторых вариантах осуществления поверхность 140 передачи энергии может нагреваться для переноса тепла к подвергаемой лечению ткани посредством проводимости. В других вариантах осуществления большая часть нагрева ткани происходит в результате нагрева, посредством излучения производимого модулем 120 преобразователя энергии в отношении ткани и/или склерального экрана 300, при этом по существу вся требуемая электромагнитная энергия проходит через поверхность 140 передачи энергии с небольшим нагревом поверхности 140 передачи энергии или без такового. Еще в других вариантах осуществления нагрев ткани может осуществляться в результате комбинации нагрева посредством проводимости, вызванного предварительным нагревом или активным нагревом поверхности 140 передачи энергии, и нагрева ткани и/или склерального экрана посредством излучения. Поверхность 140 передачи энергии может содержать энергопоглощающий слой или структуру, которая может предварительно нагреваться световой энергией или другими средствами, например до 42 градусов Цельсия, перед вхождением в контакт с наружной поверхностью века. Или же поверхность передачи энергии может быть выполнена из теплопроводного материала и может нагреваться нагревателем, термически связанным с поверхностью 140 передачи энергии. В случае, когда поверхность 140 передачи энергии выполнена из теплопроводного материала, этот материал может являться передающим для источника энергии (такого как свет), поступающего из модуля 120 преобразователя энергии, или может являться сплошным, непрозрачным или иным образом не передающим энергию другой формы, отличной от нагрева посредством проводимости. В случае, когда поверхность 140 передачи энергии является непрозрачной или непередающей, она может быть выполнена из проводящего металла, такого как медь или алюминий, и в этом случае поверхность 140 передачи энергии может нагреваться модулем 120 преобразователя энергии, содержащим любые средства нагрева тепловой массы (такой как резистивный нагреватель), а затем прижиматься к веку с целью нагрева век посредством проводимости. В случае, когда поверхность 140 передачи энергии является передающей по отношению к другой форме энергии, а также теплопроводной, она может быть изготовлена из таких материалов, как сапфир, фторид кальция, алмаз, графен и т.п. В одном предпочтительном варианте осуществления одновременно может происходить нагрев в трех режимах: i) внутренняя поверхность века нагревается с использованием красного или инфракрасного света, передаваемого на энергопоглощающий склеральный экран 300, ii) ткань века нагревается посредством излучения видимым светом (например, зеленым), который поглощается хромофорами, и iii) ткань века нагревается посредством проводимости путем приведения предварительно нагретой поверхности 140 передачи энергии в контакт с наружной поверхностью века. Будет понятно, что значительное преимущество использования описанных в данном документе методик нагрева на основе света, и в частности инфракрасного нагрева энергопоглощающей поверхности, отдельно или в комбинации с двумя другими режимами нагрева (нагрева хромофоров видимым светом и нагрева ткани посредством проводимости), нагрев целевой ткани может быть достигнут значительно быстрее, чем с помощью любого традиционного способа нагрева наружной или внутренней поверхностей века посредством проводимости. В частности, с помощью этих комбинированных режимов ткань мейбомиевых желез может приводиться к температуре, например, приблизительно 40-42 градуса Цельсия менее чем за одну минуту. В частности, в некоторых случаях ткань мейбомиевых желез может приводиться к температуре приблизительно 40-42 градуса Цельсия за 10, 15, 20, 25, 30 или 45 секунд. [00138] In some embodiments, the energy transfer surface 140 may be heated to transfer heat to the tissue being treated through conduction. In other embodiments, most of the heating of the tissue occurs as a result of heating through radiation produced by the energy converter module 120 to the tissue and/or scleral shield 300, with substantially all of the required electromagnetic energy passing through the energy transfer surface 140 with little heating of the transfer surface 140 energy or without it. In still other embodiments, tissue heating may result from a combination of conductive heating caused by preheating or active heating of the energy transfer surface 140 and heating of the tissue and/or scleral shield by radiation. The energy transfer surface 140 may comprise an energy-absorbing layer or structure that may be preheated by light energy or other means, for example to 42 degrees Celsius, before coming into contact with the outer surface of the eyelid. Alternatively, the power transfer surface may be made of a thermally conductive material and may be heated by a heater thermally coupled to the power transfer surface 140. In the case where the energy transfer surface 140 is made of a thermally conductive material, the material may be conductive for the energy source (such as light) coming from the energy converter module 120, or may be solid, opaque, or otherwise non-transmitting energy in a form other than from heating by conduction. In the case where the power transfer surface 140 is opaque or non-transmitting, it may be made of a conductive metal such as copper or aluminum, in which case the power transfer surface 140 may be heated by a power converter module 120 comprising any thermal mass heating means (such like a resistive heater) and then pressed against the eyelid to heat the eyelids by conduction. In the case where the energy transfer surface 140 is transferable to another form of energy as well as thermally conductive, it may be made of materials such as sapphire, calcium fluoride, diamond, graphene, and the like. In one preferred embodiment, heating may occur simultaneously in three modes: i) the inner surface of the eyelid is heated using red or infrared light transmitted to the energy-absorbing scleral screen 300, ii) the eyelid tissue is heated by irradiating visible light (e.g., green), which is absorbed chromophores, and iii) the eyelid tissue is heated by conduction by bringing the preheated energy transfer surface 140 into contact with the outer surface of the eyelid. It will be appreciated that the significant advantage of using the light-based heating techniques described herein, and in particular infrared heating of the energy-absorbing surface, alone or in combination with two other heating modes (visible light heating of chromophores and conductive heating of tissue), heating the target tissue can be achieved much faster than with any traditional method of heating the outer or inner surfaces of the eyelid by conduction. In particular, using these combination modes, meibomian gland tissue can be brought to a temperature of, for example, approximately 40-42 degrees Celsius in less than one minute. In particular, in some cases, meibomian gland tissue can be brought to a temperature of approximately 40-42 degrees Celsius in 10, 15, 20, 25, 30 or 45 seconds.

[00139] Как показано на фиг. 3A, для осмотра глазного яблока 20 может быть использовано устройство 160, или средства, визуализации. В некоторых вариантах осуществления средства 160 визуализации могут быть частью устройства 200 для лечения глаза. В других вариантах осуществления средства 160 визуализации могут быть отдельным компонентом. Средства 160 визуализации могут включать, например, увеличитель, фотокамеру, микроскоп, прибор со щелевой лампой или другой подходящий прибор для визуализации. [00139] As shown in FIG. 3A, an imaging device 160 or means may be used to examine the eyeball 20. In some embodiments, the imaging tools 160 may be part of the eye treatment device 200. In other embodiments, renderers 160 may be a separate component. The imaging means 160 may include, for example, a magnifier, camera, microscope, slit lamp, or other suitable imaging device.

[00140] В некоторых вариантах осуществления склеральный экран 300 может дополнительно содержать преобразователь 155 изображения, обеспечивающий возможность просматривать просвечивающееся изображение части века и мейбомиевых желез. Как было описано ранее, преобразователь изображения может содержать, например, одну или несколько отражающих поверхностей, зеркал, оптических волноводов, призм, волоконных жгутов, датчиков изображения или других подходящих средств преобразования изображения. Как показано на фиг. 3A, преобразователь 155 изображения встроен в склеральный экран 300, но в других вариантах осуществления преобразователь 155 изображения может представлять собой отдельный компонент. [00140] In some embodiments, the scleral screen 300 may further include an image transducer 155 that provides the ability to view a translucent image of a portion of the eyelid and meibomian glands. As previously described, the image converter may comprise, for example, one or more reflective surfaces, mirrors, optical waveguides, prisms, fiber tows, image sensors, or other suitable image converter means. As shown in FIG. 3A, the image converter 155 is integrated into the scleral screen 300, but in other embodiments, the image converter 155 may be a separate component.

[00141] В некоторых вариантах осуществления дополнительный экранирующий элемент 258 может быть использован для предотвращения отражения нежелательной фотонной энергии (такой как ИК или синий/фиолетовый свет) от просвечиваемого элемента обратно к клиническому врачу. Например, экранирующий элемент 258 может представлять собой тонкий непрозрачный экран или фильтр (блокирующий по меньшей мере энергию видимого синего и ИК света), который поворачивается, переворачивается или скользит (как указано на фиг. 3А) в положение перед преобразователем 155 изображения и, возможно, также модулем 120 преобразователя энергии или поверхностью 140 передачи энергии во время режимов нагрева и лечения синим/фиолетовым светом, чтобы защищать клинического врача. Альтернативно часть преобразователя 155 изображения и/или средств визуализации может содержать селективный оптический фильтр или фотохромный элемент, так, что во время низкоуровневого освещения века в целях оценки просвечивающихся изображений мейбомиевых желез фотохромный элемент пропускает по существу весь свет, тогда как во время режима нагрева, при котором могут быть использованы инфракрасная энергия или высокоуровневый видимый свет, некоторая часть или вся эта энергия могут быть ослаблены, тем самым экранируя клинического врача от вредного воздействия. [00141] In some embodiments, an additional shielding element 258 may be used to prevent unwanted photon energy (such as IR or blue/violet light) from being reflected from the transilluminated element back to the clinician. For example, the shielding element 258 may be a thin, opaque screen or filter (blocking at least visible blue and IR light energy) that rotates, flips, or slides (as indicated in FIG. 3A) into position in front of the image converter 155 and optionally also by the energy converter module 120 or energy transfer surface 140 during heating and blue/violet light treatment modes to protect the clinician. Alternatively, the image transducer and/or imaging portion 155 may include a selective optical filter or photochromic element such that during low-level eyelid illumination for purposes of assessing transillumination images of the meibomian glands, the photochromic element transmits substantially all light, whereas during the heating mode, when in which infrared energy or high-level visible light may be used, some or all of this energy may be attenuated, thereby shielding the clinician from harmful effects.

[00142] Для дополнительного пояснения ниже будет описано несколько классов вариантов осуществления. В одном классе вариантов осуществления устройства предназначены для самостоятельного применения людьми, обычно в условиях домашнего использования. Для этого класса склеральные экраны не обязательно применять в практическом использовании, поэтому может существовать высокий риск проникновения нежелательных форм энергии (таких как определенные длины волн света или инфракрасной энергии) в веки и достижения ими чувствительных структур глаза. По существу, варианты осуществления этого класса иногда могут быть ограничены использованием более безопасных форм энергии, таких как видимый свет в диапазоне 450-700 нм. В вариантах осуществления другого класса устройства предназначены для использования врачами-офтальмологами в контролируемых амбулаторных условиях, где с большей вероятностью может быть безопасно использована система для лечения, содержащая компонент в виде склерального экрана. В этом классе склеральный экран может быть выполнен в таких формах и из таких материалов, чтобы повышать вероятность того, что повреждающая энергия достигнет чувствительных структур глаза в незначительной степени или не достигнет вовсе. [00142] For further explanation, several classes of embodiments will be described below. In one class of embodiments, devices are intended for self-administration by individuals, typically in a home environment. For this class, scleral shields are not required for practical use, so there may be a high risk of unwanted forms of energy (such as certain wavelengths of light or infrared energy) penetrating the eyelids and reaching sensitive structures of the eye. As such, embodiments of this class may sometimes be limited to using safer forms of energy, such as visible light in the 450-700 nm range. In another class of embodiments, the devices are intended for use by ophthalmologists in a controlled outpatient setting, where a treatment system comprising a scleral shield component is more likely to be safely used. In this class, the scleral shield may be constructed in such shapes and materials as to increase the likelihood that the damaging energy will reach the sensitive structures of the eye to little or no extent.

[00143] АМБУЛАТОРНОЕ УСТРОЙСТВО. Варианты осуществления амбулаторного устройства могут включать в себя одно или несколько из следующего: диагностику мейбомиевых желез; лечение мейбомиевых желез; и противомикробное лечение системы глаза. В одном наборе предпочтительных вариантов осуществления диагностика мейбомиевых желез осуществляется двумя способами. Во-первых, с использованием видимого или ИК освещения из модуля преобразователя энергии, которое направлено к наружной поверхность века, для осмотра и оценки мейбомиевых желез с помощью преобразователя изображения со средствами визуализации или без них. Во-вторых, посредством легкого сжатия века при наблюдении за краями века, чтобы отмечать количество и качество маслянистых выделений из протоков мейбомиевых желез. Для лечения в одном наборе вариантов осуществления веко нагревают и сжимают. Энергию ближнего инфракрасного диапазона (БИК) из модуля преобразователя энергии при примерно приблизительно 800-900 нм пропускают через веко к склеральному экрану, который затем нагревается и, следовательно, нагревает внутреннюю поверхность века. Дополнительно видимый свет из модуля преобразователя энергии в диапазоне приблизительно 500-600 нм (зеленый свет) направляют на наружную поверхность века, которая нагревает ткань посредством поглощения хромофорами. Затем клинический врач перемещает поверхность передачи энергии к веку с помощью непосредственного или косвенного ручного управления, чтобы сжимать веко между поверхностью передачи энергии и склеральным экраном. Необязательно поверхность передачи энергии может быть предварительно нагрета и/или активно нагреваться во время лечения для обеспечения некоторого нагрева внешней поверхности века посредством проводимости. Температура внутренней и/или внешней поверхности века может быть измерена и отображена для клинического врача. Клинический врач применяет тепловую энергию и силу сжатия, при этом осуществляя визуальное наблюдение за краем века, чтобы оптимизировать выделение секрета мейбомиевых желез из закупоренных мейбомиевых желез. Наконец, модуль преобразователя энергии может производить синий/фиолетовый свет в диапазоне приблизительно 400-450 нм для уменьшения и/или уничтожения бактерий в системе 10 глаза. [00143] OUTPATIENT DEVICE. Embodiments of an ambulatory device may include one or more of the following: diagnosing meibomian glands; treatment of meibomian glands; and antimicrobial treatment of the ocular system. In one set of preferred embodiments, diagnosis of meibomian glands is accomplished in two ways. First, using visible or IR illumination from the energy converter module, which is directed towards the outer surface of the eyelid, to examine and evaluate the meibomian glands using an image converter with or without imaging aids. Secondly, by gently squeezing the eyelid while observing the edges of the eyelid to note the quantity and quality of oily discharge from the meibomian gland ducts. For treatment, in one set of embodiments, the eyelid is heated and compressed. Near-infrared (NIR) energy from the energy converter module at approximately 800-900 nm is passed through the eyelid to the scleral shield, which is then heated and therefore heats the inner surface of the eyelid. Additionally, visible light from the energy converter module in the range of approximately 500-600 nm (green light) is directed to the outer surface of the eyelid, which heats the tissue through absorption by chromophores. The clinician then moves the energy transfer surface toward the eyelid using direct or indirect manual control to compress the eyelid between the energy transfer surface and the scleral shield. Optionally, the energy transfer surface may be preheated and/or actively heated during treatment to provide some conductive heating to the outer surface of the eyelid. The temperature of the inner and/or outer surface of the eyelid can be measured and displayed to the clinician. The clinician applies heat and compressive force while visually observing the eyelid margin to optimize the release of meibomian gland secretions from obstructed meibomian glands. Finally, the energy converter module can produce blue/violet light in the range of approximately 400-450 nm to reduce and/or kill bacteria in the eye system 10.

[00144] УСТРОЙСТВО ДЛЯ ДОМАШНЕГО ИСПОЛЬЗОВАНИЯ. В вариантах осуществления домашнего устройства используется видимый свет, пропускаемый через поверхность передачи энергии из модуля преобразователя энергии, направленный на наружную поверхность века, чтобы нагревать ткань посредством поглощения хромофорами. В некоторых предпочтительных вариантах осуществления видимый свет может представлять собой свет светодиодов с широким спектром высокой интенсивности (например, белый), проходящий через определенные фильтры, или это может быть зеленый, зеленовато-желтый или зеленовато-белый светодиод (500-600 нм) без фильтров. В некоторых вариантах осуществления поверхность передачи энергии является прозрачной для видимого света и теплопроводной, что обеспечивает возможность нагрева (например, до 42 градусов Цельсия) до или во время прижатия поверхности к веку (см. фиг. 2A). В некоторых вариантах осуществления поверхность передачи энергии может иметь добавочный элемент 143 (такой как на фиг. 2B и описанный ранее), который обеспечивает возможность прохождения большей части световой энергии через нее, при этом сохраняя зазор между модулем преобразователя энергии и поверхностью века 12, 14 (например, для обеспечения пассивного или активного воздушного охлаждения века). Поверхность передачи энергии может соответствовать форме века и оказывать давление на поверхность века для сокращения длины оптического пути энергии излучения. В некоторых вариантах осуществления для предотвращения выхода света из области непосредственного лечения и для удержания по меньшей мере части устройства на предварительно определенном расстоянии от век или периокулярной области используют наглазники. [00144] DEVICE FOR HOME USE. Embodiments of the home device use visible light transmitted through an energy transfer surface from an energy converter module directed at the outer surface of the eyelid to heat the tissue through absorption by chromophores. In some preferred embodiments, the visible light may be broad-spectrum, high-intensity (e.g., white) LED light passing through certain filters, or it may be a green, greenish-yellow, or greenish-white LED (500-600 nm) without filters . In some embodiments, the energy transfer surface is transparent to visible light and thermally conductive, allowing heating (eg, up to 42 degrees Celsius) before or while the surface is pressed against the eyelid (see FIG. 2A). In some embodiments, the energy transfer surface may have an additional element 143 (such as in FIG. 2B and described previously) that allows most of the light energy to pass through it while maintaining a gap between the energy converter module and the eyelid surface 12, 14 ( for example, to provide passive or active air cooling of the eyelid). The energy transfer surface can conform to the shape of the eyelid and exert pressure on the eyelid surface to shorten the optical path length of the radiation energy. In some embodiments, eye cups are used to prevent light from escaping from the immediate treatment area and to keep at least a portion of the device at a predetermined distance from the eyelids or periocular area.

[00145] На фиг. 4A-4C представлен другой вариант осуществления устройства для лечения глаза. На фиг. 4A представлен схематический вид сбоку в плане устройства 200 для лечения глаза. Устройство 200 для лечения глаза, показанное на фиг. 4A, расположено смежно с глазным яблоком 20 для лечения глазного яблока от MGD, блефарита и других заболеваний. Для простоты чувствительные структуры глаза, такие как роговица, радужная оболочка, хрусталик зрачка и смежные элементы, изображены на фиг. 4A-D, 5A-B, 6, 11A-B, 12, 13 и 15A как единый элемент, называемый передними структурами 27 глаза. Устройство 200 для лечения глаза может содержать конфигурации модулей, изображенных на фиг. 2 и 3, вместе с дополнительными компонентами, используемыми в работе устройства 200 для лечения глаза. Устройство 200 для лечения глаза может содержать модуль 110 источника питания, устройство 212 управления, модуль 120 преобразователя энергии, волновод энергии в виде отражателя 210 и поверхность 140 передачи энергии. Модуль 120 преобразователя энергии в некоторых вариантах осуществления может содержать светодиодное устройство, образованное одним или несколькими из светодиодного излучателя 207, светодиодной линзы 208 и задающего устройства 209 модуля преобразователя энергии. Каждый из этих компонентов, либо отдельно, либо в комбинации с другими компонентами (показанными в данном документе или не раскрытыми) может соответствовать модулям, описанным со ссылкой на фиг. 2A-2H, или быть их частью. Компоненты устройства 200 для лечения глаза могут содержаться в корпусе 202. Некоторые из вариантов осуществления устройства 200 для лечения глаза могут также содержать расходную часть 260 и/или склеральный экран 300, такие как показаны на фиг. 3 и 6. [00145] In FIG. 4A-4C illustrate another embodiment of an eye treatment device. In fig. 4A is a schematic side plan view of an eye treatment device 200. The eye treatment device 200 shown in FIG. 4A is positioned adjacent to the eyeball 20 for treating the eyeball for MGD, blepharitis and other diseases. For simplicity, the sensory structures of the eye, such as the cornea, iris, pupillary lens, and adjacent elements, are depicted in FIG. 4A-D, 5A-B, 6, 11A-B, 12, 13 and 15A as a single element called the anterior eye structures 27. The eye treatment device 200 may include the configurations of modules shown in FIG. 2 and 3, together with additional components used in the operation of the eye treatment device 200. The eye treatment device 200 may include a power supply module 110, a control device 212, a power converter module 120, a reflector energy waveguide 210, and a power transmission surface 140. The power converter module 120 in some embodiments may include an LED device formed by one or more of an LED emitter 207, an LED lens 208, and a power converter module driver 209. Each of these components, either alone or in combination with other components (shown herein or not) may correspond to the modules described with reference to FIGS. 2A-2H, or be part of them. Components of the eye treatment device 200 may be contained in a housing 202. Some embodiments of the eye treatment device 200 may also include a dispenser 260 and/or a scleral shield 300, such as those shown in FIG. 3 and 6.

[00146] Задающее устройство 209 модуля преобразователя энергии может содержать любую схему питания и управления светодиода, выполненную как фактическая печатная схемная плата, интегральная схема или дискретные компоненты. В некоторых вариантах осуществления оно выполняет функцию задающего устройства светодиода, подающего управляемые ток, напряжение или уровень мощности через светодиодный излучатель 207 в рамках технических условий светодиода для обеспечения от него требуемой интенсивности освещения. Необязательно печатная схемная плата светодиода может включать функцию широтно-импульсной модуляции, схему PID или аналогичную схему для модуляции эффективной интенсивности излучения в зависимости от времени с целью достижения требуемого нагрева целевой области века. [00146] The power converter module driver 209 may include any LED power and control circuitry implemented as an actual printed circuit board, integrated circuit, or discrete components. In some embodiments, it functions as an LED driver that supplies a controlled current, voltage, or power level through the LED emitter 207 within the LED's specifications to produce the required lighting intensity from it. Optionally, the LED circuit board may include a pulse width modulation function, PID circuit, or similar circuitry for modulating the effective irradiation intensity as a function of time to achieve the desired heating of the target area of the eyelid.

[00147] Поверхность 140 передачи энергии может быть расположена относительно корпуса 202 в местоположении, удаленном от модуля 120 преобразователя энергии, и расположена между модулем 120 преобразователя энергии и участком подвергаемой лечению ткани системы 10 глаза. При расположении таким образом поверхность 140 передачи энергии может пропускать, или принимать и передавать, электромагнитную энергию, передаваемую из модуля 120 преобразователя энергии. Поверхность передачи энергии может иметь вогнутую форму, так что поверхность 140 передачи энергии соответствует форме век 12, 14, когда они закрыты и покрывают глазное яблоко 20. Поверхность 140 передачи энергии, может быть неотъемлемой частью корпуса 202 и может по существу уплотнять дальний конец устройства 200 для лечения глаза. Дополнительно поверхность 140 передачи энергии может перемещаться независимо или вместе с модулем 120 преобразователя энергии относительно корпуса 202. Уплотняющий элемент, такой как сильфон, прокладка, уплотнительное кольцо или подобное уплотнительное средство, может использоваться для предотвращения загрязнения поверхности раздела между подвижными элементами и корпусом. [00147] The energy transfer surface 140 may be located relative to the body 202 at a location remote from the energy converter module 120 and located between the energy converter module 120 and the tissue portion of the eye system 10 being treated. When so positioned, the power transmission surface 140 can transmit, or receive and transmit, electromagnetic energy transmitted from the power converter module 120. The energy transfer surface may have a concave shape such that the energy transfer surface 140 conforms to the shape of the eyelids 12, 14 when they are closed and covering the eyeball 20. The energy transfer surface 140 may be an integral part of the housing 202 and may substantially seal the distal end of the device 200 for eye treatment. Additionally, the power transfer surface 140 may move independently or in conjunction with the power converter module 120 relative to the housing 202. A sealing member, such as a bellows, gasket, O-ring, or similar sealing means, may be used to prevent contamination of the interface between the moving members and the housing.

[00148] В некоторых вариантах осуществления поверхность 140 передачи энергии расположена смежно с веками 12, 14 и не находится в физическом контакте с веками 12, 14, но вместо этого переносит тепло к подвергаемой лечению ткани посредством излучения. Поверхность 140 передачи энергии может быть по существу прозрачной по отношению к требуемой электромагнитной энергии, передаваемой модулем 120 преобразователя энергии, чтобы обеспечивать возможность передачи тепловой энергии из модуля 120 преобразователя энергии без значительного препятствования достижению подвергаемой лечению ткани энергией требуемого типа или с требуемой длиной волны. В некоторых вариантах осуществления поверхность 140 передачи энергии может быть выполнена из оптической пластмассы, сапфира, стекла, фторида кальция или стекловолокна. Она может иметь простую для очистки наружную поверхность и может быть стойкой к механическим контактным повреждениям. В некоторых вариантах осуществления поверхность 140 передачи энергии может быть приспособлена для работы совместно с модулем 120 преобразователя энергии так, чтобы отфильтровывать нежелательные длины волн, не давая им достигать подвергаемой лечению ткани или других частей системы 10 глаза. Например, в некоторых вариантах осуществления источник освещения может передавать электромагнитную энергию как в ИК спектре, так и в спектре видимого света. Поверхность 140 передачи энергии может использоваться для обеспечения возможности прохождения, например, энергии из спектра видимого света, но с отфильтровыванием энергии из ИК спектра. Аналогично, если требуется, чтобы подвергаемой лечению ткани достигала бы только энергия от одного цвета, поверхность 140 передачи энергии может использоваться в качестве полосового фильтра или использоваться с фильтром для ограничения прохождения энергии длин волн, отличных от требуемого цвета. Альтернативно, как описано ранее, поверхность 140 передачи энергии может содержать одноразовую наружную прокладку 147 для века. Такая наружная прокладка 147 для века может быть прозрачной для всех соответствующих длин волн света или других форм энергии, или она может иметь желаемые фильтрующие свойства, и она может дополнительно содержать датчик температуры или давления. [00148] In some embodiments, the energy transfer surface 140 is located adjacent to the eyelids 12, 14 and is not in physical contact with the eyelids 12, 14, but instead transfers heat to the tissue being treated through radiation. The energy transfer surface 140 may be substantially transparent to the desired electromagnetic energy transmitted by the energy converter module 120 to allow thermal energy to be transferred from the energy converter module 120 without significantly preventing the energy of the desired type or wavelength from reaching the tissue being treated. In some embodiments, the energy transfer surface 140 may be made of optical plastic, sapphire, glass, calcium fluoride, or fiberglass. It may have an easy-to-clean outer surface and may be resistant to mechanical contact damage. In some embodiments, the energy transfer surface 140 may be configured to operate in conjunction with the energy converter module 120 to filter out unwanted wavelengths from reaching the tissue being treated or other parts of the eye system 10. For example, in some embodiments, the light source may transmit electromagnetic energy in both the IR and visible light spectrum. The energy transfer surface 140 may be used to allow, for example, energy from the visible light spectrum to pass through, but filter out energy from the IR spectrum. Likewise, if only energy from one color is desired to reach the tissue being treated, the energy transfer surface 140 can be used as a bandpass filter or used with a filter to limit the passage of energy of wavelengths other than the desired color. Alternatively, as previously described, the energy transfer surface 140 may include a disposable outer eyelid liner 147. Such outer eyelid pad 147 may be transparent to all relevant wavelengths of light or other forms of energy, or it may have desired filtering properties, and it may further comprise a temperature or pressure sensor.

[00149] В некоторых вариантах осуществления поверхность 140 передачи энергии может быть приспособлена для вхождения в физический контакт с веками 12, 14 и может посредством проводимости передавать тепло подвергаемой лечению ткани (или способствовать охлаждению века, как описано ниже). В других вариантах осуществления преобладающий нагрев ткани происходит в результате нагрева излучением из модуля 120 преобразователя энергии, при этом по существу вся требуемая электромагнитная энергия проходит через поверхность 140 передачи энергии и поглощается тканью, тем самым вызывая нагрев ткани и небольшой нагрев поверхности 140 передачи энергии или не приводя к нагреву последней. Будет понятно, что устройство может быть выполнено без поверхности 140 передачи энергии. Однако поверхность 140 передачи энергии обеспечивает определенные преимущества, такие как простота очистки основной поверхности контакта с пациентом, а также возможность того, что поверхность 140 передачи энергии будет помогать поддерживать температуру наружной поверхности века в требуемом диапазоне температур и обеспечивать удобное расположение определенных датчиков безопасности. В вариантах осуществления, где одноразовая наружная прокладка 147 для века используется как часть или вся поверхность 140 передачи энергии, наружная прокладка 147 для века может содержать датчик температуры, но предпочтительно вместо этого используется бесконтактный датчик температуры, такой как термоэлектрическая батарея или пироэлектрический датчик, расположенный ближе (относительно корпуса) к наружной прокладке 147 для века. В таких вариантах осуществления наружная прокладка 147 для века предпочтительно является прозрачной для длин волн инфракрасного излучения, для восприятия которых предназначены бесконтактные датчики температуры. [00149] In some embodiments, the energy transfer surface 140 may be adapted to come into physical contact with the eyelids 12, 14 and may conductively transfer heat to the tissue being treated (or assist in cooling the eyelid, as described below). In other embodiments, the predominant heating of the tissue results from heating by radiation from the energy converter module 120, with substantially all of the required electromagnetic energy passing through the energy transfer surface 140 and being absorbed by the tissue, thereby causing heating of the tissue and little or no heating of the energy transfer surface 140 leading to heating of the latter. It will be appreciated that the device may be configured without the power transfer surface 140. However, the energy transfer surface 140 provides certain advantages, such as ease of cleaning of the primary patient contact surface, as well as the possibility that the energy transfer surface 140 will help maintain the temperature of the outer surface of the eyelid within the desired temperature range and provide convenient placement of certain safety sensors. In embodiments where the disposable outer eyelid pad 147 is used as part or all of the energy transfer surface 140, the outer eyelid pad 147 may include a temperature sensor, but preferably a non-contact temperature sensor such as a thermoelectric battery or a pyroelectric sensor located closer is used instead. (relative to the body) to the outer gasket 147 for the eyelid. In such embodiments, the outer eyelid pad 147 is preferably transparent to the infrared wavelengths that the non-contact temperature sensors are designed to sense.

[00150] На фиг. 4B представлен схематический вид спереди в плане модуля 120 преобразователя энергии устройства 200 для лечения глаза. Как показано на фиг. 4B, светодиодный излучатель 207 может быть скомпонован как матрица отдельных светодиодов. Как представлено, светодиодный излучатель 207 скомпонован в виде массива светодиодов 3×3 (например, в конфигурации LZ9, предлагаемой «LED Engine, Inc.»), хотя светодиодный излучатель 207 не ограничен этой компоновкой и может включать матрицы различных количеств светодиодов, скомпонованных в различных матрицах из столбцов и строк; и некоторые варианты осуществления могут включать единственный светодиод или источник освещения другого типа. Отражатель 210 может частично или полностью окружать светодиодный излучатель 207 так, что он может направлять излучение света из светодиодного излучателя 207 требуемым образом. Светодиодная линза 208 может быть расположена над светодиодным излучателем 207 и расположена внутри внутреннего диаметра отражателя 210. [00150] In FIG. 4B is a schematic front plan view of a power converter module 120 of an eye treatment device 200. As shown in FIG. 4B, LED emitter 207 may be arranged as an array of individual LEDs. As illustrated, LED emitter 207 is arranged as a 3x3 array of LEDs (for example, in the LZ9 configuration offered by LED Engine, Inc.), although LED emitter 207 is not limited to this arrangement and may include arrays of varying numbers of LEDs arranged in different matrices of columns and rows; and some embodiments may include a single LED or other type of lighting source. The reflector 210 may partially or completely surround the LED emitter 207 so that it can direct light emission from the LED emitter 207 in a desired manner. The LED lens 208 may be positioned above the LED emitter 207 and located within the inner diameter of the reflector 210.

[00151] На фиг. 4C представлен схематический вид сбоку в плане одного варианта осуществления устройства 200 для лечения глаза, в котором устройство работает и передает свет 211 в систему 10 глаза и подвергаемую лечению ткань. На фиг. 4C свет 211 излучается из модуля 120 преобразователя энергии. Некоторая часть света 211 может первоначально излучаться под таким углом, чтобы свет без коррекции не достигал поверхности 140 передачи энергии для прохождения к подвергаемой лечению ткани. Как показано, отражатель 210 может отражать или направлять наклонный свет к поверхности 140 передачи энергии, тем самым повышая эффективность нагрева целевой ткани. Части света 211 также могут передаваться непосредственно из модуля 120 преобразователя энергии на поверхность 140 передачи энергии. [00151] In FIG. 4C is a schematic side plan view of one embodiment of an eye treatment device 200 in which the device operates and transmits light 211 to the eye system 10 and the tissue being treated. In fig. 4C, light 211 is emitted from the power converter module 120. Some of the light 211 may initially be emitted at an angle such that the uncorrected light does not reach the energy transfer surface 140 to travel to the tissue being treated. As shown, the reflector 210 may reflect or direct oblique light toward the energy transfer surface 140, thereby increasing the efficiency of heating the target tissue. Portions of light 211 may also be transmitted directly from power converter module 120 to power transfer surface 140 .

[00152] На фиг. 4D представлен схематический вид сбоку в плане другого варианта осуществления устройства 200 для лечения глаза. В этом варианте осуществления передача света 211 может осуществляться без помощи отражателя 210, если, например, для управления направлением и интенсивностью света 211 могут быть использованы другие компоненты устройства 200 для лечения глаза, такие как линза специальной формы, дополнительный линзовый элемент, световод, элемент полного внутреннего отражения (TIR), преломляющий элемент, дифракционный элемент, зеркальный элемент, рассеиватель и т. п. или их комбинация. Может быть желательно управлять фокусировкой и интенсивностью световой энергии таким образом , чтобы световая энергия проникала глубоко в целевую ткань век 12, 14, такую как мейбомиевы железы, но не значительно за ее пределы. В некоторых вариантах осуществления поверхность 140 передачи энергии, действующая как линза или с линзой, может использоваться для фокусировки и направления света 211 на требующую лечения ткань и в сторону от центральной окулярной оси, чтобы избегать передних глазных структур 27 глазного яблока 20 и других чувствительных структур глаза, таких как сетчатка. Будет понятно, что область, вдоль которой смыкаются верхнее веко 12 и нижнее веко 14, может варьироваться от одного человека к другому; у большинства людей эта область обычно находится ниже центральной окулярной оси. Однако в целях демонстрации того, как определенные варианты осуществления могут снизить риск проникновения избыточного света 211 через веки по центральной окулярной оси, показана наихудшая ситуация, когда веки смыкаются на центральной окулярной оси. Также будет понятно, что по меньшей мере часть риска, связанного с чрезмерным проникновением лучей через веки и достижением чувствительных тканей, может быть уменьшена благодаря тому, что человек, которого лечат, смещает свое глазное яблоко от оси так, что большая часть лучей, проникающих через веки, достигает только склеры, которая обычно менее чувствительна. [00152] In FIG. 4D is a schematic side plan view of another embodiment of an eye treatment device 200. In this embodiment, transmission of light 211 can be accomplished without the aid of reflector 210 if, for example, other components of eye treatment device 200, such as a specially shaped lens, an additional lens element, a light guide, a complete lens element, can be used to control the direction and intensity of light 211. internal reflection (TIR), refractive element, diffractive element, mirror element, diffuser, etc., or a combination thereof. It may be desirable to control the focus and intensity of the light energy so that the light energy penetrates deep into the target tissue of the eyelids 12, 14, such as the meibomian glands, but not significantly beyond it. In some embodiments, the energy transfer surface 140, acting as or with a lens, can be used to focus and direct light 211 onto the tissue requiring treatment and away from the central ocular axis to avoid the anterior ocular structures 27 of the eyeball 20 and other sensitive structures of the eye. , such as the retina. It will be understood that the area along which the upper eyelid 12 and lower eyelid 14 meet may vary from one person to another; in most people this area is usually below the central ocular axis. However, for the purpose of demonstrating how certain embodiments can reduce the risk of excess light 211 passing through the eyelids along the central ocular axis, a worst-case situation is shown where the eyelids are closed at the central ocular axis. It will also be understood that at least part of the risk associated with excessive penetration of rays through the eyelids and reaching sensitive tissues can be reduced by the person being treated moving his eyeball off-axis so that most of the rays penetrating through eyelids, reaches only the sclera, which is usually less sensitive.

[00153] На фиг. 4E показан конкретный вариант осуществления, содержащий дополнительные оптические элементы для улучшения распределения световой энергии по поверхности века при минимизации количества света, проходящего непосредственно через центральную окулярную ось. Модуль 120 преобразователя энергии содержит светодиод, такой как LZ9 от «LED Engin Inc.», призму 280, формирующую линзу 282 и лицевое стекло 284 (выполняющее функцию, аналогичную поверхности 140 передачи энергии, в другом варианте осуществления, раскрытом в данном документе). Веки 12, 14 и глазное яблоко 20 также показаны по отношению к оптическим элементам. В этой конкретной конструкции призма представляет собой стеклянный элемент с 6 полированными поверхностями и одной вогнутой поверхностью в виде полушара с радиусом 3,5 мм для размещения светодиода. На поверхности призмы нет покрытия. Входные и выходные поверхности могут иметь антиотражательное покрытие (необязательно), которое увеличивает эффективность на приблизительно 5-6%. Фиг. 4F-H показаны иллюстративные подробности формы и размеров призмы 280. Материал может представлять собой BK7, а поверхности предпочтительно являются полированными. На фиг. 4F представлен вид спереди, на фиг. 4G представлен вид сбоку, а на фиг. 4H представлен вид в разрезе по линии разреза A-A. На фиг. 4I-L показаны иллюстративные подробности формы и размеров формирующей линзы 282. На фиг. 4I представлен вид спереди, на фиг. 4J представлен вид в разрезе по линии разреза A-A, на фиг. 4K представлен вид сбоку, а на фиг. 4L представлен вид в перспективе. На фиг. 4M и 4N показаны теоретические оптические характеристики системы, описанной выше на фиг. 4E-L. На фиг. 4М показано распределение света, измеренное как облученность в ваттах на квадратный миллиметр на поверхности век, при этом показано, что распределение света является довольно равномерным (в отличие от свечения светодиода модуля 120 преобразователя энергии непосредственно на веки или через гладкую стеклянную поверхность передачи энергии, в случае чего большая часть света будет проецироваться в средней части века и очень мало будет достигать краев). Общий расчетный поток составляет 0,86 Вт, максимальная облученность составляет 2,2 милливатта на квадратный миллиметр, а равномерность оценивается приблизительно в 80%. На фиг. 4N показано количество излучения, достигающего глаза (то есть проходящего через ткань века). Общий расчетный поток составляет 0,019 Вт, и максимальная облученность составляет 0,18 милливатт на квадратный миллиметр. [00153] In FIG. 4E shows a specific embodiment containing additional optical elements to improve the distribution of light energy across the surface of the eyelid while minimizing the amount of light passing directly through the central ocular axis. The power converter module 120 includes an LED, such as LZ9 from LED Engin Inc., a prism 280, a forming lens 282, and a face glass 284 (performing a similar function to the power transfer surface 140 in another embodiment disclosed herein). Eyelids 12, 14 and eyeball 20 are also shown in relation to the optical elements. In this particular design, the prism is a glass element with 6 polished surfaces and one concave hemispherical surface with a 3.5mm radius to accommodate the LED. There is no coating on the surface of the prism. The inlet and outlet surfaces may have an anti-reflection coating (optional), which increases efficiency by approximately 5-6%. Fig. 4F-H show illustrative details of the shape and dimensions of the prism 280. The material may be BK7 and the surfaces are preferably polished. In fig. 4F is a front view; FIG. 4G is a side view, and FIG. 4H is a sectional view along section line A-A. In fig. 4I-L show illustrative details of the shape and dimensions of the shaping lens 282. FIG. 4I is a front view; FIG. 4J is a sectional view along section line A-A, FIG. 4K is a side view, and FIG. 4L is a perspective view. In fig. 4M and 4N show the theoretical optical characteristics of the system described above in FIG. 4E-L. In fig. 4M shows the light distribution measured as irradiance in watts per square millimeter on the surface of the eyelids, showing that the light distribution is fairly uniform (as opposed to the LED of the power converter module 120 shining directly onto the eyelids or through a smooth glass energy transfer surface, in the case whereby most of the light will be projected in the middle of the eyelid and very little will reach the edges). The total calculated flux is 0.86 W, the maximum irradiance is 2.2 milliwatts per square millimeter, and the uniformity is estimated to be approximately 80%. In fig. 4N shows the amount of radiation reaching the eye (that is, passing through the tissue of the eyelid). The total design flux is 0.019 W and the maximum irradiance is 0.18 milliwatts per square millimeter.

[00154] На фиг. 5A и 5B представлен один вариант осуществления устройства 200 для лечения глаза. На фиг. 5A представлен схематический вид сбоку в плане устройства 200 для лечения глаза, а на фиг. 5B представлен схематический вид спереди в плане устройства 200 для лечения глаза. Вариант осуществления устройства 200 для лечения глаза может содержать компоненты, подобные тем, которые показаны на фиг. 4A-4C, в том числе модуль 110 источника питания и устройство 212 управления, хотя такие компоненты не показаны на фиг. 5A и 5B. На фиг. 5A предоставлена другая конфигурация модуля 120 преобразователя энергии для фокусировки и управления направлением света 211. В некоторых вариантах осуществления устройство 200 для лечения глаза может содержать несколько модулей 120 преобразователя энергии так, что по меньшей мере один модуль 120a преобразователя энергии может быть расположен в верхней области устройства 200 для лечения глаза для подачи электромагнитной энергии (например, света 211) к целевой ткани внутри верхнего века 12 и по меньшей мере один модуль 120b преобразователя энергии может быть расположен в нижней области устройства 200 для лечения глаза для подачи электромагнитной энергии (например, света 211) к целевой ткани, находящейся в нижнем веке 14. Наличие отдельных модулей 120a, 120b преобразователя энергии, расположенных отдельно в устройстве 200 для лечения глаза, обеспечивает возможность устройству 200 для лечения глаза направлять световую энергию непосредственно к целевой ткани внутри верхнего века 12 и нижнего века 14 и уменьшает количество света, которое может быть направлено к чувствительным передним структурам глаза 27 вдоль центральной окулярной оси 30. [00154] In FIG. 5A and 5B illustrate one embodiment of an eye treatment device 200. In fig. 5A is a schematic side plan view of an eye treatment device 200, and FIG. 5B is a schematic front plan view of an eye treatment device 200. An embodiment of the eye treatment device 200 may include components similar to those shown in FIG. 4A-4C, including power supply module 110 and control device 212, although such components are not shown in FIG. 5A and 5B. In fig. 5A provides another configuration of a power converter module 120 for focusing and controlling the direction of light 211. In some embodiments, the eye treatment device 200 may include multiple power converter modules 120 such that at least one power converter module 120a may be located in an upper region of the device. 200 for treating the eye for delivering electromagnetic energy (e.g., light 211) to the target tissue within the upper eyelid 12, and at least one energy converter module 120b may be located in the lower region of the device for treating the eye 200 for delivering electromagnetic energy (for example, light 211 ) to the target tissue located in the lower eyelid 14. The presence of separate energy converter modules 120a, 120b located separately in the eye treatment device 200 allows the eye treatment device 200 to direct light energy directly to the target tissue within the upper eyelid 12 and lower eyelid 14 and reduces the amount of light that can be directed to the sensory anterior structures of the eye 27 along the central ocular axis 30.

[00155] Как показано на фиг. 5A, использование устройства 200 для лечения глаза для лечения заболеваний глаз, таких как MGD и блефарит, может включать размещение поверхности 140 передачи энергии устройства 200 для лечения глаза смежно или в контакте с закрытыми верхней и нижней веками 12, 14 пациента. При таком расположении устройства 200 для лечения глаза верхний модуль 120a преобразователя энергии может быть расположен над центральной окулярной осью 30 для подачи электромагнитной энергии в форме света 211 к мейбомиевым железам 18 внутри верхнего века 12, а модули 120b преобразователя энергии могут быть расположены ниже центральной окулярной оси 30 для подачи электромагнитной энергии в форме света 211 к мейбомиевым железам 18 внутри нижнего века 14. Устройство 200 для лечения глаза также может содержать отражатель 210, расположенный за верхним и нижним модулями 120 преобразователя энергии, для отражения любого света обратно к подвергаемой лечению ткани. [00155] As shown in FIG. 5A, use of the eye treatment device 200 to treat eye diseases such as MGD and blepharitis may include placing the energy transfer surface 140 of the eye treatment device 200 adjacent or in contact with the closed upper and lower eyelids 12, 14 of the patient. With this arrangement of the eye treatment device 200, the upper energy converter module 120a may be located above the central ocular axis 30 to supply electromagnetic energy in the form of light 211 to the meibomian glands 18 within the upper eyelid 12, and the energy converter modules 120b may be located below the central ocular axis 30 for delivering electromagnetic energy in the form of light 211 to the meibomian glands 18 within the lower eyelid 14. The eye treatment device 200 may also include a reflector 210 located behind the upper and lower energy converter modules 120 to reflect any light back to the tissue being treated.

[00156] Как показано на фиг. 5A, верхний и нижний модули 120 преобразователя энергии могут быть наклонены под некоторым углом, при этом каждый имеет центральную оптическую ось, направленную по существу под косым углом к поверхности каждого века, так что большая часть световой энергии, проходящей в каждое веко, поглощается до того, как достигнет чувствительных передних глазных структур 27 глазного яблока 20. В некоторых вариантах осуществления верхний и нижний модули 120 преобразователя энергии могут иметь другую направленную ориентацию. Например, в некоторых вариантах осуществления верхний и нижний модули 120 преобразователя энергии могут быть расположены так, что каждая центральная оптическая ось источников освещения является по существу горизонтальной. По существу, свет 211, передаваемый из модулей 120 преобразователя энергии, приспособленных таким образом, может проходить горизонтально из модулей 120 преобразователя энергии к поверхности 140 передачи энергии и затем может подвергаться преломлению, дифракции или отражению под углом к подвергаемой лечению ткани таким образом, чтобы максимально увеличивать проникновение, поглощение и нагрев в целевых областях век, при этом сводя к минимуму долю света, которая достигает чувствительных передних структур 27 глаза. [00156] As shown in FIG. 5A, the upper and lower energy converter modules 120 may be tilted at some angle, each having a central optical axis directed at a substantially oblique angle to the surface of each eyelid such that the majority of the light energy passing into each eyelid is absorbed before as it reaches the sensory anterior ocular structures 27 of the eyeball 20. In some embodiments, the upper and lower energy converter modules 120 may have a different directional orientation. For example, in some embodiments, the upper and lower power converter modules 120 may be positioned such that each central optical axis of the light sources is substantially horizontal. As such, light 211 transmitted from power converter modules 120 so configured may pass horizontally from power converter modules 120 to power transfer surface 140 and may then be subject to refraction, diffraction, or reflection at an angle to the tissue being treated so as to maximize increase penetration, absorption and heating in targeted areas of the eyelids, while minimizing the proportion of light that reaches the sensitive anterior structures of the 27 eye.

[00157] Устройство 200 для лечения глаза в вариантах осуществления, показанных на фиг. 5A и 5B, может содержать более одного модуля 120 преобразователя энергии в каждой из верхней и нижней областей устройства 200 для лечения глаза. Например, как показано на фиг. 5B, устройство 200 для лечения глаза может содержать три отдельных модуля 120a-c преобразователя энергии в верхней области и три отдельных модуля 120d-f преобразователя энергии в нижней части. Рассматривается и другое количество модулей 120 преобразователя энергии, такое как, например, 2, 4, 5, 6, 7, 8, 9, 10 и т. д. модулей 120 преобразователя энергии в каждой из верхней и нижней областей устройства 200 для лечения глаза. Размещение нескольких модулей 120 преобразователя энергии сбоку в верхней и нижней областях устройства 200 для лечения глаза обеспечивает возможность улучшить охват и распределение электромагнитной энергии по ширине (от стороны к стороне) верхнего и нижнего века 12, 14 для лучшего охвата всей ширины целевой ткани (например, мейбомиевых желез внутри век 12, 14). Также, как показано на фиг. 5B, верхний и нижний модули 120a-c, 206d-f преобразователя энергии могут быть расположены по дуговой схеме, чтобы следовать верхнему и нижнему контурам глазного яблока. [00157] The eye treatment device 200 in the embodiments shown in FIGS. 5A and 5B may include more than one power converter module 120 in each of the upper and lower regions of the eye treatment device 200. For example, as shown in FIG. 5B, the eye treatment device 200 may include three separate power converter modules 120a-c in an upper region and three separate power converter modules 120d-f in a lower region. Another number of power converter modules 120 is contemplated, such as, for example, 2, 4, 5, 6, 7, 8, 9, 10, etc. power converter modules 120 in each of the upper and lower regions of the eye treatment device 200 . Placing multiple energy converter modules 120 laterally in the upper and lower regions of the eye treatment device 200 provides the ability to improve the coverage and distribution of electromagnetic energy across the width (side to side) of the upper and lower eyelids 12, 14 to better cover the entire width of the target tissue (e.g. meibomian glands inside the eyelids 12, 14). Also, as shown in FIG. 5B, the upper and lower power converter modules 120a-c, 206d-f may be arranged in an arc pattern to follow the upper and lower contours of the eyeball.

[00158] Также подразумевается, хотя и не показано на фиг. 5B, что верхняя и нижняя области освещения устройства 200 для лечения глаза могут быть оснащены более чем одним рядом модулей 120 преобразователя энергии. Например, на фиг. 5B, один или несколько дополнительных модулей 120 преобразователя энергии могут быть расположены над или под каждым из модулей 120a-c преобразователя энергии. Включение дополнительных рядов модулей 120a-c преобразователя энергии может обеспечивать дополнительное вертикальное покрытие и распределение электромагнитной энергии, направленной к целевой подвергаемой лечению ткани. Дополнительно подразумевается, хотя и не показано, что устройство 200 для лечения глаза может содержать два набора модулей 120 преобразователя энергии, отражателей 210 и поверхностей 204 передачи энергии внутри корпуса, выполненного в виде бинокля, для размещения смежно с обоими глазами пациента, или напротив них, одновременно. Устройства согласно таким вариантам осуществления могут ускорить время лечения, поскольку оба глаза можно лечить одновременно. [00158] Also implied, although not shown in FIG. 5B that the upper and lower illumination areas of the eye treatment device 200 may be equipped with more than one row of power converter modules 120. For example, in FIG. 5B, one or more additional power converter modules 120 may be located above or below each of the power converter modules 120a-c. Incorporation of additional rows of energy converter modules 120a-c may provide additional vertical coverage and distribution of electromagnetic energy directed toward the target tissue being treated. It is further implied, although not shown, that the eye treatment device 200 may include two sets of energy converter modules 120, reflectors 210, and energy transfer surfaces 204 within a binocular-like housing for placement adjacent to or opposite both of the patient's eyes. simultaneously. Devices according to such embodiments can speed up treatment time since both eyes can be treated simultaneously.

[00159] На фиг. 5C-F показаны виды сбоку, сверху, спереди и в перспективе, соответственно, конфигурации с 8 светодиодами, подобной изображенной на фиг. 5A-B (только с восемью светодиодами 120a, 120b вместо шести). Восемь светодиодов 120a, 120b могут представлять собой светодиоды типа LZ1 от «LED Engin, Inc.» и показаны расположенными на сферически изогнутой поверхности, которая может представлять собой схемную плату или задающее устройство 209 модуля преобразователя энергии, расположенной за лицевым стеклом 284, форма которого соответствует кривизне век 12, 14 смежно с глазным яблоком 20. На фиг. 5G показана расчетная картина облученности на веки 12, 14 с общим потоком 2,7 Вт и максимальной облученностью 10,7 милливатт на квадратный миллиметр. На фиг. 5H показана расчетная облученность при прохождении через веки, с общим потоком 0,07 Вт и максимальной облученностью 0,6 милливатт на квадратный миллиметр. Будет понятно, что картины облученности, показанные на фиг. 5G и 5H, являются менее равномерными, чем картины, показанные на фиг. 4N и 4P. Компромисс между двумя конструкциями обусловлен зависимостью компактности устройства от равномерности. Конструкции, показанные на фиг. 4E-L, содержат довольно большую призму, тогда как конструкции, показанные на фиг. C-F, не содержат никаких оптических элементов, кроме светодиодов, линз и лицевого стекла. Специалисты в данной области техники могут комбинировать эти два подхода, например, добавляя одну или несколько призм 280, формирующих линз 282 или других элементов, таких как рассеиватели, решетки и т. п., к конструкциям, представленным на фиг. 5C-F, с целью оптимизации равномерности распределения света, сохраняя при этом размер устройства насколько можно более компактным. [00159] In FIG. 5C-F show side, top, front and perspective views, respectively, of an 8-LED configuration similar to that shown in FIG. 5A-B (with only eight 120a, 120b LEDs instead of six). The eight LEDs 120a, 120b may be LZ1 type LEDs from LED Engin, Inc. and are shown located on a spherically curved surface, which may be a circuit board or power converter module driver 209, located behind a bezel 284 shaped to match the curvature of eyelids 12, 14 adjacent to the eyeball 20. In FIG. Figure 5G shows the calculated irradiance pattern for eyelids 12, 14 with a total flux of 2.7 W and a maximum irradiance of 10.7 milliwatts per square millimeter. In fig. Figure 5H shows the calculated irradiance through the eyelids, with a total flux of 0.07 W and a maximum irradiance of 0.6 milliwatts per square millimeter. It will be understood that the irradiance patterns shown in FIG. 5G and 5H are less uniform than the patterns shown in FIG. 4N and 4P. The trade-off between the two designs is due to the dependence of device compactness on uniformity. The structures shown in FIGS. 4E-L contain a fairly large prism, while the designs shown in FIGS. C-F, do not contain any optical elements other than LEDs, lenses and front glass. Those skilled in the art may combine these two approaches, for example, by adding one or more prisms 280, forming lenses 282, or other elements such as diffusers, gratings, and the like, to the structures illustrated in FIGS. 5C-F, with the aim of optimizing the uniformity of light distribution while keeping the size of the device as compact as possible.

[00160] На фиг. 6 представлен схематический вид сбоку в плане устройства 200 для лечения глаза, такого как устройство 200 для лечения глаза, изображенное на фиг. 5А. Также на фиг. 6 показан склеральный экран 300, который в сочетании с устройством 200 для лечения глаза может обеспечивать систему для лечения целевой ткани с повышенной безопасностью и эффективностью. Склеральный экран 300 может быть расположен под веками 12, 14 и смежно с глазным яблоком 20 пациента, чтобы закрывать чувствительные передние структуры 27 глаза. Например, склеральный экран может быть расположен (со ссылкой на фиг. 1) над склерой 21 и роговицей 22, а также может обеспечивать защиту другой внутренней структуры глаза, такой как радужная оболочка 24, зрачок 25, хрусталик 26 и другие светочувствительные структуры системы 10 глаза. [00160] In FIG. 6 is a schematic side plan view of an eye treatment device 200, such as the eye treatment device 200 shown in FIG. 5A. Also in FIG. 6 illustrates a scleral shield 300 that, when combined with an ocular treatment device 200, can provide a system for treating target tissue with increased safety and effectiveness. The scleral shield 300 may be positioned under the eyelids 12, 14 and adjacent to the eyeball 20 of the patient to cover the sensory anterior structures 27 of the eye. For example, a scleral shield may be located (with reference to FIG. 1) over the sclera 21 and cornea 22, and may also provide protection to other internal structures of the eye, such as the iris 24, pupil 25, lens 26, and other light-sensitive structures of the eye system 10 .

[00161] Возвращаясь снова к фиг. 6, склеральный экран 300 может иметь форму диска, подобную контактной линзе, или он может быть значительно больше, чтобы покрывать всю роговицу и необязательно по меньшей мере часть склеры (как в случае обычного экрана для роговицы), или он может иметь форму частичного диска или лопатки, подобную части лопатки Мастроты, помещаемой под веко. Экран 300 может быть расположен в глазу перед лечением устройством 200 для лечения глаза, или он может составлять единое целое с устройством 200 для лечения глаза и, следовательно, помещаться в глаз или под веко во время лечения. Помимо обеспечения основных преимуществ безопасности склеральный экран 300 также может обеспечивать повышенную эффективность устройства 200 для лечения глаза. Например, в некоторых обстоятельствах интенсивность энергии, исходящей из модулей 120 преобразователя энергии, должна модулироваться для предотвращения повреждения чувствительной структуры глаза; однако, когда структура глаза защищена с помощью склерального экрана 300, интенсивность электромагнитной энергии, направляемой из модулей 120 преобразователя энергии, может быть увеличена. Как показано на фиг. 7E-7G, склеральный экран 300 может содержать верхнюю изогнутую часть 264 экрана, которая не позволяет рассеянной фотонной энергии достигать роговицы, хрусталика, радужной оболочки и зрачка. Хотя склеральный экран 300 показан на фиг. 6 для использования вместе с вариантом осуществления устройства 200 для лечения глаза, описанным со ссылкой на фиг. 5A и 5B, специалисту в данной области будет понятно, что склеральный экран 300 может быть использован в сочетании с любым из вариантов осуществления устройства 200 для лечения глаза, раскрытых в данном документе, для создания системы для безопасного и эффективного лечения глазных заболеваний. [00161] Returning again to FIG. 6, the scleral shield 300 may be disc-shaped like a contact lens, or it may be significantly larger to cover the entire cornea and optionally at least part of the sclera (as with a conventional corneal shield), or it may be in the shape of a partial disc or scapula, similar to the part of Mastrota's scapula placed under the eyelid. The screen 300 may be positioned in the eye prior to treatment with the eye treatment device 200, or it may be integral with the eye treatment device 200 and therefore placed in the eye or under the eyelid during treatment. In addition to providing basic safety benefits, the scleral shield 300 may also provide increased effectiveness of the eye treatment device 200. For example, in some circumstances, the intensity of the energy emanating from the energy converter modules 120 must be modulated to prevent damage to the sensitive structure of the eye; however, when the ocular structure is protected by the scleral shield 300, the intensity of electromagnetic energy directed from the energy converter modules 120 can be increased. As shown in FIG. 7E-7G, scleral shield 300 may include an upper curved shield portion 264 that prevents scattered photon energy from reaching the cornea, lens, iris, and pupil. Although scleral screen 300 is shown in FIG. 6 for use in conjunction with the embodiment of the eye treatment device 200 described with reference to FIG. 5A and 5B, one of ordinary skill in the art will appreciate that the scleral shield 300 may be used in combination with any of the embodiments of the ocular treatment device 200 disclosed herein to provide a system for the safe and effective treatment of ocular diseases.

[00162] Также будет понятно, что склеральный экран 300 может содержать признаки, которые обеспечивают еще больше преимуществ для устройства. Например, склеральный экран 300 в некоторых вариантах осуществления выполнен с возможностью отражения энергии от глазного яблока к внутренним векам, обеспечивая нагрев внутренних век. В некоторых вариантах осуществления склеральный экран 300 может также содержать преобразователь 155 изображения, как обсуждалось выше. Преобразователь 155 изображения обеспечивает возможность осмотра внутренней стороны века 14 и просвечивания мейбомиевых желез из-за века. В некоторых вариантах осуществления склеральный экран 300 может быть выполнен из энергопоглощающего материала или иметь энергопередающую поверхность на лицевой поверхности 302 для нагрева мейбомиевых желез из-за века во время лечения. Энергопоглощающий материал может представлять собой материал, поглощающий видимый свет или ИК-излучение, или поверхность, выполненную из черной пластмассы или покрытую черным веществом, любое из которых может содержать углеродною сажу (например, 5% или более) или другой материал, поглощающий световую энергию, например, красный свет и БИК. [00162] It will also be understood that the scleral screen 300 may include features that provide even more benefits to the device. For example, the scleral shield 300 in some embodiments is configured to reflect energy from the eyeball to the inner eyelids, providing heating to the inner eyelids. In some embodiments, the scleral screen 300 may also include an image converter 155, as discussed above. The image converter 155 provides the ability to view the inside of the eyelid 14 and view the meibomian glands from behind the eyelid. In some embodiments, the scleral shield 300 may be made of an energy-absorbing material or have an energy-transmitting surface on the facial surface 302 to heat the eyelid meibomian glands during treatment. The energy-absorbing material may be a material that absorbs visible light or IR radiation, or a surface made of black plastic or coated with a black substance, either of which may contain carbon black (for example, 5% or more) or other material that absorbs light energy, for example, red light and NIR.

[00163] Дополнительно, как показано на схематических видах спереди в плане склерального экрана 300 на фиг. 7A-7H, экран 300 может содержать один или несколько датчиков 310 температуры на передней или задней поверхностях экрана 300. Экран 300 может также содержать средства 320 передачи данных, чтобы данные о температуре можно было отправлять на устройство 200 для лечения глаза с целью текущего контроля или модулирования сеанса лечения, чтобы внутренние поверхности век могли достигать целевой температуры, не превышая предварительно определенный порог, а также обеспечивать, чтобы чувствительные ткани глаза не превышали другой предварительно определенный порог. В некоторых вариантах осуществления, таких как вариант осуществления, показанный на фиг. 7A, экран 300 имеет встроенный источник 330 питания, массив 310 датчиков температуры и средства 320 передачи данных, которые передают данные по беспроводной связи, например, РЧ, на внешнее опрашивающее устройство 400 (которое может быть встроено в устройство 200 для лечения глаза). В некоторых вариантах осуществления средства 320 передачи данных содержат антенну, встроенную в экран 300. В другом варианте осуществления, таком как вариант осуществления, изображенный на фиг. 7B, экран 300 может быть пассивным (без источника 330 питания) и приспособлен для опроса внешним опрашивающим устройством 400 (которое может быть встроено в устройство 200 для лечения глаза) с использованием РЧ. Например, внешнее опрашивающее устройство 400, схематически показанное на фиг. 7B, может быть выполнено с возможностью подачи питания на схему в экране 300, достаточного для измерения температур(-ы); опрашивающее устройство 400 может также подавать питание на передатчик для отправки данных о температуре обратно на опрашивающее устройство 400. В еще одном варианте осуществления, таком как вариант показанный на фиг. 7C, экран 300 может быть полностью пассивным и содержать один или несколько датчиков 310 температуры в резонансных цепях, точки резонанса которых будут модулироваться изменениями (например, сопротивлением) в датчиках 310 температуры и точки резонанса которых могут быть обнаружены с помощью развертки внешнего РЧ поля, например, с помощью использования внешнего устройства 410 радиочастотной развертки, схематически изображенного на фиг. 7C, и текущего контроля импеданса или другой характеристики поля. В другом варианте осуществления, таком как вариант, показанный на фиг. 7D, экран 300 может быть физически связан с внешним устройством, таким как опрашивающее устройство или устройство 200 для лечения глаза (например, показанное на фиг. 3A), посредством провода или комплекта 420 проводов, идущих от экрана 300 к внешнему устройству, при этом такое внешнее устройство может подавать питание на активные элементы в экране 300, а также отправлять данные на экран 300 и принимать данные с него. Проволока или комплект 420 проводов могут содержать обычные многожильные или одножильные провода с тонкостенной изоляцией, или они могут быть встроены в более прочную структурную изоляцию. [00163] Additionally, as shown in the schematic front plan views of the scleral shield 300 in FIG. 7A-7H, screen 300 may include one or more temperature sensors 310 on the front or rear surfaces of screen 300. Screen 300 may also include communication means 320 so that temperature data can be sent to eye treatment device 200 for monitoring or monitoring purposes. modulating the treatment session so that the inner surfaces of the eyelids can reach the target temperature without exceeding a predetermined threshold, and also ensure that the sensitive tissues of the eye do not exceed another predetermined threshold. In some embodiments, such as the embodiment shown in FIG. 7A, screen 300 has an integrated power supply 330, a temperature sensor array 310, and communications means 320 that transmit data wirelessly, such as RF, to an external interrogator 400 (which may be built into the eye treatment device 200). In some embodiments, the communication means 320 includes an antenna integrated into the screen 300. In another embodiment, such as the embodiment depicted in FIG. 7B, screen 300 may be passive (without power supply 330) and configured to be interrogated by external interrogator 400 (which may be built into eye treatment device 200) using RF. For example, external interrogator 400, shown schematically in FIG. 7B may be configured to supply circuitry in screen 300 with sufficient power to sense temperature(s); interrogator 400 may also power the transmitter to send temperature data back to interrogator 400. In yet another embodiment, such as the embodiment shown in FIG. 7C, shield 300 may be completely passive and contain one or more temperature sensors 310 in resonant circuits, whose resonance points will be modulated by changes (e.g., resistance) in temperature sensors 310 and whose resonance points can be detected by sweeping an external RF field, e.g. , by using an external RF scanner 410, schematically shown in FIG. 7C, and current monitoring of impedance or other field characteristics. In another embodiment, such as the embodiment shown in FIG. 7D, the screen 300 may be physically coupled to an external device, such as an interrogating device or an eye treatment device 200 (eg, shown in FIG. 3A), via a wire or set of wires 420 extending from the screen 300 to the external device, such the external device may supply power to active elements in the screen 300 and send data to and receive data from the screen 300. The wire or set of 420 wires may contain conventional stranded or solid wires with thin-wall insulation, or they may be embedded in stronger structural insulation.

[00164] На фиг. 7E и 7E схематично показаны виды сбоку и спереди в плане экрана 300, имеющего датчик 310 температуры в средней части и один провод 420, выходящий с каждой стороны экрана. Верхняя изогнутая часть 264 экрана используется для защиты роговицы, хрусталика, радужной оболочки и зрачка пациента от света или ИК энергии. Данные о температуре с датчика 310 температуры могут быть отправлены на устройство 200 для лечения глаза по проводам 420 с целью текущего контроля или модулирования сеанса лечения, обеспечивая, чтобы внутренние поверхности век достигали необходимого диапазона температур без превышения предварительно определенного порога, наряду с обеспечением того, чтобы чувствительные ткани глаза не превышали другой предварительно определенный порог. [00164] In FIG. 7E and 7E are schematic side and front plan views of a shield 300 having a temperature sensor 310 in the middle portion and one wire 420 extending from each side of the shield. The upper curved portion 264 of the shield is used to protect the patient's cornea, lens, iris, and pupil from light or IR energy. Temperature data from the temperature sensor 310 may be sent to the eye treatment device 200 via wires 420 for the purpose of monitoring or modulating the treatment session, ensuring that the inner surfaces of the eyelids reach the desired temperature range without exceeding a predetermined threshold, while ensuring that the sensitive tissues of the eye did not exceed another predefined threshold.

[00165] На фиг. 7G и 7H представлены схематические виды сбоку и спереди в плане экрана 300, имеющего датчик 310 температуры в средней части и один провод 420, выходящий с каждой стороны экрана. В этих вариантах осуществления склеральный экран 300 может быть соединен с корпусом 202 с помощью одного или нескольких кронштейнов 262, при этом провода расположены на кронштейнах или внутри них, а в определенных вариантах осуществления структурная часть кронштейнов 262 выполнена из изоляционных материалов, окружающих или иным образом направляющих проводящие части провода или комплекта 420 проводов. [00165] In FIG. 7G and 7H are schematic side and front plan views of a shield 300 having a temperature sensor 310 in the middle portion and one wire 420 extending from each side of the shield. In these embodiments, the scleral shield 300 may be connected to the housing 202 by one or more brackets 262, with wires located on or within the brackets, and in certain embodiments, the structural portion of the brackets 262 is made of insulating materials surrounding or otherwise guides conductive parts of a wire or set of 420 wires.

[00166] На фиг. 8 показан вид сбоку другого варианта осуществления устройства 200 для лечения глаза. В некоторых вариантах осуществления, таких как настоящий описываемый вариант осуществления, устройство 200 для лечения глаза выполнено с возможностью приложения энергии к одному веку за раз, чтобы дополнительно защитить ткань глаза от повреждения или дискомфорта. В такой конфигурации модуль 120 преобразователя энергии в корпусе 202 имеет такой размер, чтобы нацеливаться на мейбомиевую железу и окружающую ткань одного века, например, верхнего века 12, показанного на фиг. 1, или нижнего века 14, показанного на фиг. 1, а поверхность 140 передачи энергии выполнена с возможностью относительного перемещения по пути 145 перемещения относительно модуля 120 преобразователя энергии. В таких вариантах осуществления поверхность 140 передачи энергии также имеет размер, приспособленный для размещения вдоль одного века за раз. При использовании пациенту, использующему такое устройство 200 для лечения глаза, может быть дана команда широко открыть глаз, таким образом обеспечивая, чтобы веко находилось относительно далеко от чувствительных передних структур глаза и центральной окулярной оси. [00166] In FIG. 8 is a side view of another embodiment of an eye treatment device 200. In some embodiments, such as the present described embodiment, the eye treatment device 200 is configured to apply energy to one eyelid at a time to further protect eye tissue from damage or discomfort. In such a configuration, the energy converter module 120 in housing 202 is sized to target the meibomian gland and surrounding tissue of one eyelid, such as the upper eyelid 12 shown in FIG. 1, or the lower eyelid 14 shown in FIG. 1, and the power transfer surface 140 is configured to be relatively movable along a movement path 145 relative to the power converter module 120. In such embodiments, the energy transfer surface 140 is also sized to fit along one eyelid at a time. In use, a patient using such an eye treatment device 200 may be instructed to open the eye wide, thereby ensuring that the eyelid is relatively far from the sensitive anterior structures of the eye and the central ocular axis.

[00167] В некоторых вариантах осуществления устройство 200 для лечения глаза содержит один или несколько признаков, которые помогают обеспечивать, чтобы устройство 200 для лечения глаза безопасно и правильно прилегало к веку. Например, в некоторых вариантах осуществления устройство 200 для лечения глаза содержит направляющее приспособление 242 для выравнивания зрачка. Направляющее приспособление 242 для выравнивания зрачка может представлять собой, например, зеркало с кругом, X, яблоком мишени или другим указателем цели. При использовании пациент может иметь возможность правильно позиционировать свой глаз, глядя в направляющее приспособление 242 для выравнивания зрачка, наблюдая за отражением своего зрачка в зеркале и совмещая зрачок с указателем цели. Дополнительно или альтернативно в некоторых вариантах осуществления устройство 200 для лечения глаза содержит дисплей 244, который может представлять собой экран, цифровой дисплей или другой оптический дисплей. Дисплей может предоставлять, например, изображение, на которое пациент может смотреть во время использования, таймер, отсчитывающий оставшееся время лечения, и/или сообщения-напоминания, такие как «Посмотрите вверх» (объяснено ниже). Дисплей 244 может также содержать средства 160 визуализации для улучшенного наблюдения за краем века во время диагностики и лечения. [00167] In some embodiments, the eye treatment device 200 includes one or more features that help ensure that the eye treatment device 200 adheres safely and correctly to the eyelid. For example, in some embodiments, the eye treatment device 200 includes a pupil alignment guide 242. The pupil alignment guide 242 may be, for example, a mirror with a circle, X, bullseye, or other target indicator. In use, the patient may be able to correctly position their eye by looking into the pupil alignment guide 242, observing the reflection of their pupil in a mirror, and aligning the pupil with the target indicator. Additionally or alternatively, in some embodiments, the eye treatment device 200 includes a display 244, which may be a screen, digital display, or other optical display. The display may provide, for example, an image that the patient can look at during use, a timer counting down the remaining treatment time, and/or reminder messages such as “Look Up” (explained below). The display 244 may also include visualization tools 160 for enhanced observation of the eyelid margin during diagnosis and treatment.

[00168] Устройство 200 для лечения глаза, показанное на фиг. 8, может содержать любые или все признаки, описанные в отношении других вариантов осуществления, представленных в данном документе. Например, в изображенном варианте осуществления модуль 120 преобразователя энергии представляет собой матрицу инфракрасных светодиодов. Однако в других вариантах осуществления, включая другие варианты осуществления, выполненные с возможностью приложения энергии к одному веку за раз, модуль 120 преобразователя энергии может содержать светодиод, излучающий свет в спектре видимого света, лазер, лампу накаливания, ксеноновую лампу, галогенную лампу, люминесцентную лампу, разрядную лампу высокой интенсивности или газоразрядную лампу. Устройство 200 для лечения глаза может дополнительно содержать склеральный экран 300, выполненный из энергопоглощающего материала, или имеющий энергопоглощающую или энергопередающую поверхность на передней поверхности 302 для поглощения или передачи тепла и нагрева внутренней поверхности века во время лечения. Склеральный экран 300 может также содержать один или несколько датчиков 310 температуры для текущего контроля сеанса лечения, обеспечивая, чтобы внутренние поверхности век достигали требуемой температуры и/или не превышали предварительно определенного порога. Склеральный экран 300 может дополнительно содержать преобразователь 155 изображения, интегрированный в склеральный экран, позволяющий осматривать мейбомиевы железы за веком. Устройство 200 для лечения глаза, показанное на фиг. 8, предпочтительно также содержит модуль 110 источника питания и необязательно устройство 212 управления, наряду с другими компонентами, как описано в отношении различных вариантов осуществления, представленных в данном документе. Дополнительно устройство 200 для лечения глаза, показанное на фиг. 8, содержит отражатель 210. В изображенном варианте осуществления отражатель 210 образован цилиндром и задней пластиной, которые вместе окружают модуль 120 преобразователя энергии во всех направлениях, кроме дистального. [00168] The eye treatment device 200 shown in FIG. 8 may contain any or all of the features described in relation to other embodiments presented herein. For example, in the illustrated embodiment, power converter module 120 is an array of infrared LEDs. However, in other embodiments, including other embodiments configured to apply energy to one eyelid at a time, the energy converter module 120 may include an LED emitting light in the visible light spectrum, a laser, an incandescent lamp, a xenon lamp, a halogen lamp, a fluorescent lamp , high intensity discharge lamp or gas discharge lamp. The eye treatment device 200 may further include a scleral shield 300 made of an energy-absorbing material or having an energy-absorbing or energy-transmitting surface on the front surface 302 to absorb or transmit heat and warm the inner surface of the eyelid during treatment. The scleral screen 300 may also include one or more temperature sensors 310 to monitor the treatment session, ensuring that the inner surfaces of the eyelids reach a desired temperature and/or do not exceed a predetermined threshold. The scleral screen 300 may further include an image transducer 155 integrated into the scleral screen to allow viewing of the meibomian glands behind the eyelid. The eye treatment device 200 shown in FIG. 8 preferably also includes a power supply module 110 and optionally a control device 212, along with other components as described with respect to the various embodiments presented herein. Additionally, the eye treatment device 200 shown in FIG. 8, includes a reflector 210. In the illustrated embodiment, the reflector 210 is formed by a cylinder and a back plate that together surround the power converter module 120 in all directions except distally.

[00169] Устройство 200 для лечения глаза в различных вариантах осуществления также содержит одну или несколько структур терморегулирования, выполненных с возможностью охлаждения по меньшей мере части устройства. В некоторых вариантах осуществления структуры терморегулирования предусмотрены для управления теплом модуля 120 преобразователя энергии и предотвращения перегрева устройства 200 для лечения глаза. Дополнительно или альтернативно в некоторых вариантах осуществления структуры терморегулирования предусмотрены для охлаждения поверхности века, чтобы ограничивать дискомфорт и избегать повреждения ткани века во время лечения. На фиг. 8, например, устройство 200 для лечения глаза содержит структуру 220 терморегулирования (показанную как ребристый радиатор), термоэлектрический модуль 224 (Пельтье) и одну или несколько теплопроводных поверхностей с пассивным или активным охлаждением. В некоторых вариантах осуществления может быть предусмотрен пассивный радиатор в качестве адекватной структуры 220 терморегулирования для рассеивания тепла от модуля 120 преобразователя энергии в окружающую среду без необходимости в термоэлектрическом модуле 224. Некоторые варианты осуществления содержат термоэлектрический модуль 224 или охладитель другого типа (например, компактный парокомпрессионный охладитель), предназначенный для охлаждения модуля 120 преобразователя энергии путем передачи тепла в направлении от поверхности 140 передачи энергии. На фиг. 8 термоэлектрический модуль 224 и структура 220 терморегулирования соединены так, что термоэлектрический модуль 224 перекачивает тепло от модуля 120 преобразователя энергии к структуре 220 терморегулирования для рассеивания. Дополнительно или альтернативно некоторые варианты осуществления содержат одну или несколько теплопроводных поверхностей. Например, на фиг. 8 цилиндр и задняя пластина отражателя 210 являются теплопроводными и соединены как с поверхностью 140 передачи энергии, так и с термоэлектрическим модулем 224. Кроме того, поверхность 140 передачи энергии является теплопроводной. В результате тепло от поверхности века и поверхности 140 передачи энергии может быть отведено к термоэлектрическому модулю 224, чтобы способствовать поддержанию комфортной температуры на веке. Активное охлаждение поверхности 140 передачи энергии может происходить не только во время периода лечения теплом, но и до, после или периодически в качестве средства охлаждения век. Такая особенность может не только облегчить ощущение жжения и зуда, которые часто сопровождают MGD и блефарит, но также может и уменьшить воспаление век. [00169] The eye treatment device 200, in various embodiments, also includes one or more thermal control structures configured to cool at least a portion of the device. In some embodiments, thermal control structures are provided to control the heat of the power converter module 120 and prevent the eye treatment device 200 from overheating. Additionally or alternatively, in some embodiments, thermal control structures are provided to cool the surface of the eyelid to limit discomfort and avoid damage to eyelid tissue during treatment. In fig. 8, for example, eye treatment device 200 includes a thermal management structure 220 (shown as a finned heat sink), a thermoelectric (Peltier) module 224, and one or more passively or actively cooled thermally conductive surfaces. In some embodiments, a passive heat sink may be provided as an adequate thermal management structure 220 to dissipate heat from the power converter module 120 to the environment without the need for a thermoelectric module 224. Some embodiments include a thermoelectric module 224 or another type of cooler (e.g., a compact vapor compression cooler ) for cooling the power converter module 120 by transferring heat away from the power transfer surface 140. In fig. 8, thermoelectric module 224 and thermal control structure 220 are connected such that thermoelectric module 224 pumps heat from power converter module 120 to thermal control structure 220 for dissipation. Additionally or alternatively, some embodiments include one or more thermally conductive surfaces. For example, in FIG. The cylinder 8 and reflector back plate 210 are thermally conductive and are connected to both the power transfer surface 140 and the thermoelectric module 224. In addition, the power transfer surface 140 is thermally conductive. As a result, heat from the eyelid surface and energy transfer surface 140 can be transferred to the thermoelectric module 224 to help maintain a comfortable temperature on the eyelid. Active cooling of the energy transfer surface 140 may occur not only during the heat treatment period, but also before, after, or periodically as a means of cooling the eyelids. This feature may not only relieve the burning and itching sensations that often accompany MGD and blepharitis, but may also reduce inflammation of the eyelids.

[00170] В некоторых вариантах осуществления устройство 200 для лечения глаза содержит бесконтактный датчик 232 температуры, предназначенный для использования, например, в сочетании с одной или несколькими структурами терморегулирования. Бесконтактный датчик 232 температуры может представлять собой инфракрасный термометр с дистанционным считыванием или другой подходящий датчик температуры. Бесконтактный датчик 232 температуры может быть сфокусирован на области глаза, представляющей особый интерес. Например, на фиг. 8 бесконтактный датчик 232 температуры сфокусирован на нижнем крае роговицы и, таким образом, обеспечивает считывание температуры на краю роговицы. Бесконтактный датчик 232 температуры может быть функционально связан с устройством 212 управления так, что в некоторых вариантах осуществления устройство 212 управления модулирует или отключает модуль 120 преобразователя энергии или активирует одну или несколько структур терморегулирования в ответ на прием показаний о повышенной температуре с бесконтактного датчика 232 температуры. В некоторых вариантах осуществления, когда к нижнему веку (например) подводится тепло, дисплей 244 может дать указание пациенту «Посмотрите вверх», чтобы обеспечить возможность измерения температуры глаза (склеры) бесконтактным датчиком 232 температуры в месте, которое находится непосредственно за нагреваемой частью века. Таким образом устройство 200 для лечения глаза может продолжать нагревать веко, при этом периодически убеждаясь, что глазное яблоко не перегревается. Будет понятно, что конфигурация устройства, показанная на фиг. 8, может быть легко адаптирована для лечения верхнего века, например, путем изменения ориентации элементов подачи энергии на обратную с сохранением при этом дисплея 244 и элементов выравнивания в их вертикальной (читаемой) ориентации. [00170] In some embodiments, the eye treatment device 200 includes a non-contact temperature sensor 232 for use, for example, in conjunction with one or more thermal management structures. The non-contact temperature sensor 232 may be a remote-sensing infrared thermometer or other suitable temperature sensor. The non-contact temperature sensor 232 may be focused on an area of the eye of particular interest. For example, in FIG. 8, the non-contact temperature sensor 232 is focused on the inferior edge of the cornea and thus provides a temperature reading at the edge of the cornea. The non-contact temperature sensor 232 may be operably coupled to the control device 212 such that, in some embodiments, the control device 212 modulates or disables the power converter module 120 or activates one or more thermal control structures in response to receiving an elevated temperature reading from the non-contact temperature sensor 232. In some embodiments, when heat is applied to the lower eyelid (for example), the display 244 may instruct the patient to “Look Up” to allow the non-contact temperature sensor 232 to measure the temperature of the eye (sclera) at a location that is directly behind the heated portion of the eyelid. In this way, the eye treatment device 200 can continue to heat the eyelid while periodically ensuring that the eyeball does not overheat. It will be understood that the device configuration shown in FIG. 8 can be easily adapted for upper eyelid treatment, for example, by reversing the orientation of the power delivery elements while maintaining the display 244 and alignment elements in their vertical (readable) orientation.

[00171] На фиг. 9 показан вид сбоку другого варианта осуществления устройства 200 для лечения глаза, имеющего одну или несколько структур 220 терморегулирования. Любая из структур 220 терморегулирования, описанных со ссылкой на фиг. 8 или 9, подходит для использования и явно предлагается для использования с любым из вариантов осуществления устройства 200 для лечения глаза, описанных в данном документе. Структура 220 терморегулирования может включать в себя любую подходящую структуру, выполненную с возможностью отвода тепла от модуля 120 преобразователя энергии так, чтобы модуль 120 преобразователя энергии оставался в требуемом диапазоне температур для поддержания эффективности модуля 120 преобразователя энергии. В некоторых вариантах осуществления структура 220 терморегулирования расположена по меньшей мере частично внутри корпуса 202 устройства 200 для лечения глаза, вместе с модулем 110 источника питания и другими внутренними компонентами. В некоторых вариантах осуществления внутри корпуса 202 предусмотрены одна или несколько из следующих структур 220 терморегулирования: радиатор (например, вариант осуществления ребристого радиатора структуры 220 терморегулирования, показанный на фиг. 8), термоэлектрический модуль (Пельтье) (например, термоэлектрический модуль 224, показанный на фиг. 8), компактный парокомпрессионный модуль и вентилятор. В некоторых вариантах осуществления структуры 220 терморегулирования направляют и распределяют тепло таким образом, чтобы корпус 202 оставался холодным на ощупь. [00171] In FIG. 9 is a side view of another embodiment of an eye treatment device 200 having one or more thermal control structures 220. Any of the thermal control structures 220 described with reference to FIGS. 8 or 9 is suitable for use and is expressly suggested for use with any of the embodiments of the eye treatment device 200 described herein. The thermal management structure 220 may include any suitable structure configured to remove heat from the power converter module 120 so that the power converter module 120 remains within a desired temperature range to maintain the efficiency of the power converter module 120. In some embodiments, the thermal management structure 220 is located at least partially within the housing 202 of the eye treatment device 200, along with the power supply module 110 and other internal components. In some embodiments, one or more of the following thermal management structures 220 are provided within housing 202: a heatsink (e.g., the finned heatsink embodiment of thermal management structure 220 shown in FIG. 8), a thermoelectric (Peltier) module (e.g., thermoelectric module 224 shown in Fig. 8), compact vapor compression module and fan. In some embodiments, thermal management structures 220 direct and distribute heat so that housing 202 remains cool to the touch.

[00172] Дополнительно в некоторых вариантах осуществления устройство 200 для лечения глаза содержит систему охлаждения поверхности, предназначенную для предотвращения нагрева поверхности века до точки дискомфорта или травмы, в то время как нагревается целевая ткань под поверхностью. Система охлаждения поверхности не требуется во всех вариантах осуществления; например, в некоторых вариантах осуществления выбранный модуль 120 преобразователя энергии выполнен с возможностью излучения световой энергии на длине волны, которая поглощается в целевой области ткани внутри века или в энергопоглощающей части склерального экрана с минимальным нагревом ткани поверхности века. В вариантах осуществления, в которых присутствует система охлаждения поверхности, система охлаждения поверхности может быть выполнена с возможностью охлаждения поверхности века пациента до или ниже температуры тела или до температуры ниже температуры целевой ткани или ниже порога дискомфорта до, во время или после подачи энергии в целевую область ткани. Система охлаждения поверхности может содержать любую подходящую структуру, выполненную с возможностью охлаждения поверхности века и/или охлаждения поверхности 140 передачи энергии. Например, в некоторых вариантах осуществления система охлаждения поверхности содержит активный охлаждающий элемент, такой как вентилятор. В некоторых таких вариантах осуществления поверхность 140 передачи энергии имеет такую форму, что между поверхностью 140 передачи энергии и по меньшей мере частью века существует воздушный зазор. На фиг. 2B изображен вариант осуществления, имеющий структуру, соответствующую для этой цели. В таких вариантах осуществления через воздушный зазор по поверхности века может продуваться воздух. В других вариантах осуществления поверхность 140 передачи энергии может иметь одно или несколько отверстий или каналов, проходящих через поверхность 140 передачи энергии или вдоль нее, через которые можно продувать воздух. В некоторых вариантах осуществления перед тем, как воздух обдувает поверхность века, его охлаждают. Воздух можно охлаждать, например, с помощью термоэлектрического охладителя, компрессора, льда или другого охлаждающего элемента. [00172] Additionally, in some embodiments, the eye treatment device 200 includes a surface cooling system designed to prevent the surface of the eyelid from heating to the point of discomfort or injury while the target tissue beneath the surface is heated. A surface cooling system is not required in all embodiments; for example, in some embodiments, the selected energy converter module 120 is configured to emit light energy at a wavelength that is absorbed in a target tissue area within the eyelid or in an energy-absorbing portion of the scleral shield with minimal heating of the eyelid surface tissue. In embodiments in which a surface cooling system is present, the surface cooling system may be configured to cool the patient's eyelid surface to or below body temperature or to a temperature below the target tissue temperature or below a discomfort threshold before, during, or after energy is applied to the target area fabrics. The surface cooling system may comprise any suitable structure configured to cool the eyelid surface and/or cool the energy transfer surface 140. For example, in some embodiments, the surface cooling system includes an active cooling element, such as a fan. In some such embodiments, the energy transfer surface 140 is shaped such that an air gap exists between the energy transfer surface 140 and at least a portion of the eyelid. In fig. 2B shows an embodiment having a structure suitable for this purpose. In such embodiments, air may be blown through the air gap across the surface of the eyelid. In other embodiments, the energy transfer surface 140 may have one or more holes or channels extending through or along the energy transfer surface 140 through which air can be blown. In some embodiments, the eyelid is cooled before air blows over the surface of the eyelid. The air can be cooled, for example, using a thermoelectric cooler, compressor, ice, or other cooling element.

[00173] В других вариантах осуществления испаряющееся вещество, такое как вода или спирт, может быть нанесено на поверхность 140 передачи энергии, так что затем поверхность века входит в контакт с испаряющимся веществом. Дополнительно или альтернативно испаряющееся вещество может быть нанесено на поверхность века до, во время или непосредственно после лечения устройством 200 для лечения глаза. Поскольку испарение происходит на поверхности века благодаря испаряющемуся веществу, пациент может испытывать ощущение охлаждения и облегчения. Еще в других вариантах осуществления устройство 200 для лечения глаза может включать охлаждающий эластичный мешок, расположенный между поверхностью 140 передачи энергии и поверхностью века. Эластичный мешок может быть наполнен прохладной водой или гелем и обеспечивать охлаждение и ощущение облегчения у пациента, когда эластичный мешок находится в контакте с поверхностью века. В качестве другого неограничивающего примера, система охлаждения поверхности может включать саму поверхность 140 передачи энергии. В некоторых таких вариантах осуществления поверхность 140 передачи энергии может быть выполнена из энергопоглощающего материала, такого как, например, алмаз, сапфир, фторид кальция или графен, и термически связана с большей тепловой массой. Для нагрева таких больших тепловых масс требуется много времени, и поэтому они не могут значительно нагреваться в течение периода лечения. Следовательно, большая тепловая масса может отводить тепло от поверхности 140 передачи энергии во время периода лечения. Кроме того, большая тепловая масса может охлаждаться до или во время периода лечения, а также может быть выполнена из тех же материалов, что и часть поверхность 140 передачи энергии, или она может быть выполнена как отдельный элемент из таких материалов, как медь, алюминий или другой энергопоглощающий или проводящий материал. [00173] In other embodiments, a volatile substance, such as water or alcohol, may be applied to the energy transfer surface 140 such that the surface of the eyelid then comes into contact with the volatile substance. Additionally or alternatively, the vaporizable substance may be applied to the surface of the eyelid before, during, or immediately after treatment with the eye treatment device 200. As evaporation occurs on the surface of the eyelid due to the evaporating substance, the patient may experience a feeling of cooling and relief. In still other embodiments, the eye treatment device 200 may include a cooling elastic bag positioned between the energy transfer surface 140 and the surface of the eyelid. The elastic bag may be filled with cool water or gel and provide cooling and a feeling of relief to the patient when the elastic bag is in contact with the surface of the eyelid. As another non-limiting example, the surface cooling system may include the power transfer surface 140 itself. In some such embodiments, the energy transfer surface 140 may be made of an energy-absorbing material, such as, for example, diamond, sapphire, calcium fluoride, or graphene, and thermally coupled to greater thermal mass. Such large thermal masses take a long time to heat up and therefore cannot heat up significantly during the treatment period. Therefore, a large thermal mass can remove heat from the energy transfer surface 140 during the treatment period. In addition, the large thermal mass may be cooled before or during the treatment period, and may be made of the same materials as part of the energy transfer surface 140, or it may be made as a separate element from materials such as copper, aluminum, or other energy-absorbing or conductive material.

[00174] В дополнение к структурам 220 терморегулирования и системам охлаждения поверхности, описанным выше, по меньшей мере некоторые устройства 200 для лечения глаза содержат один или несколько датчиков 230 безопасности, например, для текущего контроля параметров устройства 200 для лечения глаза или для обеспечения безопасности пациента. На фиг. 10 представлен один пример устройства 200 для лечения глаза, имеющего один или несколько датчиков 230 безопасности. Любой из датчиков 230 безопасности и связанных устройств 212 управления, описанных со ссылкой на фиг. 10, явно предлагаются для использования с любым из вариантов осуществления устройства 200 для лечения глаза, описанных в данном документе. Любое конкретное устройство 200 для лечения глаза может содержать датчики 230 безопасности одного или нескольких типов. Первый набор датчиков 230 безопасности, представленных на фиг. 10, предназначен для измерения температуры. Такие датчики 230 безопасности включают бесконтактный датчик 232 температуры и термопару или термистор 234. Бесконтактный датчик 232 температуры может представлять собой ИК термометр с дистанционным считыванием (такой как термобатарея, пироэлектрический термометр или микроболометр) или другой подходящий бесконтактный датчик. Бесконтактный датчик 232 температуры может быть предназначен для сбора данных о температуре со всего поля освещения, например, во время периода лечения, для текущего контроля температуры поверхности одного или нескольких век, или он может быть предназначен для фокусировки на конкретной области и предоставления показаний температуры этой области. Например, бесконтактный датчик 232 температуры может быть расположен и приспособлен так, чтобы предоставлять показания температуры части роговицы, склеры или другой области глаза, чтобы гарантировать, что такая ткань не перегревается и не повреждается, как показано на фиг. 8, например. [00174] In addition to the thermal control structures 220 and surface cooling systems described above, at least some eye treatment devices 200 include one or more safety sensors 230, for example, to monitor parameters of the eye treatment device 200 or to ensure patient safety. . In fig. 10 shows one example of an eye treatment device 200 having one or more safety sensors 230. Any of the security sensors 230 and associated control devices 212 described with reference to FIG. 10 are expressly provided for use with any of the embodiments of the eye treatment device 200 described herein. Any particular eye treatment device 200 may include one or more types of safety sensors 230. The first set of security sensors 230 shown in FIG. 10, designed for temperature measurement. Such security sensors 230 include a non-contact temperature sensor 232 and a thermocouple or thermistor 234. The non-contact temperature sensor 232 may be a remote-reading IR thermometer (such as a thermopile, pyroelectric thermometer, or microbolometer) or other suitable non-contact sensor. The non-contact temperature sensor 232 may be designed to collect temperature data from the entire illumination field, for example, during a treatment period to monitor the surface temperature of one or more eyelids, or it may be designed to focus on a specific area and provide a temperature reading of that area . For example, the non-contact temperature sensor 232 may be positioned and adapted to provide a temperature reading of a portion of the cornea, sclera, or other area of the eye to ensure that such tissue is not overheated or damaged, as shown in FIG. 8, for example.

[00175] Дополнительно или альтернативно некоторые варианты осуществления содержат термопару или термистор 234 (или RTD), расположенные на модуле 120 преобразователя энергии или рядом с ним. Такое расположение обеспечивает возможность термопаре или термистору 234 определять температуру модуля 120 преобразователя энергии, чтобы можно было производить текущий контроль температуры модуля 120 преобразователя энергии. Если модуль 120 преобразователя энергии перегреется, он может стать неэффективным и/или выйти из строя. Дополнительно или альтернативно термопара или термистор 234 могут быть расположены на или внутри поверхности 140 передачи энергии или смежно с ней. Такое расположение обеспечивает возможность термопаре или термистору 234 определять температуру поверхности 140 передачи энергии и/или поверхности века. Текущий контроль температуры таких поверхностей может помогать гарантировать, что пациент не испытает значительного дискомфорта или повреждений от использования устройства 200 для лечения глаза. В некоторых вариантах осуществления различные датчики 232, 234 температуры функционально связаны с устройством 212 управления, которое может быть запрограммировано для модуляции выходного сигнала модуля 120 преобразователя энергии, или одной или несколькими структурами терморегулирования, или системами охлаждения поверхности, чтобы обеспечивать или поддерживать температуру в пределах предварительно определенного целевого диапазона. Кроме того, если входные сигналы температуры с датчиков 232, 234 температуры находятся выше предварительно определенного диапазона, устройство 212 управления может отключать выходной сигнал модуля 120 преобразователя энергии. Дополнительно или альтернативно датчики 232, 234 температуры могут быть связаны со склеральным экраном 300 (не показан на этой фигуре) для текущего контроля температуры внутренней поверхности века и/или поверхности глаза. Дополнительно датчик или датчики 221 давления могут быть расположены на или внутри склерального экрана 300 и/или поверхности 140 передачи энергии или смежно с ними для текущего контроля давления или силы, прикладываемых пользователем к веку. [00175] Additionally or alternatively, some embodiments include a thermocouple or thermistor 234 (or RTD) located on or adjacent to the power converter module 120. This arrangement allows the thermocouple or thermistor 234 to sense the temperature of the power converter module 120 so that the temperature of the power converter module 120 can be monitored. If power converter module 120 overheats, it may become ineffective and/or fail. Additionally or alternatively, a thermocouple or thermistor 234 may be located on or within or adjacent to the power transfer surface 140. This arrangement allows the thermocouple or thermistor 234 to sense the temperature of the energy transfer surface 140 and/or the eyelid surface. Monitoring the temperature of such surfaces may help ensure that the patient does not experience significant discomfort or injury from using the eye treatment device 200. In some embodiments, various temperature sensors 232, 234 are operably coupled to a control device 212, which may be programmed to modulate the output of the power converter module 120, or one or more thermal control structures, or surface cooling systems to provide or maintain a temperature within a preset range. specific target range. In addition, if the temperature input signals from the temperature sensors 232, 234 are above a predetermined range, the control device 212 may turn off the output signal of the power converter module 120. Additionally or alternatively, temperature sensors 232, 234 may be coupled to a scleral screen 300 (not shown in this figure) to monitor the temperature of the inner surface of the eyelid and/or the surface of the eye. Additionally, a pressure sensor or sensors 221 may be located on or within or adjacent to the scleral shield 300 and/or energy transfer surface 140 to monitor the pressure or force applied by the user to the eyelid.

[00176] Второй набор датчиков 230 безопасности, представленных на фиг. 10, предусмотрен для определения положения устройства 200 для лечения глаза относительно века пациента. Датчик 236 света, присутствующий в или на поверхности 140 передачи энергии или смежно с ней, выполнен с возможностью обнаружения света. В различных конфигурациях устройства 200 для лечения глаза, когда поверхность 140 передачи энергии правильно размещена смежно с одним или двумя веками, в зависимости от конфигурации, это должно значительно уменьшать количество света внешней среды, который может достигать датчика 236 света. В некоторых вариантах осуществления, если свет обнаруживают в или на поверхности 140 передачи энергии или рядом с ней выше порогового диапазона, это указывает на то, что поверхность 140 передачи энергии размещена неправильно. Аналогично в или на поверхности 140 передачи энергии могут присутствовать контактные датчики 238. Каждый контактный датчик 238 может быть выполнен с возможностью обнаружения изменений емкости, таких как, например, изменение емкости, которое происходит, когда контактный датчик 238 находится рядом с кожей человека. Альтернативно контактные датчики 238 могут содержать электроды, которые подают небольшой постоянный или переменный микроток и определяют изменения импеданса в результате контакта с кожей. Или же контактные датчики 238 могут содержать микропереключатели или датчики силы или давления, каждый из которых производит изменение характеристик сигнала, когда поверхность 140 передачи энергии соприкасается с кожей. Таким образом, датчики 238 могут использоваться, чтобы помогать определять расположение устройства 200 для лечения глаза. Если устройство 200 для лечения глаза правильно расположено у закрытого глаза, верхний контактный датчик 238 и нижний контактный датчик 238 должны оба входить в контакт с кожей века и обнаруживать изменение емкости (или импеданса, состояния переключателя, силы, давления и т. д.). В различных вариантах осуществления датчик 236 света и/или контактные датчики 238 функционально связаны с устройством 212 управления. В некоторых таких вариантах осуществления устройство 212 управления запрограммировано предотвращать активацию модуля 120 преобразователя энергии, пока устройство 212 управления не обнаружит, посредством сигналов с датчиков 236, 238, что устройство 200 для лечения глаза правильно расположено смежно с закрытым глазом. Дополнительно в некоторых вариантах осуществления устройство 212 управления запрограммировано отключать модуль 120 преобразователя энергии, если сигналы, принятые с датчиков 236, 238, указывают, что устройство 200 для лечения глаза больше не расположено правильно у закрытого глаза. Дополнительно или альтернативно термопары или термисторы 234 на или в поверхности передачи энергии или смежно с ней могут использоваться для указания того, когда устройство правильно расположено смежно с глазом пациента. Например, термопары или термисторы 234 могут регистрировать комнатную температуру перед размещением устройства смежно с глазом, и когда поверхность 140 передачи энергии входит в контакт с кожей века (в вариантах осуществления, где требуется прямой контакт), термопары или термисторы 234 будут регистрировать значение, более близкое к температуре тела, и следовательно подтверждать правильное размещение. Кроме того, если в вариантах осуществления, в которых лечат как верхнее, так и нижнее веко, используются несколько термопар, данные с термопар или термисторов 234 могут использоваться для определения того, открыт глаз или закрыт. Отражающий датчик или датчик 237 цвета также может быть встроен в устройство с целью подтверждения того, что глаз закрыт. Такой датчик 237 может либо определять цвет области оптического поля перед датчиком 237, либо он может определять степень отражения поверхности перед отражающим датчиком или датчиком 237 цвета. В любом случае датчик 237 предоставляет данные, указывающие, имеется ли ткань, которая выглядит как кожа века (например, телесного цвета и не влажная или блестящая), или же ткань глаза (белая или цвета радужной оболочки, влажная и блестящая). [00176] The second set of security sensors 230 shown in FIG. 10 is provided for determining the position of the eye treatment device 200 relative to the eyelid of the patient. A light sensor 236 present in or on or adjacent to the power transmission surface 140 is configured to detect light. In various configurations of the eye treatment device 200, when the energy transfer surface 140 is properly positioned adjacent one or two eyelids, depending on the configuration, it should significantly reduce the amount of ambient light that can reach the light sensor 236. In some embodiments, if light is detected in or on or near the power transfer surface 140 above the threshold range, this indicates that the power transfer surface 140 is not positioned correctly. Likewise, contact sensors 238 may be present in or on the energy transfer surface 140. Each contact sensor 238 may be configured to detect changes in capacitance, such as, for example, a change in capacitance that occurs when contact sensor 238 is in proximity to human skin. Alternatively, contact sensors 238 may include electrodes that apply a small DC or AC microcurrent and detect impedance changes resulting from contact with the skin. Alternatively, contact sensors 238 may include microswitches or force or pressure sensors, each of which produces a change in signal characteristics when the energy transfer surface 140 contacts the skin. Thus, sensors 238 may be used to help determine the location of the eye treatment device 200. If the eye treatment device 200 is properly positioned against the closed eye, the upper contact sensor 238 and the lower contact sensor 238 should both come into contact with the skin of the eyelid and detect a change in capacitance (or impedance, switch state, force, pressure, etc.). In various embodiments, light sensor 236 and/or contact sensors 238 are operably coupled to control device 212. In some such embodiments, control device 212 is programmed to prevent activation of power converter module 120 until control device 212 detects, through signals from sensors 236, 238, that eye treatment device 200 is correctly positioned adjacent to the closed eye. Additionally, in some embodiments, control device 212 is programmed to turn off power converter module 120 if signals received from sensors 236, 238 indicate that eye treatment device 200 is no longer positioned correctly against the closed eye. Additionally or alternatively, thermocouples or thermistors 234 on or in or adjacent to the energy transfer surface may be used to indicate when the device is properly positioned adjacent to the patient's eye. For example, thermocouples or thermistors 234 may sense room temperature before placing the device adjacent to the eye, and when the energy transfer surface 140 comes into contact with the skin of the eyelid (in embodiments where direct contact is required), thermocouples or thermistors 234 will register a value closer to to body temperature, and therefore confirm correct placement. Additionally, if multiple thermocouples are used in embodiments in which both the upper and lower eyelids are treated, data from thermocouples or thermistors 234 can be used to determine whether the eye is open or closed. A reflective sensor or color sensor 237 may also be incorporated into the device for the purpose of confirming that the eye is closed. Such a sensor 237 may either detect the color of a region of the optical field in front of the sensor 237, or it may determine the degree of reflectance of a surface in front of the reflective sensor or color sensor 237. In either case, sensor 237 provides data indicating whether there is tissue that appears to be eyelid skin (eg, flesh-colored and not wet or shiny) or eye tissue (white or iris-colored, wet and shiny).

[00177] В некоторых вариантах осуществления контактный датчик 238 содержит микропереключатель, встроенный за гибкой герметичной поверхностью. В других вариантах осуществления контактный датчик 238 содержит датчик, который обеспечивает указание величины силы или давления, прикладываемых поверхностью 140 передачи энергии к веку. Такое указание может быть полезно для того, чтобы избежать приложения чрезмерной силы во время лечения или для приложения силы в пределах определенного диапазона во время первоначальной диагностики, когда веко предполагается слегка сжать, чтобы можно было оценить секрецию мейбомиевых желез. Будет понятно, что сила поверхности 140 передачи энергии по направлению к веку или векам, прикладываемая врачом, может либо регулироваться, либо не регулироваться. Кроме того, в амбулаторном устройстве сила может быть приложена с компонентой вращения или угловой компонентой, чтобы способствовать перемещению секрета мейбомиевых желез из мейбомиевых желез и протоков. В некоторых вариантах осуществления поверхность передачи энергии и/или склеральный экран могут иметь поверхности изогнутой или угловой форм или могут иметь качающиеся элементы, так что, когда поверхность передачи энергии прижимает веко к экрану, сначала происходит большее сжатие в нижней области мейбомиевых желез, которое постепенно переходит в верхнюю область по мере увеличения сжатия, перемещая секрет мейбомиевых желез из нижней области в верхнюю область и затем из протоков мейбомиевых желез. [00177] In some embodiments, contact sensor 238 includes a microswitch embedded behind a flexible sealed surface. In other embodiments, the contact sensor 238 includes a sensor that provides an indication of the amount of force or pressure applied by the energy transfer surface 140 to the eyelid. Such an indication may be useful to avoid applying excessive force during treatment or to apply force within a certain range during initial diagnosis when the eyelid is supposed to be slightly compressed so that meibomian gland secretion can be assessed. It will be appreciated that the force of the energy transfer surface 140 toward the eyelid or eyelids applied by the physician may or may not be adjustable. Additionally, in an ambulatory device, force may be applied with a rotational component or an angular component to promote movement of meibomian gland secretions out of the meibomian glands and ducts. In some embodiments, the energy transfer surface and/or scleral shield may have surfaces that are curved or angular in shape, or may have oscillating features such that when the energy transfer surface presses the eyelid against the shield, greater compression initially occurs in the lower meibomian gland region, which gradually progresses to to the upper region as compression increases, moving the meibomian gland secretion from the lower region to the upper region and then from the meibomian gland ducts.

[00178] На фиг.11A и 11B показаны виды сбоку дополнительных вариантов осуществления устройства 200 для лечения глаза, имеющего преобразователь 205 энергии, выполненный с возможностью преобразования электрической энергии из модуля 110 источника питания в ультразвуковую энергию. Ультразвуковой преобразователь 205 энергии может быть выполнен из любого подходящего материала, такого как пьезоэлектрическая керамика, полимер или композит. В различных вариантах осуществления, описанных выше, ультразвуковой преобразователь 205 энергии может использоваться в комбинации с модулем 120 преобразователя световой энергии. [00178] FIGS. 11A and 11B show side views of additional embodiments of an eye treatment device 200 having an energy converter 205 configured to convert electrical energy from the power supply module 110 into ultrasonic energy. Ultrasonic energy transducer 205 may be made of any suitable material, such as piezoelectric ceramic, polymer, or composite. In various embodiments described above, ultrasonic energy converter 205 may be used in combination with light energy converter module 120.

[00179] На фиг. 11A устройство 200 для лечения глаза содержит плоский пьезо-ультразвуковой преобразователь 205 энергии, выполненный с возможностью излучения несфокусированных ультразвуковых волн. Хотя направление волн не сфокусировано, длиной волны ультразвуковой энергии все еще можно манипулировать так, чтобы воздействовать на определенные области ткани. При использовании ультразвуковой энергии чем длиннее длина волны, тем глубже проникновение. Соответственно в некоторых вариантах осуществления излучаются короткие высокочастотные волны 20-100 МГц, 50-100 МГц или любые поддиапазоны или индивидуальные значения между ними. Ультразвуковые волны таких частот могут проникать в ткань века на 1-3 мм. Преимущественно на таких глубинах проникновения мейбомиевы железы и другая окружающая целевая ткань могут нагреваться без значительного нагрева внутри глаза. В других вариантах осуществления ультразвуковой преобразователь 205 энергии может излучать длину волны более 100 МГц. [00179] In FIG. 11A, the eye treatment device 200 includes a planar piezo-ultrasound energy transducer 205 configured to emit unfocused ultrasonic waves. Although the direction of the waves is not focused, the wavelength of ultrasound energy can still be manipulated to target specific areas of tissue. When using ultrasonic energy, the longer the wavelength, the deeper the penetration. Accordingly, in some embodiments, short high frequency waves of 20-100 MHz, 50-100 MHz, or any sub-bands or individual values in between are emitted. Ultrasound waves of such frequencies can penetrate the tissue of the eyelid by 1-3 mm. Advantageously, at these penetration depths, the meibomian glands and other surrounding target tissue can be heated without significant heating within the eye. In other embodiments, the ultrasonic energy transducer 205 may emit a wavelength greater than 100 MHz.

[00180] Устройство 200 для лечения глаза, показанное на фиг. 11B, содержит один или несколько изогнутых пьезо-ультразвуковых преобразователей 205 энергии, выполненных с возможностью создания сфокусированных ультразвуковых волн. В некоторых вариантах осуществления ультразвуковые волны направленно сфокусированы для избирательного нагрева целевой области ткани в достаточной степени для расплавления секрета мейбомиевых желез в мейбомиевых железах, расположенных внутри целевой области ткани или смежно с ней. В некоторых таких вариантах осуществления ультразвуковые волны нацеливают и направляют посредством использования преобразователя специальной или изогнутой формы, имеющего фокусную точку. На фиг. 11В изображен один такой вариант осуществления. В других вариантах осуществления ультразвуковые волны нацеливают и направляют с помощью массива определенной формы отдельных ультразвуковых элементов. Может быть более одного массива ультразвуковых элементов; например, один массив может быть направлен на нижнее веко, а другой массив может быть направлен на верхнее веко. Будет понятно, что для эффективной передачи ультразвуковой энергии в целевую ткань поверхность 140 передачи энергии должна быть выполнена из подходящего материала. Для низкочастотных ультразвуковых волн можно использовать традиционные материалы, такие как силикон или другие полимеры и эластомеры. В некоторых вариантах осуществления может быть желательно охлаждать поверхность века при приложении ультразвуковой энергии, чтобы предотвратить превышение предварительно определенного порога. В таких случаях поверхность 140 передачи энергии может быть выполнена из материала, который не только может пропускать ультразвуковую энергию, но который также является теплопроводным (так что могут применяться методы охлаждения, описанные ранее в данном документе). Примеры материалов, которые могут пропускать ультразвуковую энергию более высоких частот, а также обеспечивать адекватную теплопроводность, включают алмаз или графен. [00180] The eye treatment device 200 shown in FIG. 11B includes one or more curved piezo-ultrasonic energy transducers 205 configured to produce focused ultrasonic waves. In some embodiments, the ultrasonic waves are directionally focused to selectively heat the target tissue area sufficiently to melt meibomian gland secretions in meibomian glands located within or adjacent to the target tissue area. In some such embodiments, ultrasonic waves are aimed and directed through the use of a specially shaped or curved transducer having a focal point. In fig. 11B depicts one such embodiment. In other embodiments, ultrasonic waves are targeted and directed using a shaped array of individual ultrasonic elements. There may be more than one array of ultrasonic elements; for example, one array may be directed to the lower eyelid and another array may be directed to the upper eyelid. It will be understood that in order to effectively transmit ultrasonic energy into the target tissue, the energy transfer surface 140 must be made of a suitable material. For low frequency ultrasonic waves, traditional materials such as silicone or other polymers and elastomers can be used. In some embodiments, it may be desirable to cool the eyelid surface upon application of ultrasonic energy to prevent exceeding a predetermined threshold. In such cases, the energy transfer surface 140 may be made of a material that not only can transmit ultrasonic energy, but which is also thermally conductive (so that the cooling techniques described earlier herein can be used). Examples of materials that can transmit higher frequency ultrasonic energy while also providing adequate thermal conductivity include diamond or graphene.

[00181] Будет понятно, что, помимо обеспечения эффектов нагрева ткани, ультразвуковые волны могут беспокоить, разрушать или даже убивать клещей Demodex, упомянутых ранее. По существу, может быть полезно комбинировать такие виды энергии, как свет и ультразвук, для достижения наилучшего общего лечения MGD, блефарита и связанных заболеваний. [00181] It will be understood that, in addition to providing tissue heating effects, ultrasonic waves can disturb, destroy or even kill the Demodex mites mentioned earlier. As such, it may be beneficial to combine energies such as light and ultrasound to achieve the best overall treatment for MGD, blepharitis and related conditions.

[00182] В дополнение к нагреванию целевой области ткани устройство 200 для лечения глаза в определенных вариантах осуществления также может быть выполнено с возможностью отправки энергии колебаний в зону, которая включает целевую область ткани. На фиг. 12 представлен один пример устройства 200 для лечения глаза, выполненного с возможностью создания энергии колебаний. Варианты осуществления вибрационного механизма 250, описанные со ссылкой на фиг. 12, явно предлагаются для использования с любым из вариантов осуществления устройства 200 для лечения глаза, описанных в данном документе. Устройство 200 для лечения глаза, показанное на фиг. 12, содержит вибрационный механизм 250 внутри части корпуса 202. Может быть использован любой подходящий вибрационный механизм 250. В различных вариантах осуществления вибрационный механизм 250 выполнен с возможностью генерирования колебаний определенной схемы. Например, при поднесении к веку пациента устройство 200 для лечения глаза, имеющее вибрационный механизм 250, может вибрировать вперед и назад вдоль оси, параллельной центральной окулярной оси 30. В других вариантах осуществления устройство 200 для лечения глаза может вибрировать из стороны в сторону или вверх и вниз в направлениях, перпендикулярных центральной окулярной оси 30. Еще в других вариантах осуществления устройство 200 для лечения глаза может вибрировать по круговой схеме, например, по круговой схеме, перпендикулярной центральной окулярной оси 30. В некоторых вариантах осуществления устройство 200 для лечения глаза может иметь несколько настроек, чтобы можно было выбрать множество вибрационных схем. Вибрационная схема может применяться к веку до, во время или после подачи тепла в целевую область ткани. [00182] In addition to heating the target tissue area, the eye treatment device 200, in certain embodiments, may also be configured to send vibrational energy to a zone that includes the target tissue area. In fig. 12 illustrates one example of an eye treatment device 200 configured to generate vibrational energy. Embodiments of the vibration mechanism 250 described with reference to FIGS. 12 are expressly provided for use with any of the embodiments of the eye treatment device 200 described herein. The eye treatment device 200 shown in FIG. 12 includes a vibration mechanism 250 within a portion of the housing 202. Any suitable vibration mechanism 250 may be used. In various embodiments, the vibration mechanism 250 is configured to generate vibrations in a specific pattern. For example, when applied to a patient's eyelid, the eye treatment device 200 having a vibration mechanism 250 may vibrate back and forth along an axis parallel to the central ocular axis 30. In other embodiments, the eye treatment device 200 may vibrate side to side or upward and downward in directions perpendicular to the central ocular axis 30. In yet other embodiments, the eye treatment device 200 may vibrate in a circular pattern, such as in a circular pattern perpendicular to the central ocular axis 30. In some embodiments, the eye treatment device 200 may have multiple settings so that you can select a variety of vibration patterns. The vibration pattern can be applied to the eyelid before, during, or after heat is applied to the targeted tissue area.

[00183] В некоторых вариантах осуществления частота вибрации составляет от приблизительно 1 Гц до приблизительно 20 кГц, но может входить в ультразвуковой частотный диапазон вплоть до 20 МГц и может включать любой поддиапазон или отдельное значение между ними. Вибрации в пределах частотного диапазона могут помочь в выдавливании секрета мейбомиевых желез, который загустел или заблокирован внутри мейбомиевых желез. Кроме того, схема вибрации может беспокоить или разрушать клещей Demodex, тем самым уменьшая их распространение. Будет понятно, что комбинации вибрации и/или применения ультразвуковой энергии могут использоваться для создания наиболее эффективного общего лечения, включающего нагрев тканей и секрета мейбомиевых желез, вибрацию и выдавливание секрета мейбомиевых желез и разрушение клещей. [00183] In some embodiments, the vibration frequency is from about 1 Hz to about 20 kHz, but may be in the ultrasonic frequency range up to 20 MHz and may include any subrange or individual value in between. Vibrations within the frequency range can help in squeezing out meibomian gland secretions that have become thickened or blocked within the meibomian glands. Additionally, the vibration pattern may disturb or disrupt Demodex mites, thereby reducing their spread. It will be appreciated that combinations of vibration and/or ultrasonic energy can be used to create the most effective overall treatment involving heating of meibomian gland tissue and secretions, vibration and squeezing of meibomian gland secretions, and destruction of mites.

[00184] Как дополнительно показано на фиг. 12, в некоторых вариантах осуществления вибрационный механизм 250 расположен в дальней части 203 корпуса 202. В некоторых таких вариантах осуществления виброизолирующий элемент 252 расположен между дальней частью 203 корпуса 202 и ближней частью 201 корпуса 202, так что сила колебаний гасится в ближней части 201. В некоторых вариантах осуществления ручка или часть для захвата рукой устройства 200 для лечения глаза расположена в ближней части 201; таким образом, виброизолирующий элемент 252 помогает ограничить вибрации руки пользователя во время использования. В других вариантах осуществления изолирующий элемент 252 отсутствует. Еще в других вариантах осуществления вибрационный механизм 250 расположен внутри ближней части 201 корпуса 202 с передаточным элементом между вибрационным механизмом 250 и дальней частью 203. [00184] As further shown in FIG. 12, in some embodiments, the vibration mechanism 250 is located in the distal portion 203 of the housing 202. In some such embodiments, the vibration isolating element 252 is located between the distal portion 203 of the housing 202 and the proximal portion 201 of the housing 202 such that the vibration force is damped in the proximal portion 201. In some embodiments, a handle or hand grip portion of the eye treatment device 200 is located in the proximal portion 201; thus, the anti-vibration element 252 helps limit vibrations of the user's hand during use. In other embodiments, the insulating element 252 is omitted. In still other embodiments, the vibration mechanism 250 is located within the proximal portion 201 of the housing 202 with a transmission element between the vibration mechanism 250 and the distal portion 203.

[00185] Следует подчеркнуть, что указанные выше конкретные варианты осуществления являются иллюстративными и что это изобретение охватывает большое количество вариантов помимо этих конкретных вариантов осуществления. Некоторые из них теперь будут описаны более подробно. [00185] It should be emphasized that the above specific embodiments are illustrative and that this invention covers a large number of variations beyond these specific embodiments. Some of them will now be described in more detail.

[00186] Когда модуль 120 преобразователя энергии представляет собой светодиодный излучатель 207, некоторые варианты осуществления включают использование одного или нескольких светодиодов, предпочтительно имеющих высокую интенсивность. Например, один или несколько светодиодов, имеющих общую выходную мощность по меньшей мере 10 ватт, предпочтительно по меньшей мере приблизительно 15 ватт или даже 20 ватт или более общей выходной мощности. Комбинированная интенсивность этих светодиодов может преимущественно составлять по меньшей мере приблизительно 20, 30, 40, 50, 75, 100, 150, 200, 250, 300, 400, 500, 1000, 2000 или более люмен. Будучи направленной в веко, непрерывная интенсивность приложенной световой энергии может предпочтительно составлять от приблизительно 0,02 до 2 ватт/квадратный сантиметр. [00186] When the power converter module 120 is an LED emitter 207, some embodiments include the use of one or more LEDs, preferably having high intensity. For example, one or more LEDs having a total power output of at least 10 watts, preferably at least about 15 watts, or even 20 watts or more of total power output. The combined intensity of these LEDs may advantageously be at least about 20, 30, 40, 50, 75, 100, 150, 200, 250, 300, 400, 500, 1000, 2000 or more lumens. When directed into the eyelid, the continuous intensity of the applied light energy may preferably be from about 0.02 to 2 watts/square centimeter.

[00187] В некоторых вариантах осуществления светодиоды могут представлять собой зеленые светодиоды. Преимущество зеленого цвета в том, что он проникает в ткань и нагревает ее до глубины приблизительно 0,5-2 мм, за которой он значительно ослабевает. Это обеспечивает возможность проникновения световой энергии в подвергаемую лечению область, охватывающую ткань на мейбомиевых железах или смежную с ними, с ограничением света, передаваемого в глаз. Некоторые предпочтительные длины волн света могут составлять 495-570 нм, 500-600 нм и более предпочтительно приблизительно 510-540 нм или 520-530 нм. В некоторых вариантах осуществления источник инфракрасного излучения может представлять 700-1000 нм, предпочтительно в «оптическом окне» ткани человека приблизительно 800-900 нм и более предпочтительно приблизительно 850 нм. Более длинные волны также будут работать, потенциально обладая преимуществом большего поглощения водой в ткани по мере увеличения длины волны. Например, 3000 нм инфракрасное излучение может обеспечить возможность идеального нагрева ткани века с минимальным проникновением и нагревом глазного яблока и чувствительных структур. В других вариантах осуществления светодиоды могут быть синими, желтыми, красными, белыми или представлять собой комбинацию любых из указанных выше. [00187] In some embodiments, the LEDs may be green LEDs. The advantage of green is that it penetrates the tissue and heats it to a depth of approximately 0.5-2 mm, beyond which it weakens significantly. This allows light energy to penetrate into the treated area, covering tissue on or adjacent to the meibomian glands, while limiting the light transmitted to the eye. Some preferred light wavelengths may be 495-570 nm, 500-600 nm, and more preferably about 510-540 nm or 520-530 nm. In some embodiments, the infrared radiation source may represent 700-1000 nm, preferably in the human tissue optical window of approximately 800-900 nm, and more preferably approximately 850 nm. Longer wavelengths will also work, potentially having the benefit of greater water absorption in tissue as wavelength increases. For example, 3000 nm infrared radiation can provide ideal heating of eyelid tissue with minimal penetration and heating of the eyeball and sensitive structures. In other embodiments, the LEDs may be blue, yellow, red, white, or a combination of any of the above.

[00188] Модуль 120 преобразователя энергии может альтернативно содержать лампу широкого или узкого спектра, такую как лампа накаливания, ксеноновая лампа, галогенная лампа, трубка с холодным катодом, флюоресцентная трубка и т. п. Источник освещения может дополнительно содержать элемент ограничения спектра для уменьшения интенсивности или существенного исключения некоторых нежелательных длин волн из спектра лампы. Эти элементы ограничения спектра могут включать цветные фильтры, дихроичные фильтры, фильтры с отсечкой ИК, решетки, полосовые фильтры, элементы разделения спектра, такие как призмы или решетки, и т.п. Также можно использовать инфракрасные лампы или нагревательные элементы. Основные длины волн, которым разрешено достигать века, могут быть выбраны так, как описано выше для светодиодов, или могут быть ограничены в основном инфракрасным излучением. [00188] Power converter module 120 may alternatively include a broad spectrum or narrow spectrum lamp, such as an incandescent lamp, xenon lamp, halogen lamp, cold cathode tube, fluorescent tube, etc. The light source may further include a spectrum limiting element to reduce intensity or substantially eliminating certain undesirable wavelengths from the lamp's spectrum. These spectrum limiting elements may include color filters, dichroic filters, IR cut filters, gratings, bandpass filters, spectrum separation elements such as prisms or gratings, and the like. You can also use infrared lamps or heating elements. The main wavelengths allowed to reach the century can be chosen as described above for LEDs, or can be limited primarily to infrared radiation.

[00189] Энергия, излучаемая источником освещения и доставляемая пациенту, предпочтительно является непрерывной при доставке (с широтно-импульсной модуляцией или модуляцией другого вида при необходимости), в отличие от импульсного света высокой интенсивности с низким коэффициентом заполнения (такого как IPL). Период лечения предпочтительно составляет несколько секунд или минут, например, 5, 7, 10, 12, 15, 18, 20, 15, 30, 40, 45, 50, 60 секунд или 1, 1,5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 или даже 30 минут или более. [00189] The energy emitted by the light source and delivered to the patient is preferably continuous upon delivery (pulse-width modulated or otherwise modulated as necessary), as opposed to high-intensity, low-duty-cycle pulsed light (such as IPL). The treatment period is preferably several seconds or minutes, for example 5, 7, 10, 12, 15, 18, 20, 15, 30, 40, 45, 50, 60 seconds or 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or even 30 minutes or more.

[00190] В некоторых вариантах осуществления подача видимого света из модуля 120 преобразователя энергии может быть облегчена или заменена альтернативным преобразователем энергии, функционирующим в качестве средства нагрева. Они могут включать, например, ультразвуковой преобразователь или радиочастотный излучатель. Когда используется ультразвуковой преобразователь, он может быть как сфокусированным, так и несфокусированным. Высокие частоты являются предпочтительными для ограничения глубины нагрева, концентрирования нагрева на целевой области ткани, содержащей мейбомиевую железу или смежной с ней, и для ослабления или устранения воздействий на глазное яблоко или другую ткань в этой области. Предпочтительные частоты составляют 50-100 МГц или более чем 100 МГц-250 МГц. Сфокусированный ультразвук, например, с использованием нескольких преобразователей, включая решетки с фазовым управлением для облегчения направленной фокусировки, или преобразователи специальной формы, имеющие ограниченную фокальную область, являются особенно предпочтительными. Как и в случае световой энергии, может быть использована относительно непрерывная подача, как и импульсная подача. [00190] In some embodiments, the supply of visible light from the power converter module 120 may be facilitated or replaced by an alternative power converter functioning as a heating means. These may include, for example, an ultrasonic transducer or a radio frequency emitter. When an ultrasonic transducer is used, it can be either focused or unfocused. High frequencies are preferred to limit the depth of heating, concentrate the heat on a target area of tissue containing or adjacent to the meibomian gland, and to reduce or eliminate effects on the eyeball or other tissue in that area. Preferred frequencies are 50-100 MHz or greater than 100 MHz-250 MHz. Focused ultrasound, for example using multiple transducers, including phase controlled gratings to facilitate directional focusing, or specially shaped transducers having a limited focal area, are particularly preferred. As with light energy, a relatively continuous supply can be used, as can a pulsed supply.

[00191] Когда используется радиочастотный излучатель, предпочтительными являются частоты, о которых известно, что они обеспечивают локальный нагрев. Можно преимущественно использовать частоты, используемые для электрохирургии, такие как 300 кГц-4 МГц. В одном таком варианте осуществления в поверхности 140 передачи энергии или на ней предусмотрены биполярные электроды для контакта с веком и обеспечения возможности управления местоположением и глубиной нагрева. [00191] When a radio frequency emitter is used, frequencies known to produce local heating are preferred. Frequencies used for electrosurgery, such as 300 kHz-4 MHz, can be advantageously used. In one such embodiment, bipolar electrodes are provided in or on the energy transfer surface 140 to contact the eyelid and allow control of the location and depth of heating.

[00192] Альтернативно могут быть использованы более высокочастотные радиоволны в диапазоне от 5 МГц до 10 МГц из-за их более высокой скорости затухания в ткани, что обеспечивает возможность тщательного выбора глубины проникновения и ограничения нагрева требуемой областью ткани. Например, частоты выше приблизительно 245 МГц проникают в кожу и ткани человека на глубину приблизительно 1-3 мм, что соответствует обычному расстоянию между наружной стороной века и целевой тканью (т. е. мейбомиевыми железами и смежной тканью). [00192] Alternatively, higher frequency radio waves in the range of 5 MHz to 10 MHz may be used due to their higher tissue attenuation rate, allowing for careful selection of penetration depth and limiting heating to the desired tissue area. For example, frequencies above approximately 245 MHz penetrate human skin and tissue to a depth of approximately 1-3 mm, which corresponds to the typical distance between the outside of the eyelid and the target tissue (ie, meibomian glands and adjacent tissue).

[00193] Модуль 130 волновода энергии предназначен для передачи энергии от преобразователя или генератора к поверхности 140 передачи энергии и оттуда в целевую ткань. Например, при создании световой энергии из малого источника, такого как светодиод или малая лампа, модуль 130 волновода энергии может направлять равномерное освещение от источника на целевые зоны ткани. В некоторых вариантах осуществления может быть желательно включить структуру волновода, чтобы направлять свет к веку и целевой ткани, не направляя его вдоль центральной окулярной оси глаза. Это тогда может уменьшить количество света, проникающего в роговицу и в глаз, при этом по-прежнему направляя свет в веко, хотя и под более прямым углом. Подходящие структуры для достижения этой цели включают массивы световодов, преломляющие элементы, отражающие элементы, дифракционные элементы, элементы полного внутреннего отражения (TIR) и рассеиватели. Например, волоконная оптика, зеркала, линзы, призмы и т. п. могут быть использованы, чтобы направлять свет и изменять его угол падения на целевую поверхность (например, чтобы избежать центральной окулярной оси). В некоторых вариантах осуществления может быть желательно направлять свет к склеральному экрану 300 и преобразователю 155 изображения, чтобы осматривать внутреннюю сторону века 14 и/или нагревать мейбомиевы железы за веком, как описано выше. [00193] The energy waveguide module 130 is configured to transfer energy from the transducer or generator to the energy transfer surface 140 and from there to the target tissue. For example, when generating light energy from a small source, such as an LED or small lamp, energy waveguide module 130 can direct uniform illumination from the source to target areas of tissue. In some embodiments, it may be desirable to include a waveguide structure to direct light to the eyelid and target tissue without directing it along the central ocular axis of the eye. This can then reduce the amount of light entering the cornea and into the eye, while still directing light into the eyelid, albeit at a more direct angle. Suitable structures for achieving this goal include light guide arrays, refractive elements, reflective elements, diffractive elements, total internal reflection (TIR) elements, and diffusers. For example, fiber optics, mirrors, lenses, prisms, etc. can be used to direct light and change its angle of incidence on the target surface (for example, to avoid the central ocular axis). In some embodiments, it may be desirable to direct light to the scleral screen 300 and image transducer 155 to view the inside of the eyelid 14 and/or heat the meibomian glands behind the eyelid, as described above.

[00194] В другом варианте осуществления модуль 130 волновода энергии представляет собой ультразвуковой волновод, имеющий поверхности, которые отражают ультразвуковую энергию, чтобы направлять и/или фокусировать ее на желаемую область, например, целевую область ткани. Аналогично можно использовать микроволновый или другой радиочастотный волновод известной конструкции, чтобы направлять радиочастотную энергию в требуемую область. [00194] In another embodiment, energy waveguide module 130 is an ultrasonic waveguide having surfaces that reflect ultrasonic energy to direct and/or focus it to a desired area, such as a target tissue area. Likewise, a microwave or other radio frequency waveguide of known design can be used to direct radio frequency energy to the desired area.

[00195] Поверхность 140 передачи энергии расположена между внутренней частью устройства 200 для лечения глаза и пациентом, обеспечивая барьер между ними. В некоторых вариантах осуществления это может быть предусмотрено как окно, через которое энергия доставляется пациенту. Оно может быть приспособлено так, чтобы непосредственно контактировать с веком пациента или располагаться на малом расстоянии от века, например, от 0,5 до 12 мм от века, во время лечения. Предпочтительно наружная поверхность поверхности передачи энергии является гладкой и легко очищается. В некоторых вариантах осуществления одноразовая наружная прокладка 147 для века может быть размещена поверх поверхности 140 передачи энергии с целью предотвращения перекрестного загрязнения между пациентами. Наружная прокладка 147 для века может быть выполнена из любого подходящего материала, такого как стекло, пирекс, кварц, слюда, или же могут быть использованы полимеры, такие как поликарбонат, или другие оптически прозрачные материалы, или их комбинация, чтобы получать требуемые структурные и оптические свойства. В некоторых вариантах осуществления поверхность 140 передачи энергии может быть выполнена с возможностью относительного перемещения по пути 145 перемещения относительно или модуля 120 преобразователя энергии, или склерального экрана 300, или корпуса 202, чтобы обеспечивать возможность прижатия поверхности 140 передачи энергии к веку или векам так, чтобы: a) сводить к минимуму утечку фотонной энергии во время лечения и формирования изображений и b) при необходимости прикладывать силу сжатия к веку во время оценки или выдавливания мейбомиевых желез. [00195] The energy transfer surface 140 is located between the interior of the eye treatment device 200 and the patient, providing a barrier between them. In some embodiments, this may be provided as a window through which energy is delivered to the patient. It can be adapted to be in direct contact with the patient's eyelid or positioned at a short distance from the eyelid, for example 0.5 to 12 mm from the eyelid, during treatment. Preferably, the outer surface of the power transmission surface is smooth and easy to clean. In some embodiments, a disposable outer eyelid pad 147 may be placed over the energy transfer surface 140 to prevent cross-contamination between patients. The outer eyelid liner 147 may be made of any suitable material such as glass, pyrex, quartz, mica, or polymers such as polycarbonate or other optically clear materials, or a combination thereof, may be used to achieve the desired structural and optical properties. properties. In some embodiments, the energy transfer surface 140 may be configured to be relatively movable along a movement path 145 relative to either the energy transducer module 120, the scleral shield 300, or the housing 202 to allow the energy transfer surface 140 to be pressed against the eyelid or eyelids so that : a) minimize photon energy leakage during treatment and imaging and b) apply compressive force to the eyelid when necessary during assessment or extrusion of meibomian glands.

[00196] При использовании световой энергии для нагрева целевой области ткани поверхность 140 передачи энергии преимущественно является прозрачной для видимого или инфракрасного света, как необходимо. В некоторых вариантах осуществления она является прозрачной для пиковых или требуемых длин волн, используемых для лечения, например видимого света или зеленого света, но блокирует инфракрасный свет, тем самым уменьшая ИК нагрев века. Могут быть использованы стекло, пирекс, кварц, слюда или полимеры, такие как поликарбонат, или другие оптически прозрачные материалы. [00196] When using light energy to heat a target area of tissue, the energy transfer surface 140 is advantageously transparent to visible or infrared light, as desired. In some embodiments, it is transparent to the peak or desired wavelengths used for treatment, such as visible light or green light, but blocks infrared light, thereby reducing IR heating of the eyelid. Glass, Pyrex, quartz, mica or polymers such as polycarbonate or other optically transparent materials can be used.

[00197] При нагревании целевой области ткани с помощью ультразвука или РЧ прозрачность для видимого света не требуется; вместо этого можно использовать материал, прозрачный для ультразвука или прозрачный для РЧ. В некоторых вариантах осуществления желательно, чтобы материалы были теплопроводными, чтобы облегчать охлаждение века путем охлаждения поверхности 140 передачи энергии. Алмаз, сапфир и графен являются подходящими теплопроводными материалами. В другом варианте осуществления либо вся поверхность 140 передачи энергии, либо по меньшей мере ее окно являются прозрачными для датчиков безопасности, описанных в данном документе. Например, когда для измерения температуры наружной стороны века используется бесконтактный инфракрасный датчик температуры, для всей или по меньшей мере соответствующей области или областей поверхности 140 передачи энергии преимущественно используется материал, пропускающий ИК излучение. [00197] When heating a target area of tissue using ultrasound or RF, transparency to visible light is not required; instead, a material that is ultrasonic transparent or RF transparent can be used. In some embodiments, it is desirable for the materials to be thermally conductive to facilitate cooling of the eyelid by cooling the energy transfer surface 140. Diamond, sapphire and graphene are suitable thermal conductive materials. In another embodiment, either the entire power transmission surface 140, or at least a window thereof, is transparent to the security sensors described herein. For example, when a non-contact infrared temperature sensor is used to measure the temperature of the outer eyelid, an infrared transmitting material is advantageously used for the entire or at least the corresponding area or areas of the energy transfer surface 140.

[00198] При приложении тепловой энергии к веку из устройства 200 для лечения глаза некоторые варианты осуществления включают поверхностное охлаждение века путем охлаждения поверхности 140 передачи энергии. Если наружная часть века охлаждается во время облучения целевой области ткани световой, ультразвуковой или РЧ энергией, комфорт пациента может быть повышен, при этом с максимальным увеличением эффективности благодаря оптимальному нагреву целевой ткани. Поверхность 140 передачи энергии может охлаждаться посредством: потока воздуха через внутреннюю часть поверхности 140 передачи энергии; нанесения испаряющегося вещества на внутреннюю часть поверхности 140 передачи энергии, такого как хладагент или вода; циркуляции охлаждающей текучей среды по каналам внутри или на поверхности 140 передачи энергии; или контакта поверхности передачи энергии с термоэлектрическим элементом (переходом Пельтье) или радиатором, связанным со средствами охлаждения. Альтернативно поверхность 140 передачи энергии может иметь достаточно большую тепловую массу (или находиться в контакте с такой тепловой массой), чтобы отводить достаточно тепла от века во время лечения пациента для поддержания века в пределах требуемого диапазона температур. Тепловую массу можно предварительно охладить или просто начинать при температуре окружающей среды перед лечением. Другие способы охлаждения поверхности 140 передачи энергии и/или века включают встраивание резервуара между поверхностью передачи энергии и кожей века, например эластичного мешка, наполненного водой. Эластичный мешок может быть предварительно охлажден или может активно охлаждаться во время процедуры, например, посредством циркуляции через него холодной воды или посредством использования охлаждающего элемента, такого как термоэлектрическое устройство, компрессор, хладагент или другой охлаждающий элемент. [00198] When thermal energy is applied to the eyelid from the eye treatment device 200, some embodiments include superficial cooling of the eyelid by cooling the energy transfer surface 140. If the outer portion of the eyelid is cooled while irradiating the target tissue area with light, ultrasound, or RF energy, patient comfort can be enhanced while maximizing efficiency through optimal heating of the target tissue. The power transfer surface 140 may be cooled by: air flowing through the interior of the power transfer surface 140; applying a vaporizable substance to the interior of the energy transfer surface 140, such as refrigerant or water; circulating a cooling fluid through channels within or on the power transfer surface 140; or contact of the energy transfer surface with a thermoelectric element (Peltier junction) or a heat sink associated with the cooling means. Alternatively, the energy transfer surface 140 may have a sufficiently large thermal mass (or be in contact with such thermal mass) to conduct sufficient heat away from the eyelid during treatment of a patient to maintain the eyelid within a desired temperature range. The thermal mass can be pre-cooled or simply started at ambient temperature before treatment. Other methods of cooling the energy transfer surface 140 and/or the eyelid include incorporating a reservoir between the energy transfer surface and the skin of the eyelid, such as an elastic bag filled with water. The elastic bag may be pre-cooled or may be actively cooled during the procedure, for example by circulating cold water through it or by using a cooling element such as a thermoelectric device, compressor, refrigerant or other cooling element.

[00199] В другом варианте осуществления поверхность 140 передачи энергии расположена на небольшом расстоянии от века для обеспечения возможности прохождения охлаждающей текучей среды, такой как относительно холодный воздух, туман, вода и т. п., между поверхностью 140 передачи энергии и веком. Например, можно заставить холодный воздух протекать в поперечном направлении по поверхности века и поверхности 140 передачи энергии, или поверхность 140 передачи энергии может содержать отверстия или каналы, чтобы направлять охлаждающую текучую среду на веко. Охлаждающая текучая среда может иметь температуру окружающей среды или может быть предварительно охлаждена, например, посредством искусственного охлаждения, льда и т. п. [00199] In another embodiment, the energy transfer surface 140 is located at a short distance from the eyelid to allow the passage of a cooling fluid, such as relatively cold air, mist, water, etc., between the energy transfer surface 140 and the eyelid. For example, cool air may be caused to flow laterally across the eyelid surface and the energy transfer surface 140, or the energy transfer surface 140 may include holes or channels to direct cooling fluid to the eyelid. The cooling fluid may be at ambient temperature or may be pre-cooled, such as by refrigeration, ice, or the like.

[00200] Когда используется вибрационный механизм 250, он может содержать, например, возвратно-поступательный элемент, такой как электромеханический соленоид или т. п., вращающийся эксцентриковый груз, такой как эксцентриковый груз, соединенный с валом двигателя, или вращающийся кулачок. Предпочтительно вибрационный механизм колебательно связан с веком, но колебательно изолирован от других точек контакта с пациентом или клиническим врачом, таких как ближний конец устройства 200 для лечения глаза, включая любую область ручки, которую может держать пациент или клинический врач. [00200] When the vibration mechanism 250 is used, it may include, for example, a reciprocating element such as an electromechanical solenoid or the like, a rotating eccentric weight such as an eccentric weight coupled to a motor shaft, or a rotating cam. Preferably, the vibration mechanism is oscillatingly coupled to the eyelid, but oscillatingly isolated from other points of contact with the patient or clinician, such as the proximal end of the eye treatment device 200, including any handle area that the patient or clinician may hold.

[00201] Безопасность и комфорт пациента являются важными факторами в настоящем устройстве и способе. Поэтому датчики безопасности и предупреждения преимущественно могут быть встроены в устройство. К ним относятся датчики для предотвращения перегрева кожи, датчики для предотвращения нежелательной активации устройства и датчики, отслеживающие доставку энергии пациенту. В некоторых вариантах осуществления датчик безопасности может использоваться для того, чтобы убедиться, что расходная часть 260, имеющая защитный склеральный экран 300, находится в правильном положении перед включением модуля 120 преобразователя энергии, таким образом предотвращая повреждение системы 10 глаза. [00201] Patient safety and comfort are important factors in the present device and method. Therefore, safety and warning sensors can advantageously be integrated into the device. These include sensors to prevent overheating of the skin, sensors to prevent unwanted activation of the device, and sensors to monitor energy delivery to the patient. In some embodiments, a safety sensor may be used to ensure that the consumable portion 260 having the protective scleral shield 300 is in the correct position before turning on the power converter module 120, thereby preventing damage to the eye system 10.

[00202] Как показано на фиг. 10, устройство 240 предупреждения об осторожности может быть включено в устройство, чтобы сообщать пациенту о небезопасном состоянии, обнаруженном любым из датчиков, описанных в данном документе. Оно может включать мигающий свет, мигающее предупреждение, звуковой предупреждающий сигнал, изображение, вибрационную схему или слова, указывающие на возможность или наличие небезопасного состояния. [00202] As shown in FIG. 10, a caution warning device 240 may be included in the device to notify the patient of an unsafe condition detected by any of the sensors described herein. It may include a flashing light, a flashing warning, an audible warning tone, a picture, a vibration pattern, or words indicating the possibility or presence of an unsafe condition.

[00203] Снова ссылаясь на фиг. 10, первый набор датчиков 232, 234 безопасности предпочтительно расположен на, внутри, позади или иным образом вблизи поверхности 140 передачи энергии. Оба датчика выполнены с возможностью обнаружения нагрева наружной поверхности века и предотвращения ее перегрева. Датчик 232 предпочтительно представляет собой бесконтактный датчик, такой как пироэлектрический датчик (например, IRA-E700ST0 от «Murata»), или термобатарею (такую как ST25T0-18 от «Dexter Research, Dexter, Mich.»), или обычное устройство контроля температуры, такое как термопара, термистор, оптоволоконный термодатчик или цифровой датчик температуры (такой как «Dallas Semiconductor» DS-18620). В дополнение к датчикам 232 и 234 температуры датчики 310 температуры могут быть установлены на передней или задней поверхностях склерального экрана 300, как показано на фиг. 3, 7A-H и 8, для текущего контроля температуры внутренней поверхности века и температуры глазного яблока соответственно. В устройстве 200 для лечения глаза может быть запрограммирована пороговая температура, такая как 40°C, 45°C или 50°C. В некоторых вариантах осуществления при достижении или превышении пороговой температуры датчик безопасности может быть приспособлен отключать устройство 200 для лечения глаза и/или посредством устройства 240 предупреждения об осторожности с помощью световых сигналов, звуковых сигналов или других средств уведомления сигнализировать пользователю или врачу о необходимости прекратить лечение. В некоторых вариантах осуществления при достижении или превышении пороговой температуры в любом конкретном месте устройство 212 управления (или дискретная схема, независимая от какого-либо устройства управления) может быть использовано для предотвращения нагрева века выше этой пороговой температуры. Это может быть достигнуто, например, отключением устройства 200 для лечения глаза, уменьшением доставляемой энергии (например, уменьшением интенсивности света, широтно-импульсной модуляцией светодиодов, уменьшением потребляемой мощности для ультразвуковой или РЧ энергии и т. д.) или активацией средств охлаждения для снижения температуры века. [00203] Referring again to FIG. 10, the first set of security sensors 232, 234 are preferably located on, within, behind, or otherwise adjacent to the power transmission surface 140. Both sensors are designed to detect heating of the outer surface of the eyelid and prevent it from overheating. Sensor 232 is preferably a non-contact sensor, such as a pyroelectric sensor (such as an IRA-E700ST0 from Murata), or a thermopile (such as an ST25T0-18 from Dexter Research, Dexter, Mich.), or a conventional temperature monitoring device, such as a thermocouple, thermistor, fiber optic temperature sensor, or digital temperature sensor (such as the Dallas Semiconductor DS-18620). In addition to temperature sensors 232 and 234, temperature sensors 310 may be mounted on the front or rear surfaces of the scleral shield 300, as shown in FIG. 3, 7A-H and 8, for monitoring the temperature of the inner surface of the eyelid and the temperature of the eyeball, respectively. The eye treatment device 200 may be programmed with a threshold temperature, such as 40°C, 45°C, or 50°C. In some embodiments, when a threshold temperature is reached or exceeded, the safety sensor may be configured to disable the eye treatment device 200 and/or, through the caution warning device 240, to signal the user or physician to discontinue treatment through lights, sounds, or other notification means. In some embodiments, when a threshold temperature is reached or exceeded at any particular location, control device 212 (or discrete circuitry independent of any control device) may be used to prevent the eyelid from heating above that threshold temperature. This may be achieved, for example, by turning off the eye treatment device 200, reducing the energy delivered (e.g., reducing light intensity, pulse width modulation of LEDs, reducing power consumption for ultrasonic or RF energy, etc.), or activating cooling means to reduce century temperatures.

[00204] Датчик безопасности второго типа также показан на фиг. 10. Это может быть один датчик или несколько датчиков. Назначение датчика безопасности второго типа состоит в том, чтобы обеспечивать правильное расположение устройства 200 для лечения глаза напротив века перед началом лечения. Датчик безопасности второго типа может включать один или несколько следующих датчиков. Одним датчиком может быть датчик 236 света. Когда устройство расположено напротив века, свет внешней среды блокируется. Таким образом, можно обнаружить отсутствие такого света. Альтернативно можно использовать отражающее устройство типа оптопары, в котором источник света направлен дистально и соединен с датчиком, также нацеленным дистально. Это позволяет обнаруживать присутствие пациента, а также приблизительное расстояние до пациента. В зависимости от расстояния между источником света и устройством типа оптопары обнаружение света либо максимально увеличивается, либо устраняется, когда устройство 200 для лечения глаза установлено правильно. Другая схема обнаружения света состоит в том, чтобы предоставить датчик 236 света, обращенный дистально к пациенту, но за пределами пути лечебного света. Когда устройство 200 для лечения глаза находится на расстоянии от века, отраженный лечебный свет может достигать датчика 236, но при правильном расположении большая часть такого света блокируется от датчика 236. Подход на основе датчика света может быть связан с данными с одного из датчиков температуры для одновременного обнаружения света и температуры кожи в качестве указания на расположение устройства. В любом из вариантов осуществления обнаружения света датчик 236 света внешней среды может быть встроен в устройство 200 для лечения глаза для измерения уровней света внешней среды, чтобы облегчать оптическое обнаружение близости к веку. Аналогично при использовании датчика температуры в сочетании с датчиком второго типа датчик 236 света внешней среды может облегчать определение того, когда устройство 200 для лечения глаза прилегает к коже, в частности в условиях высокой температуры. Также могут использоваться и другие элементы определения расстояния или контакта, такие как ультразвуковой дальномер. В некоторых вариантах осуществления термопары или термисторы 234 на или в поверхности передачи энергии или смежно с ней могут использоваться для указания того, когда устройство правильно расположено смежно с глазом пациента. Например, термопары или термисторы 234 могут регистрировать комнатную температуру перед размещением устройства смежно с глазом, и когда поверхность 140 передачи энергии подходит близко к коже века, термопары или термисторы 234 будут регистрировать значение, более близкое к температуре тела, и следовательно подтверждать правильное размещение. Отражающий датчик или датчик 237 цвета также может быть встроен в устройство для подтверждения того, что глаз закрыт. Как описано выше, такие датчики 237 могут предоставлять данные, указывающие, имеется ли ткань, которая выглядит как кожа века (например, телесного цвета и не влажная или блестящая), или же ткань глаза (белая или цвета радужной оболочки, влажная и блестящая). [00204] A second type of safety sensor is also shown in FIG. 10. This may be one sensor or several sensors. The purpose of the second type of safety sensor is to ensure that the eye treatment device 200 is positioned correctly against the eyelid before treatment begins. The second type of security sensor may include one or more of the following sensors. One sensor may be a light sensor 236 . When the device is placed against the eyelid, light from the external environment is blocked. In this way, the absence of such light can be detected. Alternatively, an optocoupler-type reflective device may be used, in which the light source is directed distally and coupled to a sensor also aimed distally. This allows the presence of a patient to be detected, as well as the approximate distance to the patient. Depending on the distance between the light source and the optocoupler type device, light detection is either maximized or eliminated when the eye treatment device 200 is installed correctly. Another light detection scheme is to provide a light sensor 236 facing distal to the patient but outside the path of the treatment light. When the eye treatment device 200 is positioned away from the eyelid, the reflected treatment light may reach the sensor 236, but when properly positioned, most of such light is blocked from the sensor 236. A light sensor approach can couple data from one of the temperature sensors to simultaneously detecting light and skin temperature as an indication of device location. In any of the light sensing embodiments, an environmental light sensor 236 may be incorporated into the eye treatment device 200 to measure environmental light levels to facilitate optical detection of proximity to the eyelid. Likewise, when using a temperature sensor in combination with a second type of sensor, the ambient light sensor 236 may facilitate detection of when the eye treatment device 200 is in contact with the skin, particularly under high temperature conditions. Other distance or contact detection elements, such as an ultrasonic rangefinder, may also be used. In some embodiments, thermocouples or thermistors 234 on or in or adjacent to the energy transfer surface may be used to indicate when the device is properly positioned adjacent to the patient's eye. For example, thermocouples or thermistors 234 may sense room temperature before placing the device adjacent to the eye, and when the energy transfer surface 140 comes close to the skin of the eyelid, the thermocouples or thermistors 234 will register a value closer to body temperature and therefore confirm proper placement. A reflective or color sensor 237 may also be incorporated into the device to confirm that the eye is closed. As described above, such sensors 237 may provide data indicating whether there is tissue that appears to be eyelid skin (eg, flesh-colored and not wet or shiny) or eye tissue (white or iris-colored, wet and shiny).

[00205] В другом варианте осуществления датчик второго типа может представлять собой тактильный датчик, определяющий, когда устройство 200 для лечения глаза касается лица. Тактильный датчик может представлять собой резистивный датчик, использующий два электрода и воспринимающий микроток через кожу, или обычный резистивный тактильный датчик. Альтернативно можно использовать емкостный датчик для обнаружения того, когда устройство 200 для лечения глаза касается кожи. Это может быть либо один датчик, либо, для лучшего сигнала, множество датчиков, при этом все или часть из них должны быть активированы для обеспечения возможности продолжения лечения. Наконец, тактильный датчик может содержать электрический переключатель (такой как микропереключатель) или тензодатчик, который активируется, когда устройство прижимается к коже. Например, микропереключатель может быть встроен за гибкую герметичную поверхность, или он может быть активирован при приложении давления, достаточного для того, чтобы первая часть устройства 200 для лечения глаза перемещалась относительно второй части устройства 200 для лечения глаза. [00205] In another embodiment, the second type of sensor may be a tactile sensor that detects when the eye treatment device 200 touches the face. The tactile sensor may be a resistive sensor using two electrodes and sensing microcurrent through the skin, or a conventional resistive tactile sensor. Alternatively, a capacitive sensor may be used to detect when the eye treatment device 200 contacts the skin. This can be either a single sensor or, for a better signal, multiple sensors, all or some of which must be activated to allow treatment to continue. Finally, the tactile sensor may include an electrical switch (such as a microswitch) or a strain gauge that is activated when the device is pressed against the skin. For example, the microswitch may be embedded behind a flexible sealed surface, or it may be activated by applying pressure sufficient to cause the first portion of the eye treatment device 200 to move relative to the second portion of the eye treatment device 200.

[00206] В устройстве 200 для лечения глаза также может использоваться датчик безопасности третьего типа, чтобы выполнять текущий контроль преобразователей подачи энергии для обеспечения правильной работы в рамках заданных параметров. Опять же, это может быть один датчик или комбинация датчиков, содержащая один или несколько из следующих датчиков. В некоторых вариантах осуществления датчик безопасности может измерять ток и/или напряжение, подаваемые на преобразователь, что показано на фиг. 10 как монитор 246 преобразователя. Таким образом, когда преобразователь представляет собой один или несколько светодиодных излучателей 207, можно отслеживать ток возбуждения или прямое напряжение светодиодов, где отклонение от заранее установленных параметров может указывать на отказ светодиода или задающего устройства светодиода или небезопасные рабочие условия. Напряжение на РЧ или ультразвуковом преобразователе можно аналогично отслеживать посредством монитора 246 преобразователя, как и ток, подаваемый на него. В другом варианте осуществления термодатчик, такой как термопара или термистор 234, показанный смежно с модулем 120 преобразователя энергии на фиг. 10, может быть выполнен с возможностью текущего контроля внутренней или внешней температуры элемента преобразователя, при этом перегрев может указывать на небезопасную работу или отказ элемента, а отсутствие нагрева также может указывать на сбой в работе. [00206] The eye treatment device 200 may also utilize a third type of safety sensor to monitor the power supply converters to ensure proper operation within specified parameters. Again, this may be a single sensor or a combination of sensors containing one or more of the following sensors. In some embodiments, the safety sensor may measure the current and/or voltage supplied to the converter, as shown in FIG. 10 as a 246 converter monitor. Thus, when the transducer is one or more LED emitters 207, drive current or forward voltage of the LEDs can be monitored, where deviation from preset parameters may indicate LED or LED driver failure or unsafe operating conditions. The voltage across the RF or ultrasonic transducer can similarly be monitored by the transducer monitor 246, as can the current supplied to it. In another embodiment, a thermal sensor, such as a thermocouple or thermistor 234, shown adjacent to power converter module 120 in FIG. 10 may be configured to monitor the internal or external temperature of the converter element, where overheating may indicate unsafe operation or failure of the element, and lack of heating may also indicate malfunction.

[00207] В некоторых вариантах осуществления устройство 212 управления может представлять собой систему с ручным управлением, или систему с разомкнутым контуром, с автономными дискретными аналоговыми и цифровыми схемами для ручного управления без какого-либо автоматического управления. Работа в ручном режиме может включать в себя включение и выключение устройства 200 для лечения глаза и прием информации безопасности и информации обратной связи. В этом случае устройство 200 для лечения глаза управляется вручную без устройства управления пользователем или клинический врачом, который включает устройство 200 для лечения глаза и оценивает необходимое лечение века с помощью обратной связи и регулирования процесса в ответ на эту оценку. Элементы обратной связи могут передавать сигналы пользователю или клиническому врачу о состоянии, например о включении/выключении, световых или звуковых сигналах, данных о температуре, данных о давлении, данных о безопасности или других данных, которые могут помочь пользователю или клиническому врачу оценить процесс. В некоторых вариантах осуществления устройство 212 управления для безопасности может содержать пороговые детекторы прямого действия и схемы отключения. В некоторых вариантах осуществления устройство 212 управления может содержать процессор или централизованный контроллер, выполненный с возможностью текущего контроля процесса с помощью элементов обратной связи, и некоторая часть обратной связи возвращается на устройство управления для обеспечения безопасности, например, выключения системы в небезопасном состоянии. [00207] In some embodiments, control device 212 may be a manually controlled system, or an open-loop system, with self-contained discrete analog and digital circuitry for manual control without any automatic control. Manual operation may include turning the eye treatment device 200 on and off and receiving safety information and feedback information. In this case, the eye treatment device 200 is operated manually without a control device by the user or by a clinician who turns on the eye treatment device 200 and evaluates the required eyelid treatment through feedback and process control in response to this assessment. Feedback elements may provide status signals to the user or clinician, such as on/off, light or sound signals, temperature data, pressure data, safety data, or other data that may help the user or clinician evaluate the process. In some embodiments, the safety control device 212 may include direct threshold detectors and shutdown circuits. In some embodiments, the control device 212 may include a processor or centralized controller configured to monitor the process through feedback elements, and some of the feedback is returned to the control device to provide safety, such as shutting down the system in an unsafe state.

[00208] Функциональный блок устройства 212 управления охватывает и выполняет как рабочие функции, чтобы направлять намеченную операцию, так и функции безопасности для взаимодействия с различными датчиками 230 безопасности. Он может представлять собой один процессор, управляющий всеми функциями, то есть одно устройство 212 управления, как показано на фиг. 3 и 4A, или может содержать два или более устройств управления, таких как основное устройство управления со вспомогательным контроллером безопасности, действующим как сторожевое устройство на первом устройстве управления, как хорошо известно специалистам в данной области техники. В частности, вспомогательный контроллер безопасности может быть предназначен для текущего контроля функциональности основного устройства управления: если один или несколько параметров указывают на то, что основное устройство 212 управления может не функционировать правильно, вспомогательный контроллер безопасности приспособлен отключать питание преобразователя энергии и/или всего устройства 200 для лечения глаза. Функции, связанные с устройством 212 управления, могут быть выполнены с помощью устройства управления, такого как микропроцессор или микроконтроллер со связанным программным обеспечением, но некоторые варианты осуществления могут предпочтительно работать без устройства управления, а вместо этого использовать одно или несколько из программируемой вентильной матрицы, логической матрицы, аналоговой схемы, цифровых схемных элементов или любой комбинации указанного выше. [00208] The control device 212 functional block encompasses and performs both operational functions to direct the intended operation and safety functions to interact with various security sensors 230. It may be a single processor that controls all functions, that is, a single control device 212, as shown in FIG. 3 and 4A, or may comprise two or more control devices, such as a main control device with a secondary safety controller acting as a watchdog on the first control device, as is well known to those skilled in the art. In particular, the auxiliary safety controller may be configured to monitor the functionality of the main control device: if one or more parameters indicate that the main control device 212 may not be functioning correctly, the auxiliary safety controller is adapted to turn off power to the power converter and/or the entire device 200 for eye treatment. The functions associated with control device 212 may be performed by a control device such as a microprocessor or microcontroller with associated software, but some embodiments may preferably operate without a control device and instead use one or more of a programmable gate array, logic matrix, analog circuit, digital circuit elements, or any combination of the above.

[00209] В одном простом варианте осуществления вспомогательный контроллер безопасности содержит массив аналоговых или цифровых схемных элементов без процессора. Например, оптические реле, реле температуры и/или давления, соединенные вместе проводами или с помощью логической схемы, операционные усилители и/или реле приспособлены для обеспечения возможности начальной или продолжительной работы устройства только в том случае, если датчики находятся в предварительно определенном состоянии. В альтернативном варианте осуществления, иллюстрирующем полное управление процессором, все датчики отслеживаются посредством цифровых входных сигналов или входных сигналов АЦП в один или несколько программируемых процессоров для выполнения функций второго контроллера безопасности и либо для предотвращения работы за пределами предварительно определенных параметров, либо для модуляции работы активных элементов в устройстве 200 для лечения глаза так, чтобы они оставались в рамках этих параметров. [00209] In one simple embodiment, the auxiliary security controller comprises an array of analog or digital circuit elements without a processor. For example, optical relays, temperature and/or pressure relays connected together by wires or logic, operational amplifiers and/or relays are adapted to allow initial or continued operation of the device only if the sensors are in a predetermined state. In an alternative embodiment illustrating full processor control, all sensors are monitored via digital or ADC inputs to one or more programmable processors to perform the functions of a second safety controller and either prevent operation outside predefined parameters or modulate the operation of active elements in the device 200 for treating the eye so that they remain within these parameters.

[00210] Помимо функций безопасности устройство 212 управления может направлять нормальную работу устройства 200 для лечения глаза. Например, оно может взаимодействовать с пользователем посредством пользовательского интерфейса 270, который может содержать кнопки управления, поворотные кодеры, сенсорные экраны, голосовые команды или любой другой традиционный пользовательский интерфейс. Оно может управлять регулятором мощности, направлять или прерывать протекание тока к преобразователю энергии и модулировать его выходной сигнал, запускать или останавливать работу вибрационного устройства, инициировать или отключать предупреждение об осторожности, инициировать, модулировать или останавливать работу устройства охлаждения поверхности и осуществлять текущий контроль и модулировать охлаждение преобразователя энергии с помощью регулятора температуры. Устройство 212 управления, или аналог в форме схемы на дискретных компонентах, может быть функционально связан с некоторыми или всеми из этих систем в устройстве 200 для лечения глаза. Кроме того, он может включать функцию таймера для автоматического отключения преобразователя энергии и прерывания таким образом подачи тепловой или вибрационной энергии на веко после предварительно определенного периода работы или в ответ на сигналы с датчиков безопасности первого, второго или третьего типа. [00210] In addition to the safety functions, the control device 212 may direct the normal operation of the eye treatment device 200. For example, it may interact with the user through a user interface 270, which may include control buttons, rotary encoders, touch screens, voice commands, or any other traditional user interface. It can control a power regulator, direct or interrupt current flow to a power converter and modulate its output, start or stop a vibration device, initiate or disable a caution warning, initiate, modulate or stop a surface cooling device, and monitor and modulate cooling energy converter using a temperature controller. A control device 212, or equivalent in the form of a discrete component circuit, may be operatively coupled to some or all of these systems in the eye treatment device 200. In addition, it may include a timer function to automatically turn off the energy converter and thereby interrupt the delivery of thermal or vibration energy to the eyelid after a predetermined period of operation or in response to signals from safety sensors of the first, second or third type.

[00211] Модуль 110 источника питания предназначен для облегчения подачи питания на устройство 200 для лечения глаза. Он может включать внешние интерфейсы питания, такие как шнуры или кабели, соединяющиеся с внешним источником питания. В предпочтительном варианте осуществления менеджер питания содержит внутренний источник питания. В некоторых вариантах осуществления менеджер питания содержит перезаряжаемую батарею или батарейный блок. Это могут быть никель-металлогидридные батареи, литий-ионные или литий-полимерные батареи, никель-кадмиевые батареи или любые другие подходящие перезаряжаемые или неперезаряжаемые батареи. Батареи предпочтительно обеспечивают высокий допустимый ток, например, 1-5 ампер, предпочтительно по меньшей мере 3 ампера сверхтока, с возможностью подачи такого высокого тока в течение 1, 2, 3, 4, 5 или более минут. В некоторых вариантах осуществления внутренние батареи выдают 3, 4, 5, 6, 7, 8, 9, 10 или 12 вольт или более. Емкость батарей определяется расчетной нагрузкой и может представлять собой, например, блок батарей, имеющий емкость по меньшей мере 200, 300, 400, 500, 1000, 2000, 2500 мА·ч или более. Требуемое напряжение может быть достигнуто путем последовательного подключения батарей с более низким напряжением для достижения требуемого напряжения или с использованием преобразователя постоянного тока в постоянный для повышения более низкого напряжения до требуемого напряжения. В некоторых вариантах осуществления батареи подают напряжение ниже, чем требуется для источника питания преобразователя энергии, и для преобразователя энергии напряжение повышается, в то время как более низкое напряжение, например, 5 В или 3,3 В, подается на устройство 212 управления или альтернативную дискретную схему. [00211] The power supply module 110 is configured to facilitate power supply to the eye treatment device 200 . It may include external power interfaces, such as cords or cables that connect to an external power source. In a preferred embodiment, the power manager includes an internal power supply. In some embodiments, the power manager includes a rechargeable battery or battery pack. These may be nickel metal hydride batteries, lithium ion or lithium polymer batteries, nickel cadmium batteries, or any other suitable rechargeable or non-rechargeable battery. The batteries preferably provide a high current carrying capacity, such as 1-5 amps, preferably at least 3 amps overcurrent, with the ability to supply such high current for 1, 2, 3, 4, 5 or more minutes. In some embodiments, the internal batteries provide 3, 4, 5, 6, 7, 8, 9, 10, or 12 volts or more. The capacity of the batteries is determined by the design load and may be, for example, a battery pack having a capacity of at least 200, 300, 400, 500, 1000, 2000, 2500 mAh or more. The required voltage can be achieved by connecting lower voltage batteries in series to achieve the required voltage, or by using a DC/DC converter to step up the lower voltage to the required voltage. In some embodiments, the batteries supply a voltage lower than required by the power converter power supply, and the power converter is raised in voltage while a lower voltage, such as 5 V or 3.3 V, is supplied to control device 212 or an alternative discrete diagram.

[00212] В одном предпочтительном варианте осуществления преобразователь энергии может представлять собой высокомощный светодиод, подобный тому, который производится «LED Engin, Inc.»; в частности, преобразователь энергии может представлять собой LZ9, выполненный с девятью зелеными излучателями в нестандартной конфигурации, расположенными в виде трех наборов из трех последовательных излучателей, включенных параллельно, что требует приблизительно 12-14 В прямого напряжения и до 2,4 А для максимального освещения. В этом варианте осуществления могут использоваться последовательно три элемента RCR123 LiFePO4 или аналогичные, имеющие емкость 750 мА·ч и обеспечивающие начальное напряжение 7,2 В. Имеется схема преобразователя постоянного тока в постоянный, которая увеличивает напряжение приблизительно в два раза с целью обеспечения напряжения, необходимого для возбуждения светодиода. [00212] In one preferred embodiment, the power converter may be a high power LED, such as those manufactured by LED Engin, Inc.; specifically, the power converter could be an LZ9 configured with nine green emitters in a custom configuration arranged as three sets of three emitters in series in parallel, requiring approximately 12-14V forward voltage and up to 2.4A for maximum illumination . In this embodiment, three RCR123 LiFePO4 or similar cells can be used in series, having a capacity of 750 mAh and providing an initial voltage of 7.2 V. A DC-DC converter circuit is available that approximately doubles the voltage to provide the voltage required to drive the LED.

[00213] Функции управления питанием могут включать зарядное устройство, монитор состояния батареи и/или монитор температуры. Эти функции могут выполняться отдельными схемами или полностью или частично включаться в устройство 212 управления. В некоторых вариантах осуществления управление питанием включает зарядное устройство для батареи, питаемое от внешнего источника питания через индукционное соединение, что обеспечивает возможность уплотнения устройства 200 для лечения глаза, обеспечивая легкую очистку и предотвращая попадание влаги или грязи. В некоторых вариантах осуществления индукционное соединение может использовать подставку для подзарядки или электрически изолированное подключение к электросети. Индукционное соединение может включать две индукционные катушки в непосредственной близости (одна в подставке и одна в устройстве) или две катушки, настроенные так, чтобы резонировать на одной и той же частоте (резонансное индукционное соединение или электродинамическая индукция). [00213] Power management functions may include a charger, a battery health monitor, and/or a temperature monitor. These functions may be performed by separate circuits or included in whole or in part within control device 212. In some embodiments, the power control includes a battery charger powered by an external power source via an inductive coupling, which allows the eye treatment device 200 to be sealed for easy cleaning and to prevent moisture or dirt from entering. In some embodiments, the inductive connection may utilize a charging cradle or an electrically isolated electrical connection. An induction coupling may involve two induction coils in close proximity (one in the stand and one in the device) or two coils tuned to resonate at the same frequency (resonant induction coupling or electrodynamic induction).

[00214] Регулирование температуры также является важнейшим элементом многих предпочтительных вариантов осуществления, включая, в некоторых случаях, отвод тепла от преобразователя энергии, такого как светодиод или матрица светодиодов. В случае светодиодов важно поддерживать температуру перехода ниже предварительно определенного порога, например, 135 градусов Цельсия. Другие преобразователи аналогично имеют максимально допустимые температуры компонентов, и надлежащее регулирование температуры помогает поддерживать эти компоненты в пределах допустимых температур. Например, могут использоваться теплоотводы, термически связанные с элементами преобразователя энергии, вентиляторы, радиаторы, охлаждающие текучие среды и т. п. В предпочтительном варианте осуществления устройство 200 для лечения глаза уплотнено, и структура 220 терморегулирования, такая как показана на фиг. 9, направляет избыточное тепло на внешнюю поверхность устройства 200 для лечения глаза. Это обеспечивает уплотненное устройство без вентиляционных отверстий. В других вариантах осуществления охлаждающая текучая среда направляется из регулятора температуры внутри устройства, чтобы отводить тепло от устройства, например, посредством принудительного воздушного охлаждения (как показано на фиг. 8) или радиатора с жидкостным охлаждением. [00214] Temperature control is also a critical element of many preferred embodiments, including, in some cases, dissipating heat from a power converter such as an LED or array of LEDs. In the case of LEDs, it is important to keep the junction temperature below a predefined threshold, such as 135 degrees Celsius. Other drives similarly have maximum component temperature limits, and proper temperature control helps keep those components within acceptable temperatures. For example, heat sinks thermally coupled to power converter elements, fans, radiators, cooling fluids, and the like may be used. In a preferred embodiment, the eye treatment device 200 is sealed and a thermal control structure 220 such as shown in FIG. 9 directs excess heat to the outer surface of the eye treatment device 200. This provides a sealed device without vents. In other embodiments, cooling fluid is directed from a temperature controller within the device to remove heat from the device, such as through forced air cooling (as shown in FIG. 8) or a liquid-cooled radiator.

[00215] В дополнительном аспекте настоящей технологии устройство 200 для лечения глаза может содержать элементы, применяемый для калибровки устройства, чтобы оно обеспечивало необходимую степень нагрева целевой ткани в широком диапазоне толщины века. Это важно, поскольку без такой калибровки степень нагрева, который происходит в целевой области ткани (например, мейбомиевых железах и смежных тканях), может варьироваться, если только температура вблизи целевой области ткани не измеряется во время лечения. Как обсуждалось ранее, текущий контроль целевой области ткани может осуществляться с помощью склерального экрана или подобного устройства, оснащенного датчиками температуры. Однако пользователям устройства может быть неудобно вставлять склеральные экраны каждый раз, когда они используют устройство. Поэтому может быть полезно откалибровать каждое устройство в соответствии с анатомическими особенностями человека. Для этого устройство может быть сначала откалибровано с помощью склерального экрана, предпочтительно в кабинете офтальмолога, и в сочетании с внешним монитором и калибратором. [00215] In an additional aspect of the present technology, the eye treatment device 200 may include elements used to calibrate the device to provide the desired degree of heating to the target tissue over a wide range of eyelid thicknesses. This is important because without such calibration, the amount of heating that occurs in the target tissue area (eg, meibomian glands and adjacent tissues) may vary unless the temperature near the target tissue area is measured during treatment. As discussed previously, monitoring of the target tissue area can be accomplished using a scleral screen or similar device equipped with temperature sensors. However, device users may find it inconvenient to insert scleral shields each time they use the device. Therefore, it may be useful to calibrate each device according to the individual's anatomy. To do this, the device can first be calibrated using a scleral screen, preferably in the ophthalmologist's office, and in combination with an external monitor and calibrator.

[00216] Например, со ссылкой на фиг. 13, когда устройство 200 для лечения глаза прикладывает энергию к веку (векам), склеральный экран 300 передает данные о температуре (через проводное или беспроводное соединение) на внешний монитор и калибратор 500. Внешний монитор и калибратор 500 отслеживают скорость повышения температуры с течением времени и таким образом характеризует профиль нагрева век(-а) пациента. С помощью этих данных внешний монитор и калибратор 500 могут затем программировать устройство 200 для лечения глаза на нагрев целевой ткани до требуемого диапазона температур. В простом варианте осуществления внешний монитор и калибратор 500 включают преобразователь энергии, измеряют количество времени, необходимое для достижения необходимой температуры целевой ткани, и затем выключают преобразователь энергии и программируют устройство 200 для лечения глаза на подачу энергии в течение такого же количества времени. Альтернативно устройство 200 для лечения глаза может быть запрограммировано для обеспечения повышенного или пониженного количества энергии для нагрева целевой ткани до требуемой температуры в течение предпочтительного периода времени. У большинства людей толщина века одинакова от верхнего века к нижнему веку и от правого глаза к левому глазу, однако будет понятно, что внешний монитор и калибратор могут отдельно измерять и отдельно программировать устройство для приложения особого количества энергии к каждому веку человека для обеспечения правильного нагрева каждого века. Также будет понятно, что могут быть различия в характеристиках компонентов, используемых для реализации преобразователя энергии и связанных схем, и что без надлежащей калибровки одно устройство может производить больше или меньше энергии, чем другое. Одним из решений этой проблемы является измерение на заводе фактического выхода энергии для заданного командного уровня от устройства управления и включение таблицы калибровки в устройство управления, чтобы каждое устройство 200 для лечения глаза выдавало равное количество энергии для заданного командного уровня. Альтернативно и дополнительно с помощью внешнего монитора и калибратора 500 такие отклонения также можно компенсировать с помощью процедуры, описанной выше, в которой конечной целью устройства 200 для лечения глаза является нагрев целевой ткани до требуемой температуры и каждое устройство 200 для лечения глаза запрограммировано на это (независимо от различий компонентов) для каждого конкретного пациента (и необязательно для каждого конкретного века). [00216] For example, with reference to FIG. 13, when the eye treatment device 200 applies energy to the eyelid(s), the scleral screen 300 transmits temperature data (via a wired or wireless connection) to an external monitor and calibrator 500. The external monitor and calibrator 500 monitor the rate of temperature increase over time and thus characterizing the heating profile of the patient's eyelid(s). Using this data, the external monitor and calibrator 500 can then program the eye treatment device 200 to heat the target tissue to the desired temperature range. In a simple embodiment, the external monitor and calibrator 500 turns on the energy converter, measures the amount of time required to reach the desired target tissue temperature, and then turns off the energy converter and programs the eye treatment device 200 to deliver energy for the same amount of time. Alternatively, the eye treatment device 200 may be programmed to provide an increased or decreased amount of energy to heat the target tissue to a desired temperature for a preferred period of time. For most people, eyelid thickness is the same from upper eyelid to lower eyelid and from right eye to left eye, however it will be understood that an external monitor and calibrator can separately measure and separately program the device to apply a specific amount of energy to each person's eyelid to ensure each is heated correctly century. It will also be understood that there may be differences in the characteristics of the components used to implement the power converter and associated circuitry, and that without proper calibration, one device may produce more or less power than another. One solution to this problem is to measure at the factory the actual energy output for a given command level from the control device and include a calibration table in the control device so that each eye treatment device 200 outputs an equal amount of energy for a given command level. Alternatively and additionally, with the help of an external monitor and calibrator 500, such deviations can also be compensated for using the procedure described above, in which the ultimate goal of the eye treatment device 200 is to heat the target tissue to the desired temperature and each eye treatment device 200 is programmed to do so (independently from differences in components) for each specific patient (and not necessarily for each specific eyelid).

[00217] Обращаясь теперь к фиг. 14A и 14B, в одном варианте осуществления склерального экрана 300 имеется массив датчиков 310 температуры, встроенных в экран. Для этого приложения, где экран фактически используется не для защиты глаза от энергии, а для измерения температуры, экран 300 может быть выполнен из материалов, которые по существу являются прозрачными для энергии, излучаемой из преобразователя энергии. В качестве конкретного примера, если преобразователь энергии представляет собой источник света, экран 300 может быть выполнен из прозрачного материала, который пропускает длину(-ы) волны света, излучаемого преобразователем энергии. Предпочтительно экран 300 также должен быть как можно более тонким и гибким, без острых элементов, чтобы его можно было удобно разместить под веками с минимальным дискомфортом для пациента и чтобы он оказывал минимальное влияние на нагрев ткани. В вариантах осуществления, показанных на фиг. 14A и 14B, показан пример, в котором имеется массив из шести датчиков 310 температуры на передней поверхности 302 экрана 300 и массив датчиков на задней поверхности 304. Эта конфигурация позволяет датчикам 312, обращенным вперед, более прямо измерять температуру ткани на внутренней поверхности век, где расположены мейбомиевы железы, в то время как датчики 314, обращенные назад, более прямо измеряют температуру поверхности глаза по средней линии центральной окулярной оси, где номинально расположены наиболее чувствительные ткани глаза. Датчики температуры могут представлять собой дискретные элементы (например, термопары из очень тонкой проволоки или миниатюрные термисторы), встроенные в экран 300, или они могут представлять собой термопары, выполненные путем нанесения тонких пленок соответствующих металлов на промежуточные слои экрана 300. В некоторых вариантах осуществления предпочтительными типами материалов для экрана 300 являются мягкие, гибкие, биологически совместимые материалы, такие как силикон, полиуретан и различные гидрогели, подобные тем, которые используются в контактных линзах. [00217] Referring now to FIG. 14A and 14B, in one embodiment of the scleral screen 300 there is an array of temperature sensors 310 built into the screen. For this application, where the screen is not actually used to protect the eye from energy but to measure temperature, the screen 300 may be made of materials that are substantially transparent to the energy emitted from the energy converter. As a specific example, if the power converter is a light source, the screen 300 may be made of a transparent material that transmits the wavelength(s) of light emitted by the power converter. Preferably, the screen 300 should also be as thin and flexible as possible, without sharp elements, so that it can be placed comfortably under the eyelids with minimal discomfort to the patient and so that it has minimal effect on tissue heating. In the embodiments shown in FIGS. 14A and 14B, an example is shown in which there is an array of six temperature sensors 310 on the front surface 302 of the screen 300 and a sensor array on the rear surface 304. This configuration allows the forward-facing sensors 312 to more directly measure tissue temperature on the inner surface of the eyelids, where meibomian glands are located, while rear-facing sensors 314 more directly measure ocular surface temperature along the midline of the central ocular axis, where the most sensitive tissues of the eye are nominally located. The temperature sensors may be discrete elements (eg, very fine wire thermocouples or miniature thermistors) embedded in the shield 300, or they may be thermocouples made by depositing thin films of appropriate metals onto the interlayers of the shield 300. In some embodiments, it is preferred The types of materials for the screen 300 are soft, flexible, biocompatible materials such as silicone, polyurethane, and various hydrogels like those used in contact lenses.

[00218] Хотя указанные выше варианты осуществления описывают конфигурацию, имеющую внешний монитор и калибратор 500, будет понятно, что само устройство 200 для лечения глаза может иметь такие же встроенные функциональные возможности, и в этом случае склеральный экран 300 передает данные о температуре непосредственно на устройство 200 для лечения глаза, и устройство 200 для лечения глаза программирует себя для обеспечения должного профиля лечения для этого конкретного пациента (и необязательно для отдельных глаз и век). В таких вариантах осуществления устройство 200 для лечения глаза имеет сложный пользовательский интерфейс 270, позволяющий клиническому врачу дать команду устройству 200 для лечения глаза выполнить последовательность калибровки и необязательно указать устройству 200 для лечения глаза, какой глаз и/или веко калибруются. Понятно, что если устройство 200 для лечения глаза откалибровано для обеспечения индивидуально откалиброванного лечения для каждого глаза или века, устройство 200 для лечения глаза должно иметь возможность указывать (с помощью ряда световых сигналов или цифро-буквенного или графического дисплея) пациенту, какой глаз или веко будут лечить дальше. [00218] While the above embodiments describe a configuration having an external monitor and calibrator 500, it will be understood that the eye treatment device 200 itself may have the same built-in functionality, in which case the scleral screen 300 transmits temperature data directly to the device 200 to treat an eye, and the eye treatment device 200 programs itself to provide the appropriate treatment profile for that particular patient (and optionally for individual eyes and eyelids). In such embodiments, the eye treatment device 200 has a sophisticated user interface 270 allowing the clinician to instruct the eye treatment device 200 to perform a calibration sequence and optionally instruct the eye treatment device 200 which eye and/or eyelid is being calibrated. It is understood that if the eye treatment device 200 is calibrated to provide individually calibrated treatment for each eye or eyelid, the eye treatment device 200 must be able to indicate (via a series of light signals or an alphanumeric or graphical display) to the patient which eye or eyelid will continue to be treated.

[00219] Альтернативно или дополнительно калибровочный элемент может использоваться для измерения выхода энергии устройства 200 для лечения глаза. Для вариантов осуществления, в которых преобразователь энергии представляет собой источник света, калибровочный элемент может представлять собой люксметр для измерения, например, светового потока, люменов или потока излучения. Для вариантов осуществления, в которых источником энергии является ультразвуковой преобразователь, калибровочный элемент может представлять собой измеритель ультразвуковой энергии. Калибровочный элемент может использоваться для определения того, работает ли устройство 200 для лечения глаза в допустимых пределах или нет, а также может предоставлять данные, позволяющие регулировать определенные параметры (например, уровень энергии или время лечения), чтобы возвращать устройство 200 для лечения глаза в требуемый рабочий диапазон. Будет понятно, что калибровочный элемент может также напрямую осуществлять связь с устройством 200 для лечения глаза или опосредованно (например, через ПК) с устройством 200 для лечения глаза, чтобы перепрограммировать устройство 200 для лечения глаза обновленными калибровочными данными для поддержания работы устройства в пределах приемлемого рабочего диапазона. [00219] Alternatively or additionally, a calibration element may be used to measure the energy output of the eye treatment device 200. For embodiments in which the energy converter is a light source, the calibration element may be a lux meter for measuring, for example, luminous flux, lumens, or radiant flux. For embodiments in which the energy source is an ultrasonic transducer, the calibration element may be an ultrasonic energy meter. The calibration element may be used to determine whether the eye treatment device 200 is operating within acceptable limits or not, and may also provide data to allow adjustment of certain parameters (for example, energy level or treatment time) to return the eye treatment device 200 to a desired setting. working range. It will be appreciated that the calibration element may also communicate directly with the eye treatment device 200 or indirectly (e.g., via a PC) with the eye treatment device 200 to reprogram the eye treatment device 200 with updated calibration data to maintain device operation within acceptable operating limits. range.

[00220] В некоторых вариантах осуществления устройство 200 для лечения глаза может для амбулаторного устройства дополнительно содержать элемент или приборную панель 218 отображения температуры, которая может включать температуры внутренней поверхности века и наружной поверхности века. Элемент отображения температуры может отображать абсолютные температуры или просто относительные температуры по сравнению с максимумом. Например, температуры могут отображаться в формате столбиковой диаграммы или с помощью одного или нескольких световых индикаторов. [00220] In some embodiments, the eye treatment device 200 may, for an ambulatory device, further include a temperature display element or dashboard 218, which may include temperatures of the inner surface of the eyelid and the outer surface of the eyelid. The temperature display element can display absolute temperatures or simply relative temperatures compared to a maximum. For example, temperatures may be displayed in a bar graph format or using one or more indicator lights.

[00221] В некоторых вариантах осуществления устройство 200 для лечения глаза может дополнительно содержать регистратор 214 данных, выполненный с возможностью записи аспектов лечения (например, времени, даты, параметров использования, температур, фотографий, видео и т. д.). В некоторых вариантах осуществления устройство 200 для лечения глаза может дополнительно содержать диктофон 213, чтобы клинические врачи могли записывать словесные наблюдения о том, насколько МЖ здоровы, забиты, атрофированы и т. д., наряду со временем, датой и именем пациента. Это позволяет клиническому врачу выполнять процедуру без необходимости делать заметки вручную и/или без необходимости в присутствии ассистента. В некоторых вариантах осуществления устройство 200 для лечения глаза может дополнительно содержать средства связи, выполненные с возможностью соединения с внешним ПК, планшетом или смартфоном для загрузки данных, голосовых записей, изображений с фотокамеры или видеоклипов. [00221] In some embodiments, the eye treatment device 200 may further include a data logger 214 configured to record aspects of the treatment (e.g., time, date, usage parameters, temperatures, photographs, videos, etc.). In some embodiments, the eye treatment device 200 may further include a voice recorder 213 so that clinicians can record verbal observations about how healthy, clogged, atrophied, etc. the breasts are, along with the time, date, and name of the patient. This allows the clinician to perform the procedure without having to take manual notes and/or without the need for an assistant. In some embodiments, the eye treatment device 200 may further include communications capabilities configured to connect to an external PC, tablet, or smartphone to download data, voice recordings, camera images, or video clips.

[00222] На фиг. 15A-15D показан другой вариант осуществления устройства 200 для лечения глаза, расположенного относительно глазного яблока 20 для лечения века 14 от MGD, блефарита и других заболеваний. В некоторых вариантах осуществления устройство 200 для лечения глаза выполнено с возможностью нагрева внутренней и/или наружной поверхностей века с одновременным сжатием века, подобно варианту осуществления, показанному на фиг. 3А. По мере передачи тепла из устройства 200 для лечения глаза в систему 10 глаза, в частности в подвергаемую лечению ткань, такую как мейбомиевы железы 18, нагрев может размягчать секрет мейбомиевых желез и таким образом позволять легче выдавливать секрет мейбомиевых желез во время массажа или упражнений для глаз. Устройство 200 для лечения глаза может включать конфигурации модулей, изображенных на фиг. 2А-2Н и фиг. 3A, наряду с дополнительными компонентами, используемыми в работе устройства 200 для лечения глаза. [00222] In FIG. 15A-15D show another embodiment of an eye treatment device 200 positioned relative to the eyeball 20 for treating eyelid 14 for MGD, blepharitis and other diseases. In some embodiments, the eye treatment device 200 is configured to heat the inner and/or outer surfaces of the eyelid while compressing the eyelid, similar to the embodiment shown in FIG. 3A. As heat is transferred from the eye treatment device 200 to the eye system 10, particularly to the tissue being treated, such as the meibomian glands 18, the heat may soften the meibomian gland secretions and thus allow the meibomian gland secretions to be more easily squeezed out during eye massage or exercises. . The eye treatment device 200 may include the module configurations shown in FIG. 2A-2H and figs. 3A, along with additional components used in the operation of the eye treatment device 200.

[00223] Устройство 200 для лечения глаза может содержать корпус 202, имеющий ближнюю часть 201 и дальнюю часть 203, соединенные со съемной или расходной частью 260. Корпус 202 может содержать модуль 110 источника питания, устройство 212 управления, модуль 120 преобразователя энергии и поверхность 140 передачи энергии. Модуль 120 преобразователя энергии в некоторых вариантах осуществления может содержать светодиодное устройство, образованное одним или несколькими из светодиодного излучателя 207, структуры 220 терморегулирования и задающего устройства 209 модуля преобразователя энергии. Поверхность 140 передачи энергии и светодиодный излучатель 207 расположены рядом с дальней частью 203 корпуса 202 и выполнены с возможностью относительного перемещения по пути 145 перемещения относительно модуля 120 преобразователя энергии с помощью привода 182, который обеспечивает возможность поверхности 140 передачи энергии перемещаться одновременно со светодиодным излучателем 207. [00223] The eye treatment device 200 may include a housing 202 having a proximal portion 201 and a distal portion 203 connected to a removable or consumable portion 260. The housing 202 may include a power supply module 110, a control device 212, a power converter module 120, and a surface 140 energy transfer. The power converter module 120, in some embodiments, may include an LED device formed by one or more of an LED emitter 207, a thermal control structure 220, and a power converter module driver 209. The power transfer surface 140 and the LED emitter 207 are located adjacent the distal portion 203 of the housing 202 and are configured to be relatively movable along a movement path 145 relative to the power converter module 120 by an actuator 182 that allows the power transfer surface 140 to move simultaneously with the LED emitter 207.

[00224] Корпус 202 может дополнительно содержать средства 160 визуализации для улучшенного текущего контроля края века во время диагностики и лечения, дисплей или приборную доску 218, на которых показываются различные температуры века, например температуры внутренней и/или наружной поверхности, регистратор 214 данных и/или диктофон 213 и схему для осуществления связи между устройством и схемой расходной части с целью идентификации типа расходной части, обеспечения нахождения расходной части в надлежащем выравнивании и/или предотвращения повторного использования расходной части. [00224] The housing 202 may further include visualization tools 160 for improved monitoring of the eyelid margin during diagnosis and treatment, a display or instrument panel 218 showing various eyelid temperatures, such as inner and/or outer surface temperatures, a data logger 214 and/or or a voice recorder 213 and circuitry for communicating between the device and the consumable circuitry to identify the type of consumable, ensure that the consumable is in proper alignment, and/or prevent reuse of the consumable.

[00225] Расходная часть 260 может содержать склеральный экран 300, как раскрытый выше, который может быть расположен между веком 12, 14 и глазным яблоком 20 для покрытия чувствительной структуры системы 10 глаза (такой, как показана на фиг. 1). Склеральный экран 300 может быть соединен с корпусом 202 с помощью одного или нескольких кронштейнов 262, при этом провода расположены на кронштейнах или внутри них, а в определенных вариантах осуществления структурная часть кронштейнов 262 выполнена из изоляционных материалов, окружающих или иным образом направляющих проводящие части провода или комплекта 420 проводов. [00225] The consumable portion 260 may include a scleral shield 300, as disclosed above, which may be positioned between the eyelid 12, 14 and the eyeball 20 to cover the sensitive structure of the eye system 10 (such as shown in FIG. 1). The scleral shield 300 may be coupled to the housing 202 by one or more brackets 262, with wires located on or within the brackets, and in certain embodiments, the structural portion of the brackets 262 is made of insulating materials surrounding or otherwise guiding conductive portions of the wire or set of 420 wires.

[00226] Устройство 200 для лечения глаза может содержать модуль 110 источника питания для предоставления питания в различные компоненты устройства 200 для лечения глаза и может быть электрически соединен с некоторыми или всеми компонентами. В некоторых вариантах осуществления, содержащих устройство 212 управления, устройство 212 управления может принимать входные команды от пользователя (например, посредством устройства 270 пользовательского интерфейса, такого как кнопка, переключатель, сенсорный экран, голосовые команды, с другого модуля или устройства, такого как смартфон) для излучения света из светодиодного излучателя 207. [00226] The eye treatment device 200 may include a power supply module 110 for providing power to various components of the eye treatment device 200 and may be electrically coupled to some or all of the components. In some embodiments containing a control device 212, the control device 212 may receive input commands from a user (e.g., through a user interface device 270 such as a button, switch, touch screen, voice commands, from another module or device such as a smartphone) for emitting light from the LED emitter 207.

[00227] Светодиодный излучатель 207 составляет часть модуля 120 преобразователя энергии одного типа, который может быть приспособлен для излучения света с надлежащей длиной волны, необходимой для требуемого лечения. Лечение может включать одно или несколько из следующего: диагностику век 12, 14 путем освещения внутренней и/или наружной поверхностей, краев век и/или мейбомиевых желез за веками; нагрев целевой области ткани системы 10 глаза (например, мейбомиевых желез за веками 12, 14); и антибактериальную обработку для уничтожения бактерий в системе 10 глаза. [00227] The LED emitter 207 forms part of one type of power converter module 120 that may be configured to emit light of the appropriate wavelength needed for the desired treatment. Treatment may include one or more of the following: diagnosing the eyelids 12, 14 by illuminating the inner and/or outer surfaces, eyelid margins, and/or meibomian glands behind the eyelids; heating the target tissue area of the eye system 10 (for example, the meibomian glands behind the eyelids 12, 14); and antibacterial treatment to kill bacteria in the eye system 10.

[00228] В некоторых вариантах осуществления дополнительный экранирующий элемент 258 может быть использован для предотвращения отражения нежелательной фотонной энергии (такой как ИК или синий/фиолетовый свет) от просвечиваемого элемента обратно к клиническому врачу. [00228] In some embodiments, an additional shielding element 258 may be used to prevent unwanted photon energy (such as IR or blue/violet light) from being reflected from the transilluminated element back to the clinician.

[00229] Признаком многих раскрытых в данном документе вариантов осуществления является возможность для клинического врача осматривать край века во время приложения тепла и сжатия. Осматривая край, клинический врач может видеть, какое содержимое, если оно есть, выделяется из мейбомиевых протоков, и благодаря этому регулировать количество нагрева и сжатия, прикладываемых к подвергаемому лечению веку, чтобы оптимально прочищать заблокированные мейбомиевы железы. Например, в начале лечения клинический врач может наблюдать, что определенные мейбомиевы железы в части подвергаемого лечению века имеют четкие маслянистые выделения, которые сигнализируют о нормальных железах. Напротив, некоторые железы могут выделять мутные маслянистые выделения или небольшие количества густых липидов, похожих на зубную пасту, что в обоих случаях сигнализирует о дисфункции железы. Когда врач применяет тепло и сжатие к части подвергаемого лечению века, дальнейшее наблюдение за дисфункциональными железами может показать, что мутные или густые выделения становятся прозрачными, а количество выделений может внезапно увеличиваться, указывая на то, что железа или железы были прочищены. В этот момент врач может уменьшить воздействие тепла и сжатия на эту область, поскольку лечение успешно прочистило заблокированные железы. Без этой постоянной визуальной обратной связи клинический врач был бы вынужден применять стандартную схему лечения, которая может быть либо недостаточно, либо чрезмерно агрессивной для конкретной закупоренной железы (желез) у данного пациента. [00229] A feature of many embodiments disclosed herein is the ability for the clinician to examine the eyelid margin while applying heat and compression. By examining the margin, the clinician can see what contents, if any, are being released from the meibomian ducts and thereby adjust the amount of heat and compression applied to the eyelid being treated to optimally clear the blocked meibomian glands. For example, at the beginning of treatment, the clinician may observe that certain meibomian glands in part of the eyelid being treated have a clear oily discharge that signals normal glands. In contrast, some glands may secrete a cloudy, oily secretion or small amounts of thick, toothpaste-like lipids, both of which signal gland dysfunction. When the doctor applies heat and compression to the portion of the eyelid being treated, further observation of the dysfunctional glands may reveal that cloudy or thick discharge becomes clear and the amount of discharge may suddenly increase, indicating that the gland or glands have been cleared. At this point, the doctor can reduce the heat and compression on the area because the treatment has successfully cleared the blocked glands. Without this constant visual feedback, the clinician would be forced to use a standard treatment regimen that may be either insufficient or overly aggressive for the specific obstructed gland(s) in a given patient.

[00230] Для справки, по меньшей мере на каждой из фиг. 2D, 2E, 2F, 2G, 2H, 3A, 3B, 15A, 15B и 15D показаны примеры вариантов осуществления, в которых край века открыт для визуального текущего контроля клиническим врачом во время лечения. Врач будет находиться перед подвергаемым лечению глазом. [00230] For reference, in at least each of FIGS. 2D, 2E, 2F, 2G, 2H, 3A, 3B, 15A, 15B and 15D show exemplary embodiments in which the eyelid margin is exposed for visual monitoring by a clinician during treatment. The doctor will stand in front of the eye being treated.

[00231] Обратимся теперь к фиг. 16A, на которой показан вид сбоку в разрезе поверхности 140 передачи энергии, века 14 с краем 14a века, склеральный экран 300 и средства 160 визуализации с оптическим путем 175. Этот вариант осуществления такой же, как показан на фиг. 2E, за исключением того, что он без преобразователя 155 изображения. В варианте осуществления, показанном на фиг. 16А, средства визуализации непосредственно сфокусированы на краю 14а века, а точнее на мейбомиевых протоках 19. [00231] Referring now to FIG. 16A, which shows a cross-sectional side view of the energy transfer surface 140, the eyelid 14 with the eyelid edge 14a, the scleral screen 300, and the imaging means 160 with the optical path 175. This embodiment is the same as shown in FIG. 2E, except that it is without image converter 155. In the embodiment shown in FIG. 16A, the visualization tools are directly focused on the edge of the 14a century, and more specifically on the meibomian ducts 19.

[00232] На фиг. 16B представлен вид спереди в перспективе того же варианта осуществления, что и на фиг. 16A, показывающий пример, в котором веко 14 сжато между поверхностью 140 передачи энергии и склеральным экраном 300, тогда как край 14a века виден клиническому врачу спереди. Этот вариант такой же, как показан на фиг. 2F, без преобразователя 155 изображения. [00232] In FIG. 16B is a front perspective view of the same embodiment as in FIG. 16A showing an example in which the eyelid 14 is compressed between the energy transfer surface 140 and the scleral shield 300 while the eyelid edge 14a is visible to the clinician from the front. This option is the same as shown in FIG. 2F, without image converter 155.

[00233] На фиг. 16C представлен вариант осуществления, подобный показанному на фиг. 16A, с добавлением кронштейна 262. Кронштейн 262 такой же, как показано на фиг. 3A, 3B, 7H, 7G и 15B. [00233] In FIG. 16C shows an embodiment similar to that shown in FIG. 16A, with the addition of bracket 262. Bracket 262 is the same as shown in FIG. 3A, 3B, 7H, 7G and 15B.

[00234] На фиг. 16D представлен вид спереди в перспективе варианта осуществления, показанного на фиг. 16C, показывающий пару кронштейнов 262, соединенных со склеральным экраном 300. Край 14а века открыт и примыкает к нижним краям кронштейнов 262, в качестве примера, но не ограничения. Фиг. 16E такая же, как фиг. 16D, но с отверстием 440 для осмотра края 14a века, выделенного жирным пунктирным прямоугольником. На фиг. 16F представлен вид сверху варианта осуществления, показанного на фиг. 16D и 16E, где показана поверхность 140 передачи энергии, прижимающая веко к склеральному экрану 300, с краем 14 века, открытым для визуального наблюдения. Фиг. 16G такая же, как фиг. 16F, но с отверстием 440 для осмотра края 14a века, выделенного жирным пунктирным прямоугольником. В одном варианте осуществления расстояние между кронштейнами составляет от 0,2 дюйма до 1,2 дюйма. В одном варианте осуществления расстояние между линией, определяемой точками крепления между двумя кронштейнами и задней пластиной, и линией, определяемой точками крепления между двумя кронштейнами и прижимным элементом, составляет по меньшей мере 0,04 дюйма. [00234] In FIG. 16D is a front perspective view of the embodiment shown in FIG. 16C showing a pair of brackets 262 connected to a scleral shield 300. The 14a century edge is open and adjacent to the bottom edges of the brackets 262, by way of example and not limitation. Fig. 16E is the same as FIG. 16D, but with aperture 440 for viewing the edge of the 14a century, highlighted by a bold dotted rectangle. In fig. 16F is a top view of the embodiment shown in FIG. 16D and 16E, which show the energy transfer surface 140 pressing the eyelid against the scleral shield 300, with the edge of the 14th eyelid exposed to visual observation. Fig. 16G is the same as FIG. 16F, but with aperture 440 for viewing the edge of the 14a century, highlighted by a bold dotted rectangle. In one embodiment, the distance between the brackets is from 0.2 inches to 1.2 inches. In one embodiment, the distance between a line defined by the attachment points between the two brackets and the back plate and a line defined by the attachment points between the two brackets and the clamp member is at least 0.04 inches.

[00235] На фиг. 16H представлен более подробный вид сбоку в разрезе варианта осуществления, показанного на фиг. 16C, дополнительно определяющий границы отверстия 440 в некоторых предпочтительных вариантах осуществления. На фигуре линия 1 указывает нижнюю (горизонтальную) границу отверстия, а линия 2 определяет верхнюю (вертикальную) границу. Угол 1 представляет собой угол между линиями 1 и 2 и теоретически составляет приблизительно 90 градусов, хотя различия в анатомической структуре скул и структуре бровей могут приводить к изменениям этих границ. На фиг. 16I представлено более подробное изображение варианта осуществления, показанного на фиг. 16H, где предпочтительная нижняя граница отверстия 440 показана линией 4, а предпочтительная верхняя граница отверстия 440 показана линией 6. Угол 2 представляет собой угол между горизонтальной линией 3 и линией 4 и предпочтительно составляет от приблизительно 5 до приблизительно 20 градусов, тогда как угол 4 находится между линиями 3 и 6 и предпочтительно составляет приблизительно от 60 до 80 градусов. Угол 3 представляет собой угол между линией 3 и линией 5 и является предпочтительным углом обзора края 14а века через отверстие 440 и предпочтительно составляет приблизительно от 25 до 50 градусов. [00235] In FIG. 16H is a more detailed side sectional view of the embodiment shown in FIG. 16C further defining the boundaries of the opening 440 in some preferred embodiments. In the figure, line 1 indicates the lower (horizontal) boundary of the hole, and line 2 defines the upper (vertical) boundary. Angle 1 is the angle between lines 1 and 2 and is theoretically approximately 90 degrees, although differences in the anatomical structure of the cheekbones and brow structure may cause variations in these boundaries. In fig. 16I is a more detailed view of the embodiment shown in FIG. 16H, wherein the preferred lower limit of opening 440 is shown by line 4 and the preferred upper limit of opening 440 is shown by line 6. Angle 2 is the angle between horizontal line 3 and line 4 and is preferably from about 5 to about 20 degrees, while angle 4 is between lines 3 and 6 and is preferably between approximately 60 and 80 degrees. Angle 3 is the angle between line 3 and line 5 and is the preferred viewing angle of the 14a century edge through the opening 440 and is preferably about 25 to 50 degrees.

[00236] На фиг. 16J изображен вариант осуществления, подобный 16H, за исключением того, что поверхность 140 передачи энергии короче, чем показанная на фиг. 16H, что тем самым обнажает большую часть верхней части века 14, смежной с краем 14a века. В этом варианте осуществления отверстие 440 больше, хотя внешние границы, определяемые линиями 7 и 8, параллельны границам, определенным линиями 1 и 2 на фиг. 16H, а угол 5 между ними поэтому также составляет приблизительно 90 градусов. [00236] In FIG. 16J shows an embodiment similar to 16H, except that the power transfer surface 140 is shorter than that shown in FIG. 16H, thereby exposing much of the upper part of century 14 adjacent to the margin of century 14a. In this embodiment, the opening 440 is larger, although the outer boundaries defined by lines 7 and 8 are parallel to the boundaries defined by lines 1 and 2 in FIG. 16H, and the angle 5 between them is therefore also approximately 90 degrees.

[00237] Фиг. 16K подобна варианту осуществления, показанному на фиг. 16J, за исключением того, что склеральный экран 300 проходит как за верхним, так и за нижним веком, и есть участки поверхности 140 передачи энергии, которые смежны с верхним веком 12, а также с нижним веком 14. В этом варианте осуществления нагреваются и сжимаются и верхнее, и нижнее веко, а не только нижнее веко. Как показано, кронштейн 262 соединен со склеральным экраном 300, а поверхности 140 передачи энергии выполнены так, чтобы обеспечивать возможность осмотра краев как верхнего, так и нижнего века через отверстие 440. Линии 9 и 10 изображают приблизительные нижний и верхний пределы отверстия 440, тем самым определяя угол 6, который предпочтительно составляет от приблизительно 10 до 150 градусов и более предпочтительно от приблизительно 20 до 120 градусов. Будет понятно, что возможны многие модификации раскрытых здесь вариантов осуществления, некоторые из которых могут изменять оптический путь, а значит изменять углы, связанные с отверстием. Например, может применяться преобразователь изображения, такой как показан на фиг. 2E, а также другие средства отражения, направления или преобразования изображения края века через отверстие для клинического врача. Альтернативно отверстие может представлять собой оптически прозрачное окно, проходящее через структурный элемент. Например, на фиг. 16K поверхность 140 передачи энергии может полностью покрывать подвергаемые лечению части и верхнего, и нижнего века, и вместо наличия отверстия около края века, по меньшей мере сегмент поверхности 140 передачи энергии может быть достаточно прозрачным, чтобы клинический врач мог осмотреть край века. Кроме того, может присутствовать датчик изображения, оптоволоконный жгут или световод, установленный смежно с краем века или направленный на него, и изображение края века может передаваться электронным или оптическим способом в точку за пределами поверхности 140 передачи энергии. Все эти альтернативные варианты осуществления и другие, очевидные для специалистов в данной области техники, включены в объем этого изобретения. [00237] FIG. 16K is similar to the embodiment shown in FIG. 16J, except that the scleral shield 300 extends behind both the upper and lower eyelids, and there are portions of the energy transfer surface 140 that are adjacent to the upper eyelid 12 as well as the lower eyelid 14. In this embodiment, heat and contract both the upper and lower eyelids, not just the lower eyelid. As shown, the arm 262 is coupled to the scleral shield 300, and the energy transfer surfaces 140 are configured to allow the edges of both the upper and lower eyelids to be viewed through the opening 440. Lines 9 and 10 depict the approximate lower and upper limits of the opening 440, thereby defining an angle 6 that is preferably from about 10 to 150 degrees, and more preferably from about 20 to 120 degrees. It will be appreciated that many modifications to the embodiments disclosed herein are possible, some of which may change the optical path and thus change the angles associated with the hole. For example, an image converter such as that shown in FIG. 2E, as well as other means of reflecting, directing or transforming the image of the eyelid margin through the opening to the clinician. Alternatively, the opening may be an optically transparent window extending through the structural member. For example, in FIG. The 16K energy transfer surface 140 may completely cover the treated portions of both the upper and lower eyelids, and rather than having an opening near the eyelid margin, at least a segment of the energy transmission surface 140 may be transparent enough to allow the clinician to view the eyelid margin. In addition, there may be an image sensor, fiber optic harness, or light guide mounted adjacent to or directed toward the eyelid margin, and an image of the eyelid margin may be transmitted electronically or optically to a point beyond the power transfer surface 140. All of these alternative embodiments and others obvious to those skilled in the art are included within the scope of this invention.

[00238] На фиг. 16L показан вариант осуществления, представленный на фиг. 16K, в виде спереди в перспективе. Как показано, двойные кронштейны 262 соединены со склеральным экраном 300 и двойные поверхности 140 передачи энергии показаны смежно с верхним веком 12 и нижним веком 14. Как показано, видны края 12а и 14а верхнего и нижнего века соответственно, а также видны мейбомиевы протоки 19. Фиг. 16M такая же, как фиг. 16L, с отверстием 440, в целом обозначенным жирным пунктирным прямоугольником. [00238] In FIG. 16L shows the embodiment shown in FIG. 16K, front perspective view. As shown, dual arms 262 are connected to the scleral shield 300 and dual energy transfer surfaces 140 are shown adjacent the upper eyelid 12 and lower eyelid 14. As shown, the edges 12a and 14a of the upper and lower eyelids, respectively, are visible, and the meibomian ducts 19 are also visible. FIG. . 16M same as fig. 16L, with hole 440 generally indicated by a bold dotted rectangle.

[00239] Фиг. 16N подобна варианту осуществления, показанному на фиг. 16L, но с одним кронштейном 262. Фиг. 16O такая же, как вариант осуществления, показанный на фиг. 16N, но с выделением двух отверстий 440, образованных зазорами между верхней и нижней поверхностями 140 передачи энергии и находящихся справа и слева от центрального кронштейна 262. Другие комбинации одного или нескольких кронштейнов или других структур, имеющих одно или несколько отверстий, могут быть рассмотрены специалистами в данной области техники. [00239] FIG. 16N is similar to the embodiment shown in FIG. 16L, but with one bracket 262. FIG. 16O is the same as the embodiment shown in FIG. 16N, but highlighting two holes 440 defined by the gaps between the upper and lower power transfer surfaces 140 and located to the right and left of the central bracket 262. Other combinations of one or more brackets or other structures having one or more holes may be contemplated by those skilled in the art. this field of technology.

[00240] Будет понятно, что на фиг. 16A-16O показана уникальная конфигурация поверхностей 140 передачи энергии, склеральных экранов 300 и кронштейнов 262, которые определяют отверстие 440, которое позволяет осматривать края одного или обеих век во время приложения тепла и сжатия к части подвергаемого лечению века. Возможны многие другие конфигурации, и в данном документе были описаны только несколько иллюстративных вариантов осуществления для демонстрации новаторской концепции. [00240] It will be understood that in FIG. 16A-16O show a unique configuration of energy transfer surfaces 140, scleral shields 300, and brackets 262 that define an opening 440 that allows the edges of one or both eyelids to be viewed while heat and compression are applied to a portion of the eyelid being treated. Many other configurations are possible, and only a few illustrative embodiments have been described herein to demonstrate the innovative concept.

[00241] Обращаясь теперь к фиг. 17A, показан узел, подобный частям варианта осуществления, показанного на фиг. 3A. Модуль 120 преобразователя энергии расположен смежно с ближним концом модуля 130 волновода энергии. Дальний конец модуля 130 волновода энергии примыкает к поверхности 140 передачи энергии, состоящей из лицевого стекла 284 (показано на фиг. 17C) и одноразовых частей 147a и 147b покровного элемента. Часть 147b упирается в веко 14. На фиг. 17B представлен вид спереди модуля 120 преобразователя энергии, состоящего из двух инфракрасных светодиодов 120a и четырех светодиодов 120b зеленовато-желтого цвета, которые все установлены на подложке. На фиг. 17C представлен покомпонентный вид тех же компонентов, которые описаны на фиг. 17A-B, включая выноску 130a для внутренней поверхности модуля 130 волновода энергии. В некоторых вариантах осуществления модуль 130 волновода энергии может находиться в неподвижной взаимосвязи с модулем 120 преобразователя энергии, тогда как в других вариантах осуществления модуль 130 волновода энергии может скользить относительно модуля 120 преобразователя энергии, а в других модуль преобразователя энергии 120 может скользить относительно 130. В предпочтительном варианте осуществления модуль 120 преобразователя энергии неподвижен, а модуль 130 волновода энергии скользит вперед и назад вокруг модуля 120 преобразователя энергии. В таком предпочтительном варианте осуществления, когда модуль 130 волновода энергии полностью выдвинут, он прижимает поверхность 140 передачи энергии к веку 14 (или 12 при лечении верхнего века). [00241] Referring now to FIG. 17A shows an assembly similar to parts of the embodiment shown in FIG. 3A. The power converter module 120 is located adjacent to the proximal end of the energy waveguide module 130. The distal end of the energy waveguide module 130 is adjacent to an energy transfer surface 140 consisting of a face glass 284 (shown in FIG. 17C) and disposable cover member portions 147a and 147b. The portion 147b abuts the eyelid 14. In FIG. 17B is a front view of a power converter module 120 consisting of two infrared LEDs 120a and four greenish-yellow LEDs 120b, all mounted on a substrate. In fig. 17C is an exploded view of the same components described in FIG. 17A-B, including callout 130a for the inner surface of the energy waveguide module 130. In some embodiments, energy waveguide module 130 may be in fixed relationship with energy converter module 120, while in other embodiments, energy waveguide module 130 may be slidable relative to power converter module 120, and in others, power waveguide module 120 may be slidable relative to 130. In a preferred embodiment, the power converter module 120 is stationary, and the energy waveguide module 130 slides back and forth around the power converter module 120. In such a preferred embodiment, when the energy waveguide module 130 is fully extended, it presses the energy transfer surface 140 against the eyelid 14 (or 12 in upper eyelid treatments).

[00242] Чтобы максимально повысить эффективность передачи световой энергии из модуля 120 преобразователя энергии на поверхность 140 передачи энергии, внутренняя поверхность модуля 130 волновода энергии может быть покрыта или облицована материалом, который обладает высокой отражательной способностью для длин волн, излучаемых модулем 120 преобразователя энергии. В качестве примера, внутренняя поверхность модуля 130 волновода энергии может быть покрыта защищенным серебряным материалом, или она может быть облицована пленками, такими как WRF-150 от «Fusion Optix», или пленкой ESR от «3M», которые все предназначены для обеспечения отражения >97% длин волн от 500 нм до 900 нм. [00242] To maximize the efficiency of transmitting light energy from the power converter module 120 to the power transfer surface 140, the interior surface of the power waveguide module 130 may be coated or lined with a material that is highly reflective for the wavelengths emitted by the power converter module 120. As an example, the interior surface of the energy waveguide module 130 may be coated with a protected silver material, or it may be lined with films such as WRF-150 from Fusion Optix or ESR film from 3M, which are all designed to provide reflectivity. 97% wavelengths from 500 nm to 900 nm.

[00243] В некоторых вариантах осуществления одноразовая часть 147a покровного элемента может быть изготовлена из пластмассового или стеклянного материала, который пропускает световую энергию в диапазоне 500-880 нм. Акриловая смола является одним примером приемлемого материала для одноразовой части 147a покровного элемента. Одноразовая часть 147b покровного элемента предпочтительно представляет собой материал с низкой твердостью, такой как силикон, для обеспечения мягкой поверхности для прижатия к поверхности века. Поскольку большинство силиконов не полностью прозрачны для инфракрасной энергии, предпочтительно, чтобы толщина одноразового покровного элемента 147b составляла приблизительно 0,02-0,06 дюйма с целью минимизации потерь энергии. [00243] In some embodiments, the disposable cover member portion 147a may be made of a plastic or glass material that transmits light energy in the range of 500-880 nm. Acrylic resin is one example of an acceptable material for the disposable cover member portion 147a. The disposable cover member portion 147b is preferably a low hardness material such as silicone to provide a soft surface for pressing against the eyelid surface. Since most silicones are not completely transparent to infrared energy, it is preferable that the thickness of the disposable cover element 147b be approximately 0.02-0.06 inches to minimize energy loss.

[00244] На фиг. 17D показано распределение инфракрасной энергии, передаваемой через веко 14, когда модуль полностью выдвинут (с его дальним концом на приблизительно 0,5 дюйма от наивысшей точки на линзе инфракрасного светодиода). Ссылаясь на график, показанный в верхнем левом углу, более темные области - это области с наибольшей облученностью (ватт на квадратный миллиметр), а более светлые области - с наименьшей облученностью. Как показано, наибольшая облученность наблюдается около средней части, и облученность резко падает к краям. Асимметричное распределение по оси X не является идеальным, поскольку желательно равномерно нагревать ткань века от одного края к другому. В направлении оси Y желательна некоторая асимметрия, поскольку большинство блокировок, которые возникают в мейбомиевых железах, находятся вблизи отверстия или протока. В случае, когда лечению подвергается нижнее веко, а верхний край поверхности 140 передачи энергии выровнен с верхним краем нижнего века, было бы предпочтительно, чтобы профиль облученности (а значит и профиль нагрева ткани) был смещен к верхнему краю, при этом также нагревая все веко. [00244] In FIG. 17D shows the distribution of infrared energy transmitted through the eyelid 14 when the module is fully extended (with its distal end approximately 0.5 inches from the highest point on the infrared LED lens). Referring to the graph shown in the upper left corner, the darker areas are the areas with the highest irradiance (watts per square millimeter) and the lighter areas are the ones with the least irradiance. As shown, the highest irradiance is observed near the middle part, and the irradiance drops sharply towards the edges. An asymmetrical X-axis distribution is not ideal because it is desirable to heat the eyelid tissue evenly from one edge to the other. Some asymmetry in the Y-direction is desirable because most blockages that occur in the meibomian glands are near the opening or duct. In the case where the lower eyelid is being treated and the upper edge of the energy transfer surface 140 is aligned with the upper edge of the lower eyelid, it would be preferable for the irradiation profile (and thus tissue heating profile) to be shifted toward the upper edge, thereby also heating the entire eyelid .

[00245] Чтобы улучшить распределение облученности инфракрасного света, частично отражающее покрытие 196 может быть нанесено на поверхность части одноразовой части 147a покровного элемента, как показано на фиг. 17E. В одном варианте осуществления это покрытие представляет собой аподизирующее покрытие, которое пропускает приблизительно 33% и отражает приблизительно 67% энергии в диапазоне 820-880 нм. На фиг. 17F показан более подробный вид схемы покрытия с двумя показанными зонами 196а и 196b. На фиг. 17G показано результирующее распределение облученности через веко при использовании аподизирующего покрытия. Как показано, зона наивысшей облученности намного шире и смещена к верхнему краю, а падение освещенности к правому и левому краям вдоль верхнего края гораздо меньше. По существу, будет происходить предпочтительный нагрев ткани вдоль верхней половины века (в случае лечения нижнего века) и нагрев слева направо по веку будет более равномерным. [00245] To improve the infrared light irradiance distribution, a partially reflective coating 196 may be applied to the surface of a portion of the disposable cover member portion 147a, as shown in FIG. 17E. In one embodiment, the coating is an apodizing coating that transmits approximately 33% and reflects approximately 67% of energy in the 820-880 nm range. In fig. 17F shows a more detailed view of the coverage pattern with two zones 196a and 196b shown. In fig. 17G shows the resulting irradiance distribution across the eyelid when using an apodizing coating. As shown, the area of highest irradiance is much wider and offset towards the top edge, and the drop in irradiance towards the right and left edges along the top edge is much smaller. Essentially, there will be preferential heating of the tissue along the upper half of the eyelid (if treating the lower eyelid) and heating from left to right across the eyelid will be more uniform.

[00246] Если аподизирующее покрытие 196 также отражает длины волн в области зеленовато-желтого цвета (500-600 нм), то очень мало зеленовато-желтого света будет достигать требуемых частей века и поэтому будет меньшим нагрев ткани века посредством поглощения хромофорами световой энергии зеленовато-желтого света. Чтобы решить эту проблему, в одном варианте осуществления предпочтительно, чтобы область 196a покрытия была частично отражающей только для инфракрасного излучения (отражающая способность 67%, пропускающая способность 33% для 820-880 нм; пропускающая способность >90% для зеленовато-желтого цвета 500-600 нм) и чтобы область покрытия 196b была частично отражающей (отражающая способность 67%, пропускающая способность 33%) как для инфракрасного (820-880 нм), так и для зеленовато-желтого (500-600 нм). [00246] If the apodizing coating 196 also reflects wavelengths in the greenish-yellow region (500-600 nm), then very little greenish-yellow light will reach the desired parts of the eyelid and therefore there will be less heating of the eyelid tissue due to the absorption of greenish-yellow light energy by the chromophores. yellow light. To solve this problem, in one embodiment, it is preferred that the coating region 196a be partially reflective for infrared radiation only (67% reflectance, 33% transmittance for 820-880 nm; >90% transmittance for 500-nm chartreuse). 600 nm) and that the coverage area 196b be partially reflective (67% reflectance, 33% transmittance) for both infrared (820-880 nm) and greenish-yellow (500-600 nm).

[00247] На фиг. 17H показан график распределения освещенности зеленовато-желтого цвета на поверхности века для варианта осуществления, имеющего аподизирующее покрытие, как описано выше (зона 196a пропускает зеленовато-желтый цвет и частично отражает инфракрасное излучение, а зона 196b частично отражает оба излучения). Как можно видеть, схема облученности преимущественно смещена к верхней половине века и хорошо распределена от правого до левого края без значительного падения облученности. [00247] In FIG. 17H shows a graph of the chartreuse irradiance distribution on the surface of the eyelid for an embodiment having an apodizing coating as described above (zone 196a transmits chartreuse and partially reflects infrared radiation, and zone 196b partially reflects both). As can be seen, the irradiance pattern is predominantly shifted towards the upper half of the eyelid and is well distributed from the right to the left edge without a significant drop in irradiance.

[00248] Будет понятно, что раскрытые в данном документе примеры типов покрытий и схем нанесения являются простыми примерами демонстрации и что альтернативные конфигурации могут привести к более равномерному распределению облученности в требуемых спектрах. Например, другой способ формирования схемы нагрева века состоит в изменении схемы нанесения или свойств энергопоглощающей поверхности 302 склерального экрана 300 (как показано на фиг. 3B). Например, чтобы выровнять нагрев склерального экрана, если схема облученности такая, как показана на фиг. 17D, правая и левая части поверхности склерального экрана 300 могут быть более плотно покрыты энергопоглощающим материалом, чем центральные части склерального экрана 300. Кроме того, чтобы сместить нагрев к верхней части века, верхняя часть поверхности склерального экрана может быть более плотно покрыта энергопоглощающим материалом. Комбинации покрытий на элементах внутри пути передачи энергии, а также изменения свойств отражения и поглощения энергии поверхности склерального экрана все включены в объем настоящего изобретения. [00248] It will be appreciated that the examples of coating types and application patterns disclosed herein are merely demonstration examples and that alternative configurations may result in a more uniform irradiance distribution across the desired spectra. For example, another way to create a heating pattern for the eyelid is to change the application pattern or properties of the energy-absorbing surface 302 of the scleral shield 300 (as shown in FIG. 3B). For example, in order to equalize the heating of the scleral screen, if the irradiation scheme is as shown in FIG. 17D, the right and left portions of the surface of the scleral shield 300 may be more densely coated with energy-absorbing material than the central portions of the scleral shield 300. In addition, to shift the heating toward the upper portion of the eyelid, the upper portion of the surface of the scleral shield may be more densely coated with the energy-absorbing material. Combinations of coatings on elements within the energy transfer path, as well as changes in the reflective and energy absorption properties of the scleral shield surface are all included within the scope of the present invention.

[00249] На фиг. 18A и 18B показан другой вариант осуществления устройства 200 для лечения глаза. В некоторых вариантах осуществления устройство 200 для лечения глаза может быть приспособлено для использования специалистом-офтальмологом (СОФ). Например, устройство 200 для лечения глаза может позволять СОФ прикладывать локализованные тепло и давление к векам 12, 14 (не показаны на фиг. 18A-18B). В некоторых вариантах осуществления система может содержать ручной инструмент 1800, приспособленный для соединения со стерильным одноразовым компонентом 260, расположенным за веками 12, 14. Например, стерильный одноразовый компонент 260 может быть предназначен для однократного применения, съемным или расходным. В некоторых вариантах осуществления стерильный одноразовый компонент 260 может быть прикреплен к ручному инструменту 1800 с возможностью отсоединения, и ручной инструмент 1800 может содержать кнопку 1805 высвобождения одноразовой части. В некоторых вариантах осуществления ручной инструмент 1800 также содержит кнопку 1807 питания. В некоторых вариантах осуществления устройство 200 для лечения глаза может позволять СОФ осматривать край века через устройство визуализации или средства 160 визуализации, например встроенную фотокамеру. Устройство 200 для лечения глаза может затем нагревать ткань века до целевого диапазона температур, например, чтобы расплавлять секрет мейбомиевых желез, блокирующий отверстия. В вариантах осуществления целевой диапазон температур составляет от приблизительно 40°C до приблизительно 42°C. Устройство 200 для лечения глаза может дополнительно прикладывать давление к векам 12, 14, например чтобы выдавливать расплавленный секрет мейбомиевых желез через отверстия. В некоторых вариантах осуществления количество прикладываемого тепла и величина прикладываемого давления постоянно находится под прямым контролем СОФ, и СОФ может осуществлять текущий контроль за реакцией желез и комфортом пациента во время лечения. [00249] In FIG. 18A and 18B show another embodiment of an eye treatment device 200. In some embodiments, the eye treatment device 200 may be adapted for use by an ophthalmologist (OP). For example, the eye treatment device 200 may allow the SOF to apply localized heat and pressure to the eyelids 12, 14 (not shown in FIGS. 18A-18B). In some embodiments, the system may include a hand-held instrument 1800 adapted to be coupled to a sterile disposable component 260 located behind the eyelids 12, 14. For example, the sterile disposable component 260 may be single-use, removable, or disposable. In some embodiments, the sterile disposable component 260 may be removably attached to the handheld instrument 1800, and the handheld instrument 1800 may include a disposable portion release button 1805. In some embodiments, the hand tool 1800 also includes a power button 1807. In some embodiments, the eye treatment device 200 may allow the SOF to view the eyelid margin through an imaging device or imaging means 160, such as a built-in camera. The eye treatment device 200 may then heat the eyelid tissue to a target temperature range, for example, to melt meibomian gland secretion blocking the openings. In embodiments, the target temperature range is from about 40°C to about 42°C. The eye treatment device 200 may further apply pressure to the eyelids 12, 14, for example to force molten meibomian gland secretion through the openings. In some embodiments, the amount of heat applied and the amount of pressure applied are constantly under the direct control of the SOF, and the SOF can monitor glandular response and patient comfort during treatment.

[00250] Как показано на фиг. 18A-18B, устройство 200 для лечения глаза может содержать электронный ручной инструмент 1800. Ручной инструмент 1800 можно использовать вместе со стерильным одноразовым компонентом 260, например для приложения тепла и давления к векам 12, 14. Устройство 200 для лечения глаза может иметь приблизительные размеры 8 дюймов (L) x 1 ½ дюйма (W) x 2 ¼ дюйма (H). Устройство 200 для лечения глаза может иметь другие размеры, не выходя за рамки объема настоящего изобретения. В некоторых вариантах осуществления стерильный одноразовый компонент 260 может быть прикреплен к ручному инструменту 1800 по меньшей мере двумя защелками 1801. По меньшей мере две защелки 1801 могут захватывать по меньшей мере один язычок 2203 крепления (не показан). Стерильный одноразовый компонент 260 может быть снят с ручного инструмента 1800 путем нажатия кнопки 1805 высвобождения одноразовой части. Устройство 200 для лечения глаза может содержать электронные схемы, считывающие датчики 310 температуры во внутренней прокладке 300 для века и внешней прокладке 147 для века. Электронные схемы можно использовать для измерения температур, характеризующих температуры внутренней поверхности века и наружной поверхности века. Нагрев может быть выполнен с использованием световой энергии, излучаемой из светодиодов в ручном инструменте 1800. Механизм в ручном инструменте 1800 может позволять оператору оказывать давление на веко, управляя движением наружной прокладки 147 для века с помощью давления пальца, прикладываемого к кнопке 1822 управления сжатием. В некоторых вариантах осуществления устройство 200 для лечения глаза также может содержать графический экран или дисплей 244, выполненный с возможностью отображения информации, используемой для работы с ручным инструментом 1800, например во время лечения. В некоторых вариантах осуществления устройство 200 для лечения глаза может содержать устройство визуализации или средства 160 визуализации, выполненные с возможностью обеспечения для оператора осмотра края века во время лечения. [00250] As shown in FIG. 18A-18B, the eye treatment device 200 may include an electronic hand-held instrument 1800. The hand-held instrument 1800 may be used in conjunction with a sterile disposable component 260, for example, to apply heat and pressure to the eyelids 12, 14. The eye treatment device 200 may have an approximate size of 8 inches (L) x 1 ½ inches (W) x 2 ¼ inches (H). The eye treatment device 200 may have other dimensions without departing from the scope of the present invention. In some embodiments, the sterile disposable component 260 may be attached to the hand-held instrument 1800 by at least two latches 1801. The at least two latches 1801 may engage at least one fastening tab 2203 (not shown). The sterile disposable component 260 can be removed from the hand-held instrument 1800 by pressing the disposable release button 1805. The eye treatment device 200 may include electronic circuits that sense temperature sensors 310 in the inner eyelid pad 300 and the outer eyelid pad 147. Electronic circuits can be used to measure temperatures that characterize the temperatures of the inner surface of the eyelid and the outer surface of the eyelid. Heating may be accomplished using light energy emitted from the LEDs in the hand tool 1800. A mechanism in the hand tool 1800 may allow an operator to apply pressure to the eyelid by controlling the movement of the outer eyelid pad 147 using finger pressure applied to the compression control button 1822. In some embodiments, the eye treatment device 200 may also include a graphical screen or display 244 configured to display information used to operate the hand-held instrument 1800, such as during treatment. In some embodiments, the eye treatment device 200 may include an imaging device or imaging means 160 configured to allow an operator to view the eyelid margin during treatment.

[00251] Температуру века можно измерить с помощью датчиков 310 в стерильном одноразовом компоненте 260, содержащем два датчика во внешней прокладке 147 для века и два датчика во внутренней прокладке 300 для века. Например, эти датчики могут быть установлены на гибкой печатной плате (PCB), которая также может иметь набор контактных площадок. Когда стерильный одноразовый компонент 260 прикреплен к ручному инструменту 1800, подпружиненные штифты, установленные под кожухом 2100 (не показан), могут обеспечивать электрическое соединение с внешними прокладками 140 для века и внутренними прокладками 300 для века в стерильном одноразовом компоненте 260. В некоторых вариантах осуществления электронная схема в ручном инструменте 1800 может считывать датчики и быстро определять температуры, например, более 20 раз в секунду. Точность системы измерения температуры может составлять ±1°C. В некоторых вариантах осуществления электронная схема выполняет самостоятельное тестирование, чтобы гарантировать, что датчики работают правильно. Например, если электронная схема обнаруживает неисправность, может быть отображен код ошибки и источник тепла может быть отключен. [00251] Eyelid temperature can be measured using sensors 310 in a sterile disposable component 260 containing two sensors in an outer eyelid pad 147 and two sensors in an inner eyelid pad 300. For example, these sensors may be mounted on a flexible printed circuit board (PCB), which may also have a set of pads. When the sterile disposable component 260 is attached to the hand-held instrument 1800, spring-loaded pins mounted underneath the housing 2100 (not shown) may provide electrical connection to the outer eyelid pads 140 and the inner eyelid pads 300 in the sterile disposable component 260. In some embodiments, an electronic The circuitry in the 1800 hand tool can read sensors and detect temperatures quickly, for example, more than 20 times per second. The accuracy of the temperature measurement system can be ±1°C. In some embodiments, the electronic circuitry performs its own testing to ensure that the sensors are operating correctly. For example, if the electronic circuit detects a fault, an error code may be displayed and the heat source may be turned off.

[00252] в некоторых вариантах осуществления устройства 200 для лечения глаза давление, прикладываемое к веку, может контролироваться СОФ, например, посредством нажатия СОФ кнопки 1822 управления сжатием с помощью большого или другого пальца. Это нажатие кнопки 1822 управления сжатием может приводить к тому, что наружная прокладка 147 для века перемещается к противолежащей внутренней прокладке 300 для века. В некоторых вариантах осуществления, когда стерильный одноразовый компонент 260 прикрепляется к ручному инструменту 1800, наружная прокладка 147 для века автоматически прикрепляется к передней части кожуха 2100. Кожух 2100 может представлять собой подвижный компонент, который охватывает нагревающие светодиоды и направляет свет к веку. В некоторых вариантах осуществления кнопка 1822 управления сжатием соединена с кожухом 2100, тем самым позволяя клиническому врачу продвигать наружную прокладку 147 для века, используя силу большого или другого пальца. Например, приложенная сила может быть измерена датчиком, установленным в механизме кнопки 1822 управления сжатием, и может отображаться на экране 244 дисплея в виде относительного числа от 1 до 9. Отображаемое значение может быть относительным справочным значением для клинического врача. Фактическая прикладываемая сила должна определяться клиническим заключением, принимая во внимание состояние и реакцию подвергаемого лечению века, а также чувствительность пациента. [00252] In some embodiments of the eye treatment device 200, the pressure applied to the eyelid may be controlled by the SOF, for example, by pressing the SOF compression control button 1822 with a thumb or other finger. This pressing of the compression control button 1822 may cause the outer eyelid pad 147 to move toward the opposing inner eyelid pad 300 . In some embodiments, when the sterile disposable component 260 is attached to the handheld instrument 1800, the outer eyelid pad 147 is automatically attached to the front of the housing 2100. The housing 2100 may be a movable component that encloses heating LEDs and directs light to the eyelid. In some embodiments, the compression control button 1822 is coupled to the housing 2100, thereby allowing the clinician to advance the outer eyelid pad 147 using thumb or finger force. For example, the applied force may be measured by a sensor mounted in the compression control button mechanism 1822 and may be displayed on the display screen 244 as a relative number from 1 to 9. The displayed value may be a relative reference value for the clinician. The actual force applied should be determined by clinical judgment, taking into account the condition and response of the eyelid being treated and the sensitivity of the patient.

[00253] В некоторых вариантах осуществления ткань века может нагреваться световой энергией, производимой светодиодами в ручном инструменте 1800 и пропускаемой через прозрачную наружную прокладку 300 для века. Светодиоды могут быть расположены за прозрачным окном на открытом конце кожуха 2100. Например, можно использовать две длины волны света: зеленовато-желтый и ближний инфракрасный. Хромофоры в веке могут поглощать световую энергию и тем самым нагревать окружающую ткань. [00253] In some embodiments, the eyelid tissue may be heated by light energy produced by LEDs in the handheld instrument 1800 and passed through the clear outer eyelid pad 300. The LEDs may be located behind a transparent window at the open end of the housing 2100. For example, two wavelengths of light may be used: chartreuse and near-infrared. Chromophores in the eyelid can absorb light energy and thereby heat the surrounding tissue.

[00254] В некоторых вариантах осуществления верхняя поверхность кнопки 1822 управления сжатием имеет переключатель 1802 управления нагревателем, который может перемещаться вперед большим или указательным пальцем оператора, тем самым включая нагревательные светодиоды. Этот переключатель 1802 управления нагревателем может иметь пружинный возвратный элемент, так что, когда он отпускается, или когда большой или указательный палец оператора расслабляется, переключатель 1802 управления нагревателем возвращается в свое нормальное положение «выключено». [00254] In some embodiments, the top surface of the compression control button 1822 has a heater control switch 1802 that can be moved forward by the operator's thumb or index finger, thereby turning on the heater LEDs. This heater control switch 1802 may have a spring return element such that when it is released, or when the operator's thumb or index finger relaxes, the heater control switch 1802 returns to its normal "off" position.

[00255] В некоторых вариантах осуществления устройство 200 для лечения глаза может быть выполнено с возможностью защиты глаза от непреднамеренного воздействия света. Например, внутренняя прокладка 300 для века и экран для глаз могут блокировать свет 211, который светит прямо в глаз во время лечения. В некоторых вариантах осуществления ручной инструмент 1800 может отключать нагрев светодиодов, если действующий стерильный одноразовый компонент 260 не прикреплен к ручному инструменту 1800 или если наружная прокладка 147 для века находится на расстоянии более 6 мм от внутренней прокладки 300 для века. [00255] In some embodiments, the eye treatment device 200 may be configured to protect the eye from unintentional exposure to light. For example, the inner eyelid liner 300 and eye shield may block light 211 that shines directly into the eye during treatment. In some embodiments, the handheld instrument 1800 may turn off the heating of the LEDs if the actual sterile disposable component 260 is not attached to the handheld instrument 1800 or if the outer eyelid pad 147 is more than 6 mm away from the inner eyelid pad 300.

[00256] На фиг. 19 показан пример передней пластины или силовой прокладки, используемой в качестве наружной прокладки 147 для века, которая может быть вставлена между устройством 200 для лечения глаза и веками 12, 14 пациента, например, для обеспечения барьера между ними. В некоторых вариантах осуществления наружная прокладка 147 для века может быть прозрачной наружной прокладкой 147 для века, которая может действовать как окно, через которое энергия может быть доставлена к векам 12, 14. Например, прозрачная наружная прокладка 147 для века может быть изготовлена из любого подходящего материала, такого как стекло, пирекс, кварц, слюда или полимеры, такие как поликарбонат или другие оптически прозрачные материалы, или их комбинаций, для получения требуемых структурных и оптических свойств. В вариантах осуществления наружная прокладка 147 для века может быть приспособлена для прямого контакта с веками 12, 14 пациента. В других вариантах осуществления наружная прокладка 147 для века может быть приспособлена для размещения на малом расстоянии от век 12, 14, например на расстоянии 0,5-12 мм от века во время лечения. Предпочтительно наружная поверхность наружной прокладки 147 для века выполнена гладкой и легкой в очистке. Например, прозрачная наружная прокладка 147 для века может быть выполнена с возможностью относительного перемещения по пути 145 перемещения относительно или модуля 120 преобразователя энергии, или склерального экрана 300, или корпуса 202, чтобы гарантировать, что прозрачную наружную прокладку 147 для века можно прижать к векам 12, 14. Давление прозрачной наружной прокладки 147 для века на веки 12, 14 может служить для минимизации утечки фотонной энергии во время лечения и/или визуализации, а при необходимости и для приложения силы сжатия к векам 12, 14 во время оценки и/или выдавливания мейбомиевых желез. [00256] In FIG. 19 shows an example of a front plate or force pad used as an outer eyelid pad 147 that can be inserted between the eye treatment device 200 and a patient's eyelids 12, 14, for example, to provide a barrier therebetween. In some embodiments, the outer eyelid liner 147 may be a clear outer eyelid liner 147 that can act as a window through which energy can be delivered to the eyelids 12, 14. For example, the clear outer eyelid liner 147 can be made from any suitable material such as glass, pyrex, quartz, mica or polymers such as polycarbonate or other optically transparent materials, or combinations thereof, to obtain the desired structural and optical properties. In embodiments, the outer eyelid pad 147 may be adapted to be in direct contact with the eyelids 12, 14 of a patient. In other embodiments, the outer eyelid pad 147 may be adapted to be placed at a close distance from the eyelids 12, 14, such as 0.5-12 mm from the eyelid during treatment. Preferably, the outer surface of the outer eyelid liner 147 is smooth and easy to clean. For example, the clear outer eyelid liner 147 may be configured to be relatively movable along a movement path 145 relative to either the energy converter module 120 or the scleral shield 300 or the housing 202 to ensure that the clear outer eyelid liner 147 can be pressed against the eyelids 12 14. The pressure of the transparent outer eyelid pad 147 on the eyelids 12, 14 may serve to minimize photon energy leakage during treatment and/or imaging and, if necessary, to apply compressive force to the eyelids 12, 14 during assessment and/or extrusion. meibomian glands.

[00257] На фиг. 19 показан вариант осуществления наружной прокладки 147 для века, которая содержит набор датчиков 310 температуры, расположенных по направлению к наружной поверхности века. В некоторых вариантах осуществления набор датчиков 310 температуры может представлять собой дискретные элементы (такие как термопары, выполненные из очень тонкой проволоки, миниатюрные термисторы и т. д.), встроенные или расположенные во внешней прокладке 147 для века. Дополнительно и/или альтернативно набор датчиков 310 температуры может представлять собой термопары, образованные путем осаждения тонкой пленки или пленок соответствующих металлов на промежуточные слои наружной прокладки 147 для века. В некоторых вариантах осуществления предпочтительными типами материалов для наружной прокладки 147 для века являются мягкие, гибкие, биосовместимые материалы, такие как силикон, полиуретан и различные гидрогели, подобные тем, которые используются в контактных линзах. [00257] In FIG. 19 shows an embodiment of an outer eyelid pad 147 that includes an array of temperature sensors 310 positioned toward the outer surface of the eyelid. In some embodiments, the array of temperature sensors 310 may be discrete elements (such as thermocouples made of very fine wire, miniature thermistors, etc.) built into or located in the outer eyelid pad 147. Additionally and/or alternatively, the array of temperature sensors 310 may be thermocouples formed by depositing a thin film or films of appropriate metals onto the intermediate layers of the outer eyelid pad 147. In some embodiments, the preferred types of materials for the outer eyelid liner 147 are soft, flexible, biocompatible materials such as silicone, polyurethane, and various hydrogels like those used in contact lenses.

[00258] В вариантах осуществления наружная прокладка 147 для века может также содержать множество выпуклостей на поверхности, обращенной к веку, например для создания воздушного пространства для набора датчиков 310 температуры. [00258] In embodiments, the outer eyelid pad 147 may also include a plurality of protuberances on the eyelid-facing surface, for example to create an air space for an array of temperature sensors 310.

[00259] Набор датчиков 310 температуры может быть выполнен с возможностью определения положения устройства 200 для лечения глаза относительно век 12, 14 пациента. Набор датчиков 310 температуры может представлять собой датчики температуры, которые измеряют температуру в помещении перед размещением века в устройстве. Поскольку набор датчиков 310 температуры расположен возле кожи века, набор датчиков 310 температуры будет регистрировать значение, более близкое к температуре тела, и поэтому подтверждать правильное размещение. Если набор датчиков 310 температуры не совпадает, например один датчик показывает комнатную температуру, а другой датчик показывает температуру века, это может быть признаком того, что веко неправильно расположено в устройстве 200 для лечения глаза для лечения. [00259] The array of temperature sensors 310 may be configured to determine the position of the eye treatment device 200 relative to the eyelids 12, 14 of the patient. The set of temperature sensors 310 may be temperature sensors that measure the temperature of the room before the eyelid is placed in the device. Since the temperature sensor array 310 is located near the skin of the eyelid, the temperature sensor array 310 will record a value closer to body temperature and therefore confirm correct placement. If the set of temperature sensors 310 do not match, for example, one sensor indicates room temperature and another sensor indicates eyelid temperature, this may be an indication that the eyelid is not positioned correctly in the eye treatment device 200 for treatment.

[00260] На фиг. 19 показан вариант осуществления передней пластины, или наружной прокладки 147 для века, имеющей датчики 310, предназначенные для измерения температуры века. Когда инфракрасные световые волны попадают на кожу, часть света отражается обратно к датчикам 310 и может нагревать датчики 310. Это может привести к неправильному измерению температуры века. В некоторых вариантах осуществления, чтобы предотвратить нежелательный фотонный нагрев датчиков 310, можно использовать отражающую и/или белую краску для покрытия датчиков 310. [00260] In FIG. 19 shows an embodiment of a front plate or outer eyelid pad 147 having sensors 310 for measuring eyelid temperature. When infrared light waves strike the skin, some of the light is reflected back to the sensors 310 and may heat the sensors 310. This may cause the temperature of the eyelid to be measured incorrectly. In some embodiments, to prevent unwanted photonic heating of the sensors 310, reflective and/or white paint may be used to coat the sensors 310.

[00261] Снова обращаясь к фиг. 19, когда инфракрасные световые волны попадают на кожу, они поглощаются и энергия света преобразовывается в тепло, тем самым нагревая кожу. Как правило, более темные цвета кожи поглощают больше инфракрасного света, чем более светлые цвета кожи, что означает, что более темная кожа нагревается быстрее, поскольку она преобразует больше света в тепло. [00261] Referring again to FIG. 19, when infrared light waves hit the skin, they are absorbed and the light energy is converted into heat, thereby heating the skin. Generally, darker skin colors absorb more infrared light than lighter skin colors, which means darker skin warms up faster as it converts more light into heat.

[00262] Используя эти знания, устройство 200 для лечения глаза может обнаруживать различия в пигментации кожи и соответствующим образом корректировать лечение. Например, устройство 200 для лечения глаза может иметь датчики 310 на передней пластине и неподвижной задней пластине для измерения температуры внутренней поверхности века и температуры наружной поверхности века во время нагревания. Если наружная поверхность века нагревается быстро, это может указывать на более темный цвет кожи, и наоборот, если наружная поверхность кожи нагревается медленно, это может указывать на более светлый цвет кожи. [00262] Using this knowledge, the eye treatment device 200 can detect differences in skin pigmentation and adjust treatment accordingly. For example, the eye treatment device 200 may have sensors 310 on the front plate and the fixed back plate for measuring the temperature of the inner surface of the eyelid and the temperature of the outer surface of the eyelid during heating. If the outer surface of the eyelid heats up quickly, this may indicate a darker skin color, and conversely, if the outer surface of the skin heats up slowly, this may indicate a lighter skin color.

[00263] В некоторых вариантах осуществления, чтобы компенсировать эту разницу в скоростях нагревания для разных уровней пигментации кожи, устройство 200 для лечения глаза может регулировать свет так, чтобы внутренняя и наружная кожа нагревались с одинаковой скоростью. Например, частота света может быть отрегулирована для медленно нагревающейся поверхности, например для увеличения скорости нагревания, так что внутренняя и наружная поверхности века нагреваются с одинаковой скоростью. Если кожа внутренней поверхности века нуждается в дополнительном нагревании, устройство 200 для лечения глаза может включать зеленый свет и выключать инфракрасный свет. В другом варианте осуществления используемый свет может представлять несколько длин волн для регулировки между пластинами и поддержания одинакового нагрева. [00263] In some embodiments, to compensate for this difference in heating rates for different levels of skin pigmentation, the eye treatment device 200 may adjust the light so that the inner and outer skin are heated at the same rate. For example, the frequency of the light can be adjusted for a slowly heating surface, for example to increase the heating rate so that the inner and outer surfaces of the eyelid are heated at the same rate. If the skin on the inner surface of the eyelid needs additional heating, the eye treatment device 200 may turn on the green light and turn off the infrared light. In another embodiment, the light used may be multiple wavelengths to adjust between the plates and maintain uniform heating.

[00264] Некоторые варианты осуществления устройства 200 для лечения глаза могут содержать первый набор датчиков, которые могут быть расположены на поверхности прозрачной наружной прокладки 147 для века и обращены к наружной поверхности века для текущего контроля температуры наружной поверхности века, и второй набор датчиков, который может быть соединен со склеральным экраном 300 на поверхности, обращенной к внутренней поверхности века для текущего контроля температуры поверхности века. Такое размещение может позволять термопарам или термисторам определять температуру наружной и/или внутренней поверхностей века. Например, первый набор датчиков и второй набор датчиков могут быть соединены с устройством 212 управления, и датчики могут быть выполнены с возможностью определения температуры наружной поверхности века и/или внутренней поверхности века и передачи информации о температуре на устройство 212 управления. Текущий контроль температур таких поверхностей может помогать гарантировать, что пациент не испытает значительного дискомфорта или повреждений от использования устройства 200 для лечения глаза. [00264] Some embodiments of the eye treatment device 200 may include a first set of sensors that may be located on the surface of the transparent outer eyelid pad 147 and facing the outer surface of the eyelid to monitor the temperature of the outer surface of the eyelid, and a second set of sensors that may be connected to the scleral screen 300 on the surface facing the inner surface of the eyelid for monitoring the temperature of the eyelid surface. Such placement may allow thermocouples or thermistors to sense the temperature of the outer and/or inner surfaces of the eyelid. For example, the first set of sensors and the second set of sensors may be coupled to the control device 212, and the sensors may be configured to detect the temperature of the outer surface of the eyelid and/or the inner surface of the eyelid and transmit the temperature information to the control device 212. Monitoring the temperatures of such surfaces can help ensure that a patient does not experience significant discomfort or injury from using the eye treatment device 200.

[00265] В некоторых вариантах осуществления первый набор датчиков и второй набор датчиков могут представлять собой датчики безопасности. Первый набор датчиков и второй набор датчиков могут предпочтительно представлять собой бесконтактные датчики, например пироэлектрические датчики (например, IRA-E700ST0 от «Murata»), или термобатареи (например, ST25T0-18 от «Dexter Research, Dexter, Mich.»), или обычные устройства контроля температуры, такие как термопара, термистор, оптоволоконный термодатчик или цифровой датчик температуры (например, «Dallas Semiconductor» DS-18B20). В некоторых вариантах осуществления первый набор датчиков и второй набор датчиков могут представлять собой дискретные элементы (такие как, например, термопары, выполненные из очень тонкой проволоки, или миниатюрные термисторы и т. д.), встроенные в наружную прокладку 147 для века (такие как, например, находящиеся внутри кармана) и/или склеральный экран 300. В некоторых вариантах осуществления первый набор датчиков и второй набор датчиков могут быть образованы путем осаждения тонких пленок соответствующих металлов на поверхностные слои и/или промежуточные слои наружной прокладки 147 для века и/или склерального экрана 300. [00265] In some embodiments, the first set of sensors and the second set of sensors may be security sensors. The first set of sensors and the second set of sensors may preferably be non-contact sensors, such as pyroelectric sensors (eg, IRA-E700ST0 from Murata), or thermopile sensors (eg, ST25T0-18 from Dexter Research, Dexter, Mich.), or conventional temperature monitoring devices such as a thermocouple, thermistor, fiber optic temperature sensor, or digital temperature sensor (for example, Dallas Semiconductor DS-18B20). In some embodiments, the first set of sensors and the second set of sensors may be discrete elements (such as, for example, thermocouples made of very fine wire, or miniature thermistors, etc.) built into the outer eyelid pad 147 (such as , e.g., located within the pocket) and/or scleral shield 300. In some embodiments, the first set of sensors and the second set of sensors may be formed by depositing thin films of appropriate metals onto the surface layers and/or intermediate layers of the outer eyelid liner 147 and/or scleral screen 300.

[00266] В некоторых вариантах осуществления устройство 200 для лечения глаза может содержать схему измерения тока для текущего контроля работы светодиода. Схема измерения тока может представлять собой схему, которая выполнена с возможностью измерения тока, проходящего через схему измерения тока к светодиоду. Например, схема измерения тока может быть выполнена с возможностью обнаружения неисправных состояний, таких как короткое замыкание или разрыв цепи на пути тока, которые могут быть связаны с проблемами подключения и/или проблемами со светодиодом. В таких схемах измерения тока важно не только обнаруживать состояние, но и обеспечивать безопасную работу самой схемы обнаружения. При обнаружении неисправности система может отключать неисправные цепи и/или выключать устройство 200 для лечения глаза. В таких случаях коды ошибок могут отображаться на экране, чтобы предупреждать пользователя или клинического врача о состоянии неисправности. [00266] In some embodiments, the eye treatment device 200 may include current sensing circuitry to monitor the operation of the LED. The current sensing circuit may be a circuit that is configured to measure current passing through the current sensing circuit to the LED. For example, the current sensing circuitry may be configured to detect fault conditions, such as a short circuit or open circuit in the current path, which may be associated with wiring problems and/or problems with the LED. In such current sensing circuits, it is important not only to detect the condition, but also to ensure the safe operation of the detection circuit itself. If a malfunction is detected, the system may shut down the faulty circuits and/or shut down the eye treatment device 200. In such cases, error codes may be displayed on the screen to alert the user or clinician to the fault condition.

[00267] В некоторых вариантах осуществления после того, как температура век 12, 14 достигает целевого диапазона температур, например, температуры лечения, пользователю или клиническому врачу может быть необходимо знать, как долго веко остается в пределах целевого диапазона температур. Например, целевой диапазон температур может находиться между минимальной температурой, необходимой для лечения болезни глаз, и максимальной температурой, выше которой могут возникнуть дискомфорт или термическое повреждение глаза или века. В некоторых таких вариантах осуществления целевой диапазон температур составляет от приблизительно 40 до приблизительно 80 градусов Цельсия. В некоторых вариантах осуществления целевой диапазон температур составляет от 50 до 80 градусов Цельсия. В некоторых вариантах осуществления целевой диапазон температур составляет от 60 до 80 градусов Цельсия. В некоторых вариантах осуществления целевой диапазон температур составляет от 70 до 80 градусов Цельсия. В некоторых вариантах осуществления целевой диапазон температур составляет от 40 до 70 градусов Цельсия. В некоторых вариантах осуществления целевой диапазон температур составляет от 40 до 60 градусов Цельсия. В некоторых вариантах осуществления целевой диапазон температур составляет от 40 до 50 градусов Цельсия. В некоторых вариантах осуществления целевой диапазон температур составляет от 40 до 45 градусов Цельсия. [00267] In some embodiments, after the temperature of the eyelids 12, 14 reaches a target temperature range, such as a treatment temperature, the user or clinician may need to know how long the eyelid remains within the target temperature range. For example, the target temperature range may be between the minimum temperature required to treat an eye disease and the maximum temperature above which discomfort or thermal damage to the eye or eyelid may occur. In some such embodiments, the target temperature range is from about 40 to about 80 degrees Celsius. In some embodiments, the target temperature range is from 50 to 80 degrees Celsius. In some embodiments, the target temperature range is from 60 to 80 degrees Celsius. In some embodiments, the target temperature range is from 70 to 80 degrees Celsius. In some embodiments, the target temperature range is from 40 to 70 degrees Celsius. In some embodiments, the target temperature range is from 40 to 60 degrees Celsius. In some embodiments, the target temperature range is from 40 to 50 degrees Celsius. In some embodiments, the target temperature range is 40 to 45 degrees Celsius.

[00268] Как показано на фиг. 20, устройство 200 для лечения глаза может содержать индикатор времени плавления, выполненный с возможностью отсчета времени нахождения век 12, 14 в целевом диапазоне температур. Время плавления может быть показано на дисплее 244 ручного инструмента 1800. Например, таймер может запускать счетчик, как только температура века достигает минимальной температуры, и может продолжать отсчет до тех пор, пока температура не упадет ниже минимальной температуры. В некоторых вариантах осуществления в таймере может использоваться температура, фактически измеренная в момент измерения, тогда как в других вариантах осуществления в таймере может использоваться предварительно установленный промежуток времени. [00268] As shown in FIG. 20, the eye treatment device 200 may include a melt time indicator configured to count the time the eyelids 12, 14 are within a target temperature range. The melting time may be displayed on the display 244 of the hand tool 1800. For example, a timer may start a counter once the temperature of the eyelid reaches a minimum temperature and may continue to count until the temperature drops below the minimum temperature. In some embodiments, the timer may use the temperature actually measured at the time of measurement, while in other embodiments, the timer may use a preset amount of time.

[00269] На фиг. 20 показан вариант осуществления приборной доски 218 экрана 244 дисплея, приспособленной для отображения состояния устройства 200 для лечения глаза. Например, приборная доска 218 может содержать устройство или средства измерения температуры, выполненные с возможностью измерения различных температур века, например, температур внутренней и/или наружной поверхности, регистратор 214 данных, диктофон 213, батарею, выполненную с возможностью подачи питания на компоненты приборной доски, средства зарядки батареи, устройство управления, печатную схемную плату и/или схему связи между склеральным экраном 300 и преобразователем 205 энергии. [00269] In FIG. 20 shows an embodiment of a dashboard 218 of a display screen 244 adapted to display the status of the eye treatment device 200. For example, the instrument panel 218 may include a temperature measuring device or means configured to measure various eyelid temperatures, such as internal and/or external surface temperatures, a data logger 214, a voice recorder 213, a battery configured to supply power to components of the instrument panel, battery charging means, a control device, a printed circuit board, and/or a communication circuit between the scleral screen 300 and the energy converter 205.

[00270] В некоторых вариантах осуществления устройство 200 для лечения глаза может дополнительно содержать экран 244 дисплея, приспособленный для отображения температур внутренней части века и наружной части века. Например, элемент отображения температур может отображать абсолютные температуры или может отображать относительные температуры в сравнении с максимумом. Например, температуры могут отображаться в формате гистограммы или с помощью одного или нескольких световых сигналов и т.д. [00270] In some embodiments, the eye treatment device 200 may further comprise a display screen 244 adapted to display the temperatures of the inside of the eyelid and the outside of the eyelid. For example, a temperature display element may display absolute temperatures or may display relative temperatures compared to a maximum. For example, temperatures may be displayed in a bar graph format or using one or more light signals, etc.

[00271] В некоторых вариантах осуществления температура внутренней и/или наружной поверхности века во время использования устройства 200 для лечения глаза может измеряться и отображаться клиническому врачу на экране 244 дисплея. Например, клинический врач может подавать на веко тепловую энергию, и когда температура века достигает температуры лечения, клинический врач может прикладывать сжимающее усилие с одновременным визуальным текущим контролем края века с целью оптимизации выдавливания секрета из закупоренных мейбомиевых желез. [00271] In some embodiments, the temperature of the inner and/or outer surface of the eyelid during use of the eye treatment device 200 may be measured and displayed to the clinician on the display screen 244. For example, the clinician can apply thermal energy to the eyelid, and when the temperature of the eyelid reaches the treatment temperature, the clinician can apply a compressive force while visually monitoring the eyelid margin to optimize the expulsion of secretions from obstructed meibomian glands.

[00272] На фиг. 21А и 21В показан другой вариант осуществления устройства 200 для лечения глаза. На фиг. 3A представлен схематический вид сбоку в плане варианта осуществления устройства 200 для лечения глаза, показанного на фиг. 21A, 21B, в котором устройство 200 для лечения глаза находится в рабочем состоянии и передает свет 211 в глазное яблоко 20 и подвергаемую лечению ткань. В некоторых вариантах осуществления для отражения или направления света 211 к поверхности 140 передачи энергии может использоваться подвижный оптический волновод, или кожух 2100, имеющий внутреннюю отражающую поверхность, с помощью которого повышается эффективность нагрева целевой ткани. На фиг. 21А кожух 2100 показан во втянутом положении, а на фиг. 21В кожух 2100 показан в выдвинутом положении. Например, кожух 2100 можно использовать, когда свет 211, излучаемый из модуля 120 преобразователя энергии, содержит часть света 211, первоначально излученную под таким углом, что без коррекции свет 211 не будет достигать поверхности 140 передачи энергии для прохождения к подвергаемой лечению ткани. Подвижный оптический волновод, или кожух 2100, можно использовать для коррекции этого и фокусировки света 211 в направлении к подвергаемой лечению ткани. [00272] In FIG. 21A and 21B show another embodiment of an eye treatment device 200. In fig. 3A is a schematic side plan view of an embodiment of the eye treatment device 200 shown in FIG. 21A, 21B, in which the eye treatment device 200 is in an operative state and transmits light 211 to the eyeball 20 and the tissue being treated. In some embodiments, a movable optical waveguide or housing 2100 having an internal reflective surface may be used to reflect or direct light 211 toward the energy transfer surface 140, thereby increasing the efficiency of heating the target tissue. In fig. 21A the housing 2100 is shown in the retracted position, and in FIG. 21B, housing 2100 is shown in the extended position. For example, the housing 2100 may be used when the light 211 emitted from the energy converter module 120 contains a portion of the light 211 initially emitted at such an angle that, without correction, the light 211 will not reach the energy transfer surface 140 to pass to the tissue being treated. A movable optical waveguide, or housing 2100, can be used to correct this and focus the light 211 towards the tissue being treated.

[00273] В некоторых вариантах осуществления подвижный отражатель, оптический волновод или кожух 2100 может представлять собой скользящий узел, окружающий светодиоды источника тепла и направляющий свет 211 к веку. Например, пользователь или клинический врач может контролировать перемещение кожуха 2100 путем нажатия кнопки 1822 управления сжатием, соединенной с кожухом 2100. В некоторых вариантах осуществления, когда к ручному инструменту 1800 присоединен стерильный одноразовый компонент 260, наружная прокладка 147 для века может автоматически присоединяться к передней части кожуха 2100. Когда клинический врач нажимает кнопку 1822 управления сжатием, кожух 2100 и наружная прокладка 147 для века могут выдвигаться в направлении века. В некоторых вариантах осуществления наружную прокладку 147 для века располагают на поверхности века с целью нагрева века без сжатия. В других вариантах осуществления веко сжимается между наружной прокладкой 147 для века и неподвижной задней пластиной. Например, когда клинический врач нажимает большим или другим пальцем кнопку 1822 управления сжатием, кожух 2100 и наружная прокладка 147 для века выдвигаются к неподвижной задней пластине. Таким образом, количества подаваемого тепла и прикладываемого давления могут находиться под непосредственным контролем клинического врача, который может осуществлять текущий контроль за реакцией желез и комфортом пациента. [00273] In some embodiments, the movable reflector, optical waveguide, or housing 2100 may be a sliding assembly surrounding the heat source LEDs and directing the light 211 toward the eyelid. For example, a user or clinician may control the movement of the housing 2100 by pressing a compression control button 1822 coupled to the housing 2100. In some embodiments, when a sterile disposable component 260 is attached to the hand-held instrument 1800, the outer eyelid pad 147 may be automatically attached to the front portion housing 2100. When the clinician presses the compression control button 1822, the housing 2100 and the outer eyelid pad 147 can be extended in the direction of the eyelid. In some embodiments, the outer eyelid pad 147 is positioned on the surface of the eyelid to heat the eyelid without compressing it. In other embodiments, the eyelid is compressed between the outer eyelid pad 147 and the stationary backplate. For example, when the clinician presses the compression control button 1822 with a thumb or other finger, the housing 2100 and outer eyelid pad 147 are extended toward the stationary backplate. In this way, the amounts of heat supplied and pressure applied can be directly controlled by the clinician, who can monitor glandular response and patient comfort.

[00274] В некоторых вариантах осуществления поверхность внутренней стенки кожуха 2100 может быть гладкой и/или полированной во избежание или для сведения к минимуму рассеяния света 211, когда он испытывает отражение от стенок. Например, стенки могут иметь такую зеркальную поверхность, что отражение света 211 удерживается внутри кожуха 2100 даже тогда, когда свет 211 падает на боковые стенки. В вариантах осуществления зеркальные поверхности на стенках могут быть получены путем осаждения отражающего слоя или слоев с использованием любых известных средств, таких как, например, серебрение, алюминирование или наслоение зеркальной пленки, или зеркальная отделка других типов, для дополнительного увеличения способности кожуха 2100 к проведению света 211. [00274] In some embodiments, the surface of the inner wall of the housing 2100 may be smooth and/or polished to avoid or minimize the scattering of light 211 when it experiences reflection from the walls. For example, the walls may have a mirror surface such that the reflection of light 211 is retained within the housing 2100 even when light 211 strikes the side walls. In embodiments, the mirror surfaces on the walls can be achieved by depositing a reflective layer or layers using any known means, such as, for example, silvering, aluminizing or mirror film lamination, or other types of mirror finishes, to further increase the light conducting ability of the housing 2100 211.

[00275] На фиг. 22 и 23 показан вариант осуществления передней прокладки устройства для лечения глаза. Например, наружная прокладка 147 для века может быть расположена между источником света устройства 200 для лечения глаза и наружной частью века пациента. Наружная прокладка 147 для века может быть выполнена с возможностью вхождения в контакт с кожухом 2100 при выдвижении кожуха 2100 для лечения. Поскольку кожух 2100 может нагреваться во время лечения, наружная прокладка 147 для века может содержать рамку по периметру для вхождения в контакт со стенками кожуха 2100 с целью предотвращения нагрева наружной прокладки 147 для века. [00275] In FIG. 22 and 23 show an embodiment of the front spacer of the eye treatment device. For example, the outer eyelid pad 147 may be positioned between the light source of the eye treatment device 200 and the outer portion of the patient's eyelid. The outer eyelid liner 147 may be configured to come into contact with the housing 2100 when the housing 2100 is pulled out for treatment. Because the housing 2100 may become hot during treatment, the outer eyelid pad 147 may include a frame around its perimeter to engage the walls of the housing 2100 to prevent the outer eyelid pad 147 from heating up.

[00276] В некоторых вариантах осуществления наружная прокладка 147 для века может использоваться для экранирования глаза от тепловой энергии, однако альтернативно она может использоваться для измерения температур. Например, наружная прокладка 147 для века может быть выполнена из материалов, по существу прозрачных для энергии, излучаемой из преобразователя энергии. В качестве конкретного примера, если преобразователь энергии представляет собой источник света, наружная прокладка 147 для века может быть выполнена из прозрачного материала, который не задерживает длину(-ы) волн света, излучаемого преобразователем энергии. [00276] In some embodiments, the outer eyelid pad 147 may be used to shield the eye from thermal energy, but may alternatively be used to measure temperatures. For example, the outer eyelid liner 147 may be made of materials that are substantially transparent to energy emitted from the energy converter. As a specific example, if the energy converter is a light source, the outer eyelid pad 147 may be made of a transparent material that does not block the wavelength(s) of light emitted by the energy converter.

[00277] На фиг. 22 показаны варианты осуществления стерильного одноразового компонента 260. В вариантах осуществления стерильный одноразовый компонент 260 содержит следующие примерные компоненты: внутреннюю прокладку 300 для века, наружную прокладку 147 для века, экран 264 для глаза, силиконовую оболочку 2201, крепежные язычки 2203, направляющую 2204 и кронштейны 2205. [00277] In FIG. 22 illustrates embodiments of a sterile disposable component 260. In embodiments, the sterile disposable component 260 includes the following exemplary components: an inner eyelid liner 300, an outer eyelid liner 147, an eye shield 264, a silicone sheath 2201, fastening tabs 2203, a guide 2204, and brackets. 2205.

[00278] Внутренняя прокладка 300 для века может быть изготовлена из пластмассы, выполненной с возможностью нагрева источником тепла на основе света в ручном инструменте 1800. В вариантах осуществления пластмассовые части могут быть окружены мягкой биологически совместимой силиконовой оболочкой 2201. В вариантах осуществления имеется два датчика 310 температуры, которые расположены во внутренней прокладке 300 для века и выполнены с возможностью измерения температуры внутренней поверхности века. Внутренняя прокладка 300 для века также называется задней пластиной. [00278] The inner eyelid pad 300 may be made of a plastic material configured to be heated by a light-based heat source in the hand tool 1800. In embodiments, the plastic portions may be surrounded by a soft, biocompatible silicone shell 2201. In embodiments, there are two sensors 310 temperatures, which are located in the inner eyelid pad 300 and are configured to measure the temperature of the inner surface of the eyelid. The inner eyelid pad 300 is also called the back plate.

[00279] Наружная прокладка 147 для века может быть выполнена как прозрачная, биологически совместимая силиконовая прокладка, установленная на пластмассовой рамке. В вариантах осуществления пластмассовая рамка в местоположении датчиков 310 температуры имеет минимальную толщину 0,010 дюйма. В некоторых вариантах осуществления наружная прокладка 147 для века во время лечения находится в контакте с пациентом. Если к ручному инструменту 1800 присоединен стерильный одноразовый компонент 260, рамка может присоединяться к кожуху 2100 ручного инструмента 1800. Свет из источника тепла в ручном инструменте 1800 может просвечивать через наружную прокладку 147 для века, нагревая ткань века. В некоторых вариантах осуществления имеется два датчика 310 температуры, которые расположены в наружной прокладке 147 для века и выполнены с возможностью измерения температуры наружной поверхности века. [00279] The outer eyelid liner 147 may be configured as a clear, biocompatible silicone liner mounted on a plastic frame. In embodiments, the plastic frame at the location of the temperature sensors 310 has a minimum thickness of 0.010 inches. In some embodiments, the outer eyelid liner 147 is in contact with the patient during treatment. If a sterile disposable component 260 is attached to the handheld instrument 1800, the frame may be attached to the housing 2100 of the handheld instrument 1800. Light from a heat source in the handheld instrument 1800 may shine through the outer eyelid pad 147, heating the eyelid tissue. In some embodiments, there are two temperature sensors 310 that are located in the outer eyelid pad 147 and are configured to measure the temperature of the outer surface of the eyelid.

[00280] Экран 264 для глаза может блокировать свет, излучаемый из ручного инструмента 1800, и таким образом защищать части глаза, не предназначенные для нагрева. В вариантах осуществления внутренняя прокладка 300 для века и части экрана 264 для глаза могут быть покрыты мягким биологически совместимым силиконовым компонентом или силиконовой оболочкой 2201. Например, в местоположении датчиков 310 температуры силиконовая оболочка 2210 может иметь минимальную толщину 0,010 дюйма. В некоторых вариантах осуществления силиконовая оболочка 2201 во время лечения находится в контакте с пациентом. [00280] The eye shield 264 may block light emitted from the hand tool 1800 and thus protect parts of the eye not intended to be heated. In embodiments, the inner eyelid pad 300 and portions of the eye shield 264 may be coated with a soft biocompatible silicone component or silicone shell 2201. For example, at the location of the temperature sensors 310, the silicone shell 2210 may have a minimum thickness of 0.010 inches. In some embodiments, the silicone sheath 2201 is in contact with the patient during treatment.

[00281] Стерильный одноразовый компонент 260 может быть прикреплен к ручному инструменту 1800 крепежными язычками 2203. Например, когда стерильный одноразовый компонент 260 присоединен к ручному инструменту 1800, подпружиненные защелки могут стыковаться с отверстиями в каждом из крепежных язычков 2203, таким образом прикрепляя стерильный одноразовый компонент 260 к ручному инструменту 1800. Направляющая 2204 может содействовать выравниванию стерильного одноразового компонента 260 относительно ручного инструмента 1800. Кронштейны 2205 могут соединять внутреннюю прокладку 300 для века с основной частью стерильного одноразового компонента 260. Эти кронштейны 2205 служат в качестве направляющей для введения внутренней прокладки 300 для века за веко на надлежащую глубину. [00281] The sterile disposable component 260 may be attached to the hand-held instrument 1800 by fastening tabs 2203. For example, when the sterile disposable component 260 is attached to the hand-held instrument 1800, spring-loaded latches may engage the holes in each of the fastening tabs 2203, thereby securing the sterile disposable component 260 to the hand-held instrument 1800. A guide 2204 may assist in the alignment of the sterile disposable component 260 relative to the hand-held instrument 1800. Brackets 2205 may connect the inner eyelid liner 300 to the body of the sterile disposable component 260. These brackets 2205 serve as a guide for insertion of the inner eyelid liner 300. century by eyelid to the proper depth.

[00282] На фиг. 23 представлен покомпонентный вид стерильного одноразового компонента 260, на котором показан вариант осуществления датчиков 310 температуры на наружной прокладке 147 для века. Любая из прокладок, показанных на фиг. 23, может быть образована из нескольких деталей или может представлять собой одну монолитную деталь. В вариантах осуществления датчики 310 температуры могут быть выполнены с возможностью измерения температуры наружной части века. При использовании свет 211 может падать на заднюю часть набора датчиков 310 температуры. Если это происходит, датчики 310 температуры могут считывать температуру света, а не температуру века. Во избежание этого, задняя часть датчиков 310 температуры может быть покрыта материалом, который не нагревается. Например, задняя часть датчиков 310 температуры может быть покрыта отражающим покрытием, чтобы отражать свет 211 в сторону от датчиков 310 температуры без нагрева задней части датчиков 310 температуры. [00282] In FIG. 23 is an exploded view of the sterile disposable component 260, showing an embodiment of temperature sensors 310 on the outer eyelid pad 147. Any of the gaskets shown in FIG. 23 may be formed from several parts or may be one monolithic part. In embodiments, temperature sensors 310 may be configured to measure the temperature of the outer portion of the eyelid. In use, light 211 may fall on the rear of the temperature sensor array 310. If this occurs, the temperature sensors 310 may read the temperature of the light rather than the temperature of the eyelid. To avoid this, the back of the temperature sensors 310 may be coated with a material that does not heat up. For example, the back of the temperature sensors 310 may be coated with a reflective coating to reflect light 211 away from the temperature sensors 310 without heating the back of the temperature sensors 310.

[00283] На фиг. 23 показан вариант осуществления стерильного одноразового компонента 260, выполненного с возможностью разового использования и не предназначенного для повторного использования. В некоторых вариантах осуществления для отслеживания количества применений стерильный одноразовый компонент 260 может содержать встроенное запоминающее устройство, содержащее пользовательские параметры лечения. Например, пользовательские параметры лечения могут содержать доступное количество применений, как, например, для стерильного одноразового компонента 260 разового использования, и передавать эту информацию в устройство 200 для лечения глаза. Когда устройство 200 для лечения глаза используется для лечения, не все пользовательские параметры лечения позволят использовать его снова. В некоторых вариантах осуществления при присоединении стерильного одноразового компонента 260 информация об использовании также может отображаться на дисплее 244, для того чтобы пользователь знал, что стерильный одноразовый компонент 260 можно применять только для разового использования. [00283] In FIG. 23 shows an embodiment of a sterile disposable component 260 that is designed for single use and is not intended for reuse. In some embodiments, to track the number of uses, the sterile disposable component 260 may include an embedded memory containing user treatment parameters. For example, user treatment parameters may contain the available number of uses, such as for a sterile disposable single use component 260, and communicate this information to the eye treatment device 200. When the eye treatment device 200 is used for treatment, not all user treatment parameters will allow it to be used again. In some embodiments, upon attachment of the sterile single-use component 260, usage information may also be displayed on the display 244 to let the user know that the sterile single-use component 260 can only be used for a single use.

[00284] В некоторых вариантах осуществления стерильный одноразовый компонент 260 может быть рассчитан на многоразовое использование. Например, встроенное запоминающее устройство может отслеживать количество применений, и при достижении максимального количества применений устройство 200 для лечения глаза не допустит лечение этим стерильным одноразовым компонентом 260. При присоединении стерильного одноразового компонента 260 эта информация может отображаться на дисплее 244 , показывая количество оставшихся доступных применений. Когда устройство 200 для лечения глаза используется для лечения до максимального количества допустимых применений, не все пользовательские параметры лечения позволят использовать его снова. [00284] In some embodiments, the sterile disposable component 260 may be designed for reusable use. For example, the on-chip memory may track the number of uses, and when the maximum number of uses is reached, the eye treatment device 200 will not allow treatment with that sterile disposable component 260. When the sterile disposable component 260 is attached, this information may be displayed on the display 244, indicating the number of remaining uses available. When the eye treatment device 200 is used for treatment to the maximum number of allowed uses, not all user treatment parameters will allow it to be used again.

[00285] На фиг. 23 и 24 показан вариант осуществления неподвижной задней пластины, или неподвижной внутренней прокладки 300 для века. В вариантах осуществления неподвижная внутренняя прокладка 300 для века может быть приспособлена для расположения между веками 12, 14 и глазным яблоком 20 так, чтобы покрывать чувствительную структуру системы 10 глаза и предотвращать контакт света 211 с глазным яблоком 20. Например, неподвижная внутренняя прокладка 300 для века может содержать отражающую поверхность, выполненную с возможностью приема света 211 и отражения света 211 в направлении к внутренней поверхности века для ее нагрева. [00285] In FIG. 23 and 24 show an embodiment of a fixed backplate, or fixed inner eyelid liner 300. In embodiments, the fixed inner eyelid pad 300 may be adapted to be positioned between the eyelids 12, 14 and the eyeball 20 so as to cover the sensitive structure of the eye system 10 and prevent light 211 from contacting the eyeball 20. For example, the fixed inner eyelid pad 300 may comprise a reflective surface configured to receive light 211 and reflect light 211 toward the inner surface of the eyelid to heat it.

[00286] В некоторых вариантах осуществления неподвижная внутренняя прокладка 300 для века может содержать набор датчиков 310 температуры, расположенных в направлении к внутренней части века. Например, этот набор датчиков 310 температуры может представлять собой дискретные элементы (такие как термопары, выполненные из очень тонкой проволоки, миниатюрные терморезисторы и т.д.), встроенные или расположенные в неподвижной внутренней прокладке 300 для века. В некоторых вариантах осуществления набор датчиков 310 температуры может представлять собой термопары, образованные путем осаждения тонких пленок соответствующих металлов на промежуточные слои неподвижной внутренней прокладки 300 для века. [00286] In some embodiments, the fixed inner eyelid pad 300 may include a set of temperature sensors 310 positioned toward the inside of the eyelid. For example, this array of temperature sensors 310 may be discrete elements (such as thermocouples made of very fine wire, miniature thermistors, etc.) built into or located in the fixed inner eyelid pad 300. In some embodiments, the array of temperature sensors 310 may be thermocouples formed by depositing thin films of appropriate metals onto the interlayers of the stationary eyelid liner 300.

[00287] В вариантах осуществления для предотвращения нагрева неподвижной внутренней прокладкой 300 для века набора датчиков 310 температуры энергопоглощающая поверхность или отражающая поверхность неподвижной внутренней прокладки для 300 века может содержать окошки для датчиков, для того чтобы датчики 310 температуры из набора проходили насквозь и таким образом вступали в прямой контакт с внутренней поверхностью века. [00287] In embodiments, to prevent the fixed eyelid liner 300 from heating the set of temperature sensors 310, the energy-absorbing surface or reflective surface of the fixed eyelid liner 300 may include sensor windows so that the temperature sensors 310 of the set pass through and thereby enter in direct contact with the inner surface of the eyelid.

[00288] На фиг. 19 и 24 представлены виды, на которых показаны подробности вариантов осуществления передней пластины, или наружной прокладки 147 для века, и задней пластины, или внутренней прокладки 300 для века. В некоторых вариантах осуществления наборы датчиков 310 температуры представляют собой дублирующие датчики, которые размещают рядом друг с другом с целью дублирования и повышения точности. Каждый набор датчиков 310 температуры может предоставлять первичный и вторичный результаты измерения температуры века. Вторичный результат измерения температуры века может использоваться в сочетании с первичными результатами измерения температуры для повышения точности и надежности определения температуры. [00288] In FIG. 19 and 24 are views showing details of embodiments of the front plate or outer eyelid pad 147 and the back plate or inner eyelid pad 300. In some embodiments, temperature sensor arrays 310 are redundant sensors that are placed adjacent to each other for the purpose of redundancy and increased accuracy. Each set of temperature sensors 310 may provide primary and secondary eyelid temperature measurements. The secondary eyelid temperature result can be used in combination with the primary temperature result to improve the accuracy and reliability of temperature determination.

[00289] В некоторых вариантах осуществления получение двух или более показаний температуры века повышает избыточность. Один аспект настоящего изобретения включает этап сравнения первичного показания температуры века и вторичного показания температуры века с целью определения того, являются ли работоспособными оба датчика из набора датчиков 310 температуры. [00289] In some embodiments, obtaining two or more eyelid temperature readings increases redundancy. One aspect of the present invention includes the step of comparing a primary eyelid temperature reading and a secondary eyelid temperature reading to determine whether both sensors of the set of temperature sensors 310 are operational.

[00290] Набор датчиков 310 температуры может подвергаться механическим и/или термическим напряжениям, и один из наборов датчиков 310 температуры может прекратить работу. Наличие дублирующего набора датчиков 310 температуры может позволить системе использовать второй набор датчиков 310 температуры для предоставления информации о температуре, необходимой для завершения процедуры. [00290] The set of temperature sensors 310 may be subject to mechanical and/or thermal stress, and one of the sets of temperature sensors 310 may stop operating. Having a redundant set of temperature sensors 310 may allow the system to use a second set of temperature sensors 310 to provide the temperature information needed to complete the procedure.

[00291] В некоторых вариантах осуществления наборы датчиков 310 температуры внутренней части и наружной части века могут представлять собой дублирующиеся датчики 310 температуры. Например, каждый набор датчиков 310 температуры может измерять температуру внутренней поверхности века или температуру наружной поверхности века. Оба набора датчиков 310 температуры должны показывать одну температуру. Если показания температуры, предоставляемые наборами датчиков 310 температуры, не совпадают, это может означать, что лечение расположено на веке неправильно, или что возникла проблема, и систему следует выключить. [00291] In some embodiments, the sets of inner and outer eyelid temperature sensors 310 may be redundant temperature sensors 310. For example, each set of temperature sensors 310 may measure the temperature of the inner surface of the eyelid or the temperature of the outer surface of the eyelid. Both sets of temperature sensors 310 should indicate the same temperature. If the temperature readings provided by the temperature sensor sets 310 do not match, it may indicate that the treatment is not positioned correctly on the eyelid, or that there is a problem and the system should be turned off.

[00292] На фиг. 23 и 24 показан вариант осуществления стерильного одноразового компонента 260, содержащего идентификационный (ID) чип. ID-чип может обеспечивать защиту от подделок одноразовых частей путем обеспечения использования при лечении подлинных стерильных одноразовых компонентов 260. ID-чип может также обеспечивать автоматизированное слежение за лечением путем слежения за использованием стерильных одноразовых компонентов 260 и строгого следования предписаниям в отношении максимального количества применений одноразовых частей. Дополнительно ID-чип может способствовать возможности визуального контроля запасов путем управления снабжением и запасами в реальном времени для непосредственного приобретения и отгрузки.[00292] In FIG. 23 and 24 show an embodiment of a sterile disposable component 260 containing an identification (ID) chip. The ID chip may provide counterfeit protection for disposable parts by ensuring that genuine sterile disposable parts 260 are used in treatment. The ID chip may also provide automated treatment tracking by monitoring the use of sterile disposable parts 260 and strictly following guidelines regarding the maximum number of uses of the disposable parts. parts. Additionally, the ID chip can facilitate visual inventory control through real-time supply and inventory management for direct purchasing and shipping.

[00293] В некоторых вариантах осуществления в устройстве 200 для лечения глаза, с целью определения того, является ли стерильный одноразовый компонент 260 поддельным, могут использоваться способы и/или протоколы аутентификации. Например, устройство 200 для лечения глаза может содержать протокол связи, выполненный с возможностью обеспечения возможности проведения отличий между одобренным стерильным одноразовым компонентом 260 и неодобренной копией. Протокол связи может быть дополнительно выполнен с возможностью обеспечения возможности отказа устройства 200 для лечения глаза от стерильного одноразового компонента 260, если определено, что он представляет собой неодобренную копию. В некоторых вариантах осуществления устройство 200 для лечения глаза также может содержать механизм для ограничения использования и/или подсчета количества применений стерильного одноразового компонента 260 и обеспечения возможности отказа устройства 200 для лечения глаза от стерильного одноразового компонента 260, если для него превышено максимально допустимое использование и/или количество применений. [00293] In some embodiments, ocular treatment device 200 may employ authentication methods and/or protocols to determine whether the sterile disposable component 260 is counterfeit. For example, the eye treatment device 200 may include a communication protocol configured to be capable of distinguishing between an approved sterile disposable component 260 and an unapproved copy. The communication protocol may be further configured to allow the eye treatment device 200 to reject the sterile disposable component 260 if it is determined to be an unapproved copy. In some embodiments, the eye treatment device 200 may also include a mechanism for limiting the use and/or counting the number of uses of the sterile disposable component 260 and allowing the eye treatment device 200 to reject the sterile disposable component 260 if it exceeds its maximum allowable use and/or or number of uses.

[00294] В некоторых вариантах осуществления стерильный одноразовый компонент 260 содержит встроенное запоминающее устройство, содержащее пользовательские параметры лечения, специфичные для типа стерильного одноразового компонента 260, который используется. Например, когда стерильный одноразовый компонент 260 присоединяют к устройству 200 для лечения глаза, устройство 200 для лечения глаза может считывать параметры лечения и регулировать лечение для согласования с пользовательскими параметрами. [00294] In some embodiments, the sterile disposable component 260 includes an embedded memory containing user treatment parameters specific to the type of sterile disposable component 260 that is being used. For example, when the sterile disposable component 260 is attached to the eye treatment device 200, the eye treatment device 200 can read treatment parameters and adjust the treatment to match user parameters.

[00295] В некоторых вариантах осуществления во время лечения глаза используют разные стерильные одноразовые компоненты 260. Поэтому пользовательские параметры лечения могут включать установки света для каждого из разных стерильных одноразовых компонентов 260. Например, некоторые из стерильных одноразовых компонентов 260 могут иметь разные конструкции задней пластины и поэтому могут требовать разных установок лечения. В некоторых вариантах осуществления задняя пластина может содержать энергопоглощающую часть, которая нагревается, а затем передает тепло во внутреннюю часть века. В других вариантах осуществления задняя пластина может иметь отражающую поверхность, которая отражает световую энергию обратно на веко для нагрева. [00295] In some embodiments, the eyes use different sterile disposable components 260 during treatment. Therefore, user treatment parameters may include light settings for each of the different sterile disposable components 260. For example, some of the sterile disposable components 260 may have different back plate designs and therefore, they may require different treatment settings. In some embodiments, the backplate may include an energy-absorbing portion that heats up and then transfers heat to the inside of the eyelid. In other embodiments, the backplate may have a reflective surface that reflects light energy back onto the eyelid for heating.

[00296] В некоторых вариантах осуществления стерильный одноразовый компонент 260 можно использовать для получения изображений века, и пользовательские параметры могут включать элемент отключения света, предназначенный для того, чтобы гарантировать, что освещение светом отсутствует. [00296] In some embodiments, the sterile disposable component 260 may be used to acquire images of the eyelid, and user parameters may include a light-off feature to ensure that no light is illuminated.

[00297] В некоторых вариантах осуществления стерильный одноразовый компонент 260 можно использовать как для лечения, так и для видеозаписи. Например, параметр лечения может содержать чередование записи видеоклипов с нагревом на основе излучения, для того чтобы видеозапись не размывалась. [00297] In some embodiments, the sterile disposable component 260 can be used for both treatment and video recording. For example, a treatment setting may include alternating recording of video clips with radiation-based heating so that the video does not blur.

[00298] На фиг. 19, 22, 23 и 24 представлены варианты осуществления, в которых показан стерильный одноразовый компонент 260, представляющий собой стерильный компонент разового использования, который содержит все части, предназначенные для контакта с веком пациента. Перед использованием и присоединением к ручному инструменту 1800 стерильный одноразовый компонент 260 извлекают из упаковки. [00298] In FIG. 19, 22, 23 and 24 are embodiments showing a sterile disposable component 260, which is a sterile single-use component that contains all parts intended to contact the patient's eyelid. Before use and attachment to the hand-held instrument 1800, the sterile disposable component 260 is removed from its packaging.

[00299] Ручной инструмент 1800 представляет собой ручное устройство 200 для лечения глаза, позволяющее СОФ осматривать, нагревать и сжимать часть века, находящуюся в контакте со стерильным одноразовым компонентом 260. Источником нагрева является оптическое излучение, генерируемое желто-зелеными и инфракрасными светодиодами в ручном инструменте 1800. [00299] The hand-held instrument 1800 is a hand-held eye treatment device 200 that allows the SOF to examine, heat, and compress the portion of the eyelid in contact with the sterile disposable component 260. The heating source is optical radiation generated by the yellow-green and infrared LEDs in the hand-held instrument. 1800.

[00300] В некоторых вариантах осуществления питание для приведения в действие ручного инструмента 1800 обеспечивает внутренняя перезаряжаемая литий-ионная батарея. Например, батарею можно перезаряжать путем размещения ручного инструмента 1800 в отдельном зарядном штативе, получающем питание от сети переменного тока. [00300] In some embodiments, power to operate the hand tool 1800 is provided by an internal rechargeable lithium-ion battery. For example, the battery can be recharged by placing the hand tool 1800 in a separate charging rack that receives AC power.

[00301] Основные части стерильного одноразового компонента 260 показаны на фиг. 22. В некоторых вариантах осуществления стерильный одноразовый компонент 260 может иметь приблизительные размеры 1,5 дюйма (длина) x 1 дюйм (ширина) x 1 дюйм (высота). Стерильный одноразовый компонент 260 может иметь разные размеры без выхода за пределы объема настоящего изобретения. В вариантах осуществления стерильный одноразовый компонент 260 может представлять собой стерильный компонент, используемый для лечения одного пациента, а затем утилизируемый. Например, во время лечения внутреннюю прокладку 300 для века можно ввести за веко в верхний свод конъюнктивы, и она может быть предназначена для вхождения в контакт с внутренней слизистой оболочкой (т.е. конъюнктивой века). Наружная прокладка 147 для века, противостоящая внутренней прокладке 300 для века, может входить в контакт с кожей на наружной поверхности века. Свет 211, генерируемый ручным инструментом 1800, может пропускаться через прозрачную наружную прокладку 147 для века, чтобы нагревать ткань века. Наружную прокладку 147 для века можно использовать для приложения давления к веку путем перемещения в направлении к внутренней прокладке 300 для века посредством механизма в ручном инструменте 1800. Датчики 310 температуры в наружной прокладке 147 для века и внутренней прокладке 300 для века могут осуществлять текущий контроль температуры века во время лечения. [00301] The main parts of the sterile disposable component 260 are shown in FIG. 22. In some embodiments, the sterile disposable component 260 may have approximately dimensions of 1.5 inches (length) x 1 inch (width) x 1 inch (height). The sterile disposable component 260 may have different sizes without departing from the scope of the present invention. In embodiments, the sterile disposable component 260 may be a sterile component used to treat a single patient and then discarded. For example, during treatment, the inner eyelid pad 300 may be inserted behind the eyelid into the superior fornix of the conjunctiva and may be designed to come into contact with the inner mucosa (ie, the conjunctiva of the eyelid). An outer eyelid liner 147 opposed to an inner eyelid liner 300 may be in contact with the skin on the outer surface of the eyelid. Light 211 generated by hand tool 1800 may be passed through the transparent outer eyelid pad 147 to heat the eyelid tissue. The outer eyelid pad 147 can be used to apply pressure to the eyelid by moving toward the inner eyelid pad 300 through a mechanism in the hand tool 1800. Temperature sensors 310 in the outer eyelid pad 147 and the inner eyelid pad 300 can monitor the temperature of the eyelid. during treatment.

[00302] Вариант осуществления стерильного одноразового компонента 260, показанный на фиг. 19, 23 и 24, может дополнительно содержать переднюю и/или заднюю выделяющую лекарственное средство прокладку, выполненную с возможностью вхождения в контакт с веком и переноса лекарственного средства в наружную и/или внутреннюю поверхность века. Лекарственные средства могут использоваться для лечения множества болезней. Например, выделяющие лекарственное средство прокладки могут содержать одно или более из следующего: анестетик, например, для блокирования нервов в веке от ощущения боли или недомогания во время лечения; антибиотик, например, для лечения блефарита, ослабления воспаления или более быстрого уменьшения симптомов; и/или стероид, например, для лечения воспалительных заболеваний кожи, в том числе атопического дерматита, псориаза, стеатоза, контактного дерматита и т.п. Существуют терапевтические лекарственные средства, которые не нуждаются в дополнительном содействии для проникновения через кожу века, таком как, например, электрофорез. [00302] The embodiment of the sterile disposable component 260 shown in FIG. 19, 23 and 24 may further comprise a front and/or rear drug-releasing pad configured to contact the eyelid and transfer the drug to the outer and/or inner surface of the eyelid. Medicines can be used to treat a variety of diseases. For example, the drug-releasing pads may contain one or more of the following: an anesthetic, for example, to block nerves in the eyelid from feeling pain or discomfort during treatment; an antibiotic, for example to treat blepharitis, reduce inflammation or reduce symptoms more quickly; and/or a steroid, for example, for the treatment of inflammatory skin diseases, including atopic dermatitis, psoriasis, steatosis, contact dermatitis, and the like. There are therapeutic drugs that do not require additional assistance to penetrate the skin of the eyelid, such as, for example, electrophoresis.

[00303] Электрофорез представляет собой способ неинвазивной чрескожной доставки лекарственных средств в кожу века на основе переноса заряженных молекул с использованием электрического тока низкой интенсивности. В некоторых вариантах осуществления устройство 200 для лечения глаза может доставлять лекарственные средства путем инфузии лекарственного средства в веко при помощи электрофореза. Например, одноразовые прокладки могут содержать лекарственное средство, и при инфузии лекарственного средства посредством электрофореза для стимуляции прохождения несущих лекарственное средство ионов через веко может использоваться слабый электрический ток. Электрический ток может подаваться стерильным одноразовым компонентом 260 или ручным инструментом 1800. В некоторых случаях для лечения век у пациентов, боящихся боли, может потребоваться местная анестезия. В этих случаях в веко с использованием инфузии лекарственных средств при помощи электрофореза может доставляться лидокаин. [00303] Electrophoresis is a method for non-invasive transdermal delivery of drugs to the skin of the eyelid based on the transfer of charged molecules using low-intensity electrical current. In some embodiments, the ocular treatment device 200 may deliver drugs by infusing the drug into the eyelid using electrophoresis. For example, disposable pads may contain a drug, and when infusing the drug by electrophoresis, a weak electrical current may be used to stimulate the passage of drug-carrying ions through the eyelid. The electrical current can be delivered by a sterile disposable component 260 or a hand-held instrument 1800. In some cases, local anesthesia may be required to treat the eyelids in patients fearful of pain. In these cases, lidocaine can be delivered to the eyelid using a drug infusion using electrophoresis.

[00304] В некоторых вариантах осуществления устройство 200 для лечения глаза может быть выполнено с возможностью лечения гордеолума и/или халазиона. Халазионы и гордеолумы (ячмени) представляют собой внезапно начинающиеся локализованные опухоли века. Халазион вызывается неинфекционной окклюзией мейбомиевых желез, тогда как гордеолум обычно вызывается инфекцией. Обе болезни первоначально вызывают гиперемию и отек века, опухание и боль. [00304] In some embodiments, the eye treatment device 200 may be configured to treat a hordeolum and/or a chalazion. Chalazions and hordeolums (styes) are sudden onset localized tumors of the eyelid. Chalazion is caused by non-infectious occlusion of the meibomian glands, whereas hordeolum is usually caused by infection. Both diseases initially cause eyelid hyperemia and swelling, swelling and pain.

[00305] Для лечения гордеолума внутренняя прокладка 300 для века и/или наружная прокладка 147 для века могут содержать элементы для сосредоточения давления на ячмене или прыще с целью сжатия века и дренирования гордеолума. Для лечения халазиона внутренняя прокладка 300 для века и/или наружная прокладка 147 для века может содержать элементы для сосредоточения давления на окклюзированной мейбомиевой железе для открытия железы. [00305] To treat a hordeolum, the inner eyelid liner 300 and/or the outer eyelid liner 147 may include elements for focusing pressure on the stye or pimple to compress the eyelid and drain the hordeolum. To treat a chalazion, the inner eyelid liner 300 and/or the outer eyelid liner 147 may include elements to focus pressure on the occluded meibomian gland to open the gland.

[00306] В некоторых вариантах осуществления устройство 200 для лечения глаза может содержать встроенную камеру в качестве средств 160 визуализации. Например, встроенная камера или встроенные средства 160 визуализации могут позволять пользователю определять, как развивается лечение, перед, во время или после лечения. В некоторых вариантах осуществления встроенные средства 160 визуализации могут содержать неподвижную оптику, адаптивную оптику и/или активную оптику для наблюдения разных областей века, в том числе передней поверхности, задней поверхности и края века. Например, адаптивная и активная оптика может быть выполнена с возможностью фокусировки и/или изменения масштаба изображения или целевой области. При осмотре краев век встроенные средства 160 визуализации могут наблюдать за выдавливанием желез. При осмотре задней части века с помощью света, освещающего переднюю часть века, встроенные средства 160 визуализации могут осматривать внутреннюю структуру желез века. [00306] In some embodiments, the eye treatment device 200 may include an integrated camera as imaging means 160. For example, the built-in camera or built-in visualization 160 may allow the user to determine how treatment is progressing before, during, or after treatment. In some embodiments, the integrated imaging tools 160 may include fixed optics, adaptive optics, and/or active optics for viewing different areas of the eyelid, including the anterior surface, posterior surface, and lid margin. For example, adaptive and active optics may be configured to focus and/or zoom on an image or target area. When viewing the eyelid margins, the built-in imaging tools 160 can observe gland extrusion. By viewing the back of the eyelid using a light illuminating the front of the eyelid, the built-in imaging tools 160 can view the internal structure of the eyelid glands.

[00307] В некоторых вариантах осуществления встроенные средства 160 визуализации могут предоставлять видеозапись и/или неподвижные изображения века. Встроенные средства 160 визуализации могут быть дополнительно соединены с электроникой, например, для записи и/или передачи изображений во внешнее устройство. В некоторых вариантах осуществления эту электронику могут содержать встроенные средства 160 визуализации. В некоторых вариантах осуществления встроенные средства 160 визуализации могут быть соединены с устройством управления устройства, при этом устройство управления выполнено с возможностью хранения и/или передачи неподвижных изображений и/или видеозаписей. [00307] In some embodiments, embedded renderers 160 may provide video and/or still images of the eyelid. The built-in rendering facilities 160 may be further coupled to electronics, for example, to record and/or transmit images to an external device. In some embodiments, these electronics may include built-in imaging tools 160. In some embodiments, the embedded rendering means 160 may be coupled to a control device of the device, wherein the control device is configured to store and/or transmit still images and/or video recordings.

[00308] Веко млекопитающих является искривленным, но эта кривизна не наносит серьезного вреда прямому визуальному наблюдению путем просмотра вследствие естественной способности глаза к аккомодации кривизны (рефокусировке). Однако при использовании фотокамеры, кривизна поля вызывает ошибку расфокусировки, которая может являться значительной. Кривизну поля можно исправить путем размещения непосредственно перед конечным фокусом одной тонкой линзы. При надлежащем выборе параметров тонкая линза сглаживает поле, в то же время, вызывая очень небольшие аберрации. В некоторых вариантах осуществления для сглаживания искривленного изображения можно использовать сглаживатель поля. Например, сглаживатель поля может обеспечивать больший фокус на всем поле. [00308] The mammalian eyelid is curved, but this curvature does not seriously impair direct visual observation by viewing due to the natural ability of the eye to accommodate curvature (refocus). However, when using a camera, field curvature causes defocus error, which can be significant. Field curvature can be corrected by placing a single thin lens directly in front of the final focus. With proper selection of parameters, the thin lens smoothes the field while causing very little aberration. In some embodiments, a field smoother may be used to smooth out a curved image. For example, a field smoother can provide greater focus across the entire field.

[00309] В некоторых вариантах осуществления устройство 200 для лечения глаза может быть выполнено с возможностью содержания встроенного видеоэкрана. В некоторых вариантах осуществления видеозапись может быть записана в запоминающее устройство в устройстве, или видеозапись может записываться на переносной носитель, такой как microSD. После завершения процедуры переносной носитель можно извлечь и заменить пустым носителем для следующей процедуры. [00309] In some embodiments, the eye treatment device 200 may be configured to contain an integrated video screen. In some embodiments, the video recording may be recorded to a storage device in the device, or the video recording may be recorded to a portable storage medium such as a microSD. Once the procedure is complete, the portable media can be removed and replaced with blank media for the next procedure.

[00310] Когда встроенные средства 160 визуализации осуществляют съемку видео во время лечения, свет 211, используемый для нагрева, может размывать снимаемые видео или изображения. Одним решением является чередование видеозаписи и лечения на основе излучения. На фиг. 25 показана пульсация источника излучения и встроенных средств 160 визуализации: например когда выключается излучение, включается камера, а когда поступает излучение, камера выключается. Это может обеспечивать возможность съемки без искажения из-за света 211. [00310] When the built-in renderers 160 capture video during treatment, the light 211 used for heating may blur the captured videos or images. One solution is to alternate between video recording and radiation-based treatment. In fig. 25 shows the pulsation of the radiation source and the built-in imaging means 160: for example, when the radiation is turned off, the camera turns on, and when the radiation arrives, the camera turns off. This may enable shooting without distortion due to light 211.

[00311] В некоторых вариантах осуществления устройство 200 для лечения глаза может содержать специальную фотографическую одноразовую часть, например, для съемки фотографий века перед лечением и после него. Например, фотографическая одноразовая часть может быть аналогична стерильному одноразовому компоненту 260, но в ней вместо неподвижной задней пластины 300 для размещения века в правильном положении может использоваться разделитель. Специальная фотографическая одноразовая часть не содержит заднюю пластину 300, поскольку излучение 211 не включено и не светит в направлении глаза. При использовании фотографическая одноразовая часть первоначально может использоваться для фотографирования перед лечением. Фотографическую одноразовую часть затем можно заменить стерильным одноразовым компонентом 260. После завершения лечения стерильный одноразовый компонент 260 можно извлечь и заменить фотографической одноразовой частью. [00311] In some embodiments, the eye treatment device 200 may include a dedicated photographic disposable portion, for example, for taking pre- and post-treatment photographs of the eyelid. For example, the photographic disposable portion may be similar to the sterile disposable component 260, but may use a spacer instead of a fixed backplate 300 to position the eyelid in the correct position. The special photographic disposable part does not include a back plate 300 because the radiation 211 is not turned on and does not shine in the direction of the eye. When used, the photographic disposable part can initially be used for pre-treatment photography. The photographic disposable portion can then be replaced with a sterile disposable component 260. Once treatment is complete, the sterile disposable component 260 can be removed and replaced with the photographic disposable portion.

[00312] В некоторых вариантах осуществления фотографическая одноразовая часть может содержать запоминающее устройство, содержащее параметры для модификации установок камеры в соответствии с требованиями пользователя. Например, фотографическая одноразовая часть может быть выполнена с возможностью контроля используемого излучения в зависимости от настроек фотографирования. Например, одна из установок может направлять устройство 200 для лечения глаза для освещения века белым светом с целью визуализации, тогда как другая установка может включать использование инфракрасного света для получения фотографий. [00312] In some embodiments, the photographic disposable portion may include a memory containing parameters for modifying camera settings according to user requirements. For example, the photographic disposable part may be configured to control the radiation used depending on the photography settings. For example, one setup may direct the eye treatment device 200 to illuminate the eyelid with white light for imaging purposes, while another setup may involve using infrared light to take photographs.

[00313] В некоторых вариантах осуществления фотографическая одноразовая часть может содержать дифракционную поверхность для изменения пути излучения. При изменении угла прохождения излучения через поверхность возникает рефракция. Дифракционная поверхность может сужать световой луч, уширять световой луч или рассеивать световой луч. В некоторых вариантах осуществления может потребоваться дифракция излучения в узкий луч для фокусировки на требующей лечения области на веке. В некоторых вариантах осуществления может потребоваться уширение светового луча для увеличения ширины области лечения на веке. В некоторых случаях дифракция излучения может потребоваться для более равномерного покрытия области лечения. [00313] In some embodiments, the photographic disposable portion may include a diffractive surface to alter the radiation path. When the angle of radiation passing through a surface changes, refraction occurs. A diffractive surface can narrow the light beam, broaden the light beam, or scatter the light beam. In some embodiments, it may be necessary to diffraction the radiation into a narrow beam to focus on the area to be treated on the eyelid. In some embodiments, it may be necessary to widen the light beam to increase the width of the treatment area on the eyelid. In some cases, diffraction of radiation may be required to provide more uniform coverage of the treatment area.

[00314] В некоторых вариантах осуществления устройство 200 для лечения глаза может быть выполнено с возможностью потоковой передачи видеозаписи с использованием встроенных средств 160 визуализации. Например, встроенные средства 160 визуализации и/или устройство 200 для лечения глаза могут содержать беспроводную линию связи для отправки видеозаписи на внешнее устройство, такое как внешний монитор для просмотра, или для потоковой передачи видеозаписи на другое внешнее устройство, такое как компьютер. В некоторых вариантах осуществления для передачи на монитор большего количества информации о лечении к прямой трансляции могут быть добавлены метаданные. Например, метаданные могут содержать показания датчиков, такие как информация, относящаяся к температурам внутренней и/или наружной части века, давлению и/или усилию, прикладываемому к веку, интенсивности света, частотам света и т. д. Также могут быть включены и другие данные, такие как дата и время, имя пациента или номер истории болезни, имя клинического врача или другая информация, связанная с лечением. [00314] In some embodiments, the eye treatment device 200 may be configured to stream video using built-in visualization tools 160. For example, embedded imaging 160 and/or eye treatment device 200 may include a wireless communication link for sending video to an external device, such as an external viewing monitor, or for streaming video to another external device, such as a computer. In some embodiments, metadata may be added to the live broadcast to convey more treatment information to the monitor. For example, the metadata may include sensor readings such as information related to temperatures of the inside and/or outside of the eyelid, pressure and/or force applied to the eyelid, light intensity, light frequencies, etc. Other data may also be included , such as date and time, patient name or case record number, clinician's name, or other treatment-related information.

[00315] Мейбография представляет собой методику, предоставляющую информацию о морфологических характеристиках мейбомиевых желез путем наблюдения их контура при помощи просвечивания век 12, 14. Мейбография одного типа представляет собой методику бесконтактной инфракрасной мейбографии, которая обеспечивает возможность бесконтактного наблюдения структуры мейбомиевой железы без причинения неудобства пациенту. Мейбография включает излучение инфракрасного светодиода для захвата изображения мейбомиевых желез верхнего и нижнего век. Оно предоставляет детальное изображение структуры мейбомиевых желез, включая те железы, которые обладают повышенной извилистостью или прекратили функционирование в результате закупорки мейбомиевых желез. Система для бесконтактной мейбографии может содержать встроенные средства 160 визуализации , внешний монитор и/или записывающее устройство. Изображения могут быть получены с использованием источника инфракрасного излучения. Такая система мейбографии может обеспечивать возможность простого наблюдения структур мейбомиевых желез как в верхнем, так и в нижнем веках без причинения неудобства пациенту. [00315] Meibography is a technique that provides information about the morphological characteristics of the meibomian glands by observing their outline using eyelid transillumination 12, 14. One type of meibography is a non-contact infrared meibography technique that allows non-contact observation of the structure of the meibomian gland without causing discomfort to the patient. Meibography uses an infrared LED to capture images of the meibomian glands of the upper and lower eyelids. It provides a detailed view of the structure of the meibomian glands, including those glands that are hyper tortuosity or have stopped functioning as a result of blocked meibomian glands. A non-contact meibography system may include built-in imaging 160, an external monitor, and/or a recording device. Images can be obtained using an infrared radiation source. Such a meibography system may allow easy observation of meibomian gland structures in both the upper and lower eyelids without causing discomfort to the patient.

[00316] Просвечивание можно использовать для получения изображения мейбомиевых желез одним из нескольких способов. В одном варианте освещающее излучение можно направить на наружную поверхность века под некоторым углом, при этом получение изображения также происходит от наружной поверхности века. Оно называется наклонным освещением. Во втором варианте излучение может быть направленно из-за века через веко, при этом получение изображения происходит через наружную поверхность века. В третьем варианте поверхность освещается спереди таким образом, что источник света частично блокирует записываемое изображение, при этом для получения полного изображения используется множество изображений, которые усредняются, складываются или комбинируются иным способом. В этом случае мейбомиева железа освещается с целью визуального обследования железы с использованием излучения, передаваемого через ткань века. Затем можно получить изображение века с использованием неподвижной или подвижной фотографии (в видимом свете, БИК или ИК, или на другой подходящей длине волны света) способом, аналогичным вышеописанному. [00316] Transillumination can be used to image the meibomian glands in one of several ways. In one embodiment, the illuminating radiation can be directed at the outer surface of the eyelid at a certain angle, while the image is also obtained from the outer surface of the eyelid. This is called oblique lighting. In the second option, the radiation can be directed from behind the eyelid through the eyelid, while the image is obtained through the outer surface of the eyelid. In a third embodiment, the surface is illuminated from the front in such a way that the light source partially blocks the image being recorded, using multiple images that are averaged, added, or otherwise combined to produce a complete image. In this case, the meibomian gland is illuminated to visually examine the gland using radiation transmitted through the eyelid tissue. The eyelid can then be imaged using still or moving photography (visible light, NIR or IR, or other suitable wavelength of light) in a manner similar to that described above.

[00317] Один способ наблюдения желез выполняется путем просвечивания века и наблюдения при помощи встроенных средств 160 визуализации. Например, излучение может быть расположено на одной стороне века, и тогда контур мейбомиевых желез можно наблюдать с другой стороны века с использованием встроенных средств 160 визуализации. Данный способ может предоставлять информацию о морфологии и физических свойствах мейбомиевых желез. Некоторая часть информации, которая может быть измерена, может содержать количество желез, степень закупорки желез, площадь потерь мейбомиевых желез и т.д. [00317] One method of observing the glands is by transilluminating the eyelid and observing with built-in imaging tools 160. For example, the radiation may be located on one side of the eyelid, and then the outline of the meibomian glands can be observed on the other side of the eyelid using the built-in imaging tools 160. This method can provide information about the morphology and physical properties of the meibomian glands. Some of the information that can be measured may include the number of glands, the degree of gland blockage, the area of meibomian gland loss, etc.

[00318] В некоторых вариантах осуществления устройство 200 для лечения глаз может использоваться для количественной оценки тяжести сухого глаза путем наблюдения времени разрыва слезной пленки. Время разрыва слезной пленки представляет собой способ определения устойчивости слезной пленки и проверки наличия испарительного сухого глаза. Время разрыва слезной пленки может быть полезно при количественной оценке устойчивости слезной пленки и тяжести дисфункции мейбомиевых желез. При испытании времени разрыва слезной пленки в глаз добавляется флуоресцеиновый краситель, и веко остается открытым. Слезную пленку наблюдают с использованием увеличителя, в то время как пациент не моргает до тех пор, пока не образуются небольшие сухие пятна, т. е. возникает разрыв слезной пленки. Тогда измеряют время разрыва слезной пленки. В некоторых вариантах осуществления устройство 200 для лечения глаза может содержать элемент расчета времени, выполненный с возможностью записи измерения времени разрыва слезной пленки. Небольшое время разрыва слезной пленки является признаком неудовлетворительно качества слезной пленки, тогда как более длительное время разрыва слезной пленки указывает на большую устойчивость слезной пленки. Например, время >10 секунд полагают нормальным временем разрыва слезной пленки, 5-10 секунд считают граничным, а время <5 секунд считают низким. [00318] In some embodiments, eye treatment device 200 may be used to quantify the severity of dry eye by observing tear film breakup time. Tear film breakup time is a way to determine tear film stability and test for the presence of evaporative dry eye. Tear film breakup time can be useful in quantifying tear film persistence and the severity of meibomian gland dysfunction. When testing the tear film breakup time, fluorescein dye is added to the eye and the eyelid is left open. The tear film is observed using a magnifier while the patient does not blink until small dry spots form, i.e., tear film rupture occurs. Then the tear film breakup time is measured. In some embodiments, the eye treatment device 200 may include a timing element configured to record a tear film breakup time measurement. A short tear film break-up time is a sign of poor tear film quality, whereas a longer tear film break-up time indicates a more stable tear film. For example, a time >10 seconds is considered normal tear film breakup time, 5–10 seconds is considered borderline, and a time <5 seconds is considered low.

[00319] В некоторых вариантах осуществления устройство 200 для лечения глаза может использоваться для измерения пигментации кожи и может регулироваться для адаптации параметров лечения на основе пигментации. Например, встроенные средства 160 визуализации выполнены с возможностью наблюдения и/или записи кожи при отражении от кожи излучения. Отличия в отражении возникают для кожи разных типов. С использованием этого знания устройство 200 для лечения глаза может адаптировать параметры лечения на основе пигментации кожи, указываемой измерением отражения излучения. В целом кожа более темных цветов поглощает больше инфракрасного излучения, чем кожа более светлых цветов, и, таким образом, кожа нагревается тем быстрее, чем больше излучения преобразуется в тепло. Таким образом, устройство 200 для лечения глаза может быть выполнено с возможностью адаптации параметров лечения путем регулировки частоты излучения на основе измерения пигментации. [00319] In some embodiments, eye treatment device 200 may be used to measure skin pigmentation and may be adjusted to tailor treatment parameters based on pigmentation. For example, built-in imaging 160 is configured to observe and/or record skin as radiation is reflected from the skin. Differences in reflection occur for different skin types. Using this knowledge, the eye treatment device 200 can adapt treatment parameters based on skin pigmentation indicated by the radiation reflectance measurement. In general, skin of darker colors absorbs more infrared radiation than skin of lighter colors, and thus the skin warms up faster as more radiation is converted into heat. Thus, the eye treatment device 200 may be configured to adapt treatment parameters by adjusting the radiation frequency based on pigmentation measurements.

[00320] Пигментация кожи связана с количеством меланина в кератиноцитах эпидермиса. Различное содержание меланина порождает широкий спектр наблюдаемых цветов человеческой кожи. При падении излучения на кожу часть излучения отражается меланином, и это отражение можно использовать для обнаружения уровня пигментации кожи. [00320] Skin pigmentation is related to the amount of melanin in the keratinocytes of the epidermis. Varying melanin content gives rise to the wide range of observable human skin colors. When radiation hits the skin, some of the radiation is reflected by melanin, and this reflection can be used to detect the level of skin pigmentation.

[00321] В некоторых вариантах осуществления устройство 200 для лечения глаза может освещать светом 211 кожу, и встроенные средства 160 визуализации могут производить наблюдение и/или запись изображений кожи при отражении света 211 от кожи. По причине возникновения разности отражений между кожей различных типов или разными пигментами кожи, встроенные средства 160 визуализации могут быть использованы для обнаружения пигментации. [00321] In some embodiments, the eye treatment device 200 may illuminate the skin with light 211, and the built-in imaging tools 160 may observe and/or record images of the skin as the light 211 is reflected from the skin. Due to the occurrence of reflectance differences between different skin types or different skin pigments, the built-in imaging means 160 can be used to detect pigmentation.

[00322] Спектроскопия представляет собой исследование того, как вещества поглощают, передают или отражают излучение. Спектроскопия может использоваться для обнаружения пигментации кожи. По причине того, что кожа с разной пигментацией обладает уникальными свойствами отражения, пигментацию кожи можно определить путем анализа свойств отражения излучения. [00322] Spectroscopy is the study of how substances absorb, transmit, or reflect radiation. Spectroscopy can be used to detect skin pigmentation. Because skin with different pigmentation has unique reflectance properties, skin pigmentation can be determined by analyzing the radiation reflectance properties.

[00323] В некоторых вариантах осуществления устройство 200 для лечения глаза выполнено с возможностью обнаружения того, является ли веко надлежащим образом захваченным в правильном положении для лечения. В некоторых вариантах осуществления обнаружение надлежащего захвата века можно выполнить при помощи визуальных средств, как, например, путем использования увеличителя 1804 или встроенных средств 160 визуализации. В некоторых вариантах осуществления обнаружение правильного захвата века может быть осуществлено с использованием одного или нескольких контактных датчиков 238. Встроенные средства 160 визуализации можно использовать для прямой визуализации века и для определения того, является ли веко надлежащим образом расположенным для необходимого лечения или процедуры. В дополнение, устройство 200 для лечения глаза может содержать элемент распознавания изображений, в котором изображение из встроенных средств 160 визуализации может использоваться для определения нахождения века в надлежащем положении. Контактные датчики 238 могут быть выполнены с возможностью выключения устройства 200 для лечения глаза, и/или устройство 200 для лечения глаза может подавать пользователю или СОФ сигнал о необходимости прекращения лечения с использованием световых сигналов, звуковых сигналов или других средств уведомления. Например, контактные датчики 238 могут быть выполнены с возможностью предоставления пользователю или СОФ информации с использованием сигналов с одного или нескольких выводов. Эти выводы могут быть выполнены с возможностью отображения света одного или нескольких цветов или звука одного или нескольких тонов. Выводы могут быть выполнены с возможностью отображения разных цветовых схем или звуковых схем, выполнены с возможностью изменения интенсивности света или звука, выполнены с возможностью предоставления комбинаций света и звука или иначе выполнены с возможностью указания разных состояний или режимов захвата века. В вариантах осуществления датчики 238 могут быть выполнены с возможностью сообщения информации о захвате века другим медицинским устройствам и/или устройствам связи. [00323] In some embodiments, the eye treatment device 200 is configured to detect whether the eyelid is properly grasped in the correct position for treatment. In some embodiments, detection of proper eyelid grip may be accomplished through visual means, such as through the use of magnifier 1804 or built-in visualization tools 160 . In some embodiments, detection of proper eyelid grip may be accomplished using one or more contact sensors 238. Integrated imaging 160 may be used to directly visualize the eyelid and determine whether the eyelid is properly positioned for a desired treatment or procedure. In addition, the eye treatment device 200 may include an image recognition element in which an image from the built-in imaging tools 160 may be used to determine whether the eyelid is in the proper position. The contact sensors 238 may be configured to turn off the eye treatment device 200, and/or the eye treatment device 200 may signal the user or SOF to stop treatment using lights, sounds, or other notification means. For example, contact sensors 238 may be configured to provide information to a user or SOF using signals from one or more terminals. These terminals may be configured to display light of one or more colors or sound of one or more tones. The outputs may be configured to display different color schemes or sound schemes, configured to vary the intensity of light or sound, configured to provide combinations of light and sound, or otherwise configured to indicate different eyelid capture states or modes. In embodiments, sensors 238 may be configured to report eyelid capture information to other medical devices and/or communications devices.

[00324] На фиг. 26A показаны варианты осуществления встроенных средств 160 визуализации, используемых для фотографирования поверхности века и края века с целью обнаружения закупоренных мейбомиевых желез. При оценке мейбомиевых желез следует учитывать несколько факторов. Эти факторы включают процентную долю ограниченных желез, наличие халазионов и количество желез, присутствующих в пределах края века. [00324] In FIG. 26A shows embodiments of built-in imaging tools 160 used to photograph the eyelid surface and eyelid margin for the purpose of detecting obstructed meibomian glands. Several factors should be considered when evaluating the meibomian glands. These factors include the percentage of glands confined, the presence of chalazions, and the number of glands present within the eyelid margin.

[00325] Фотографии можно использовать для балльной оценки мейбомиевых желез (балльной оценки MG), которая может пропорционально соответствовать площади повреждения. Балльная оценка может находиться в диапазоне от 0 до 3, где 0 указывает, что край века не содержит ограниченные или недостающие железы, 1 указывает, что содержится менее 33% площади края века, 2 указывает, что площадь включенного края века охватывает от 33% до 66%, и 3 указывает, что включенная область охватывает более 66% края века. Числовые значения, полученные для верхнего и нижнего век, суммируются друг с другом для получения балльной оценки от 0 до 6. [00325] Photographs can be used to score the meibomian glands (MG score), which can be proportional to the area of damage. The score can range from 0 to 3, where 0 indicates that the eyelid margin does not contain limited or missing glands, 1 indicates that less than 33% of the area of the eyelid margin is contained, 2 indicates that the area of the included eyelid margin covers from 33% to 66%, and 3 indicates that the included area covers more than 66% of the eyelid margin. The numerical values obtained for the upper and lower eyelids are added together to obtain a score from 0 to 6.

[00326] В некоторых вариантах осуществления встроенные средства 160 визуализации также могут использоваться во время лечения для записи выдавливания секрета мейбомиевых желез из желез при их нагреве и сжатии устройством 200 для лечения глаза. Выдавленный секрет мейбомиевых желез может оцениваться следующим образом: 0 обозначает прозрачный секрет мейбомиевых желез, выдавливаемый легко; 1 обозначает мутный секрет мейбомиевых желез, выдавливаемый мягко; 2 обозначает мутный секрет мейбомиевых желез, который может быть выдавлен при более чем умеренном давлении; и 3 обозначает, что секрет мейбомиевых желез нельзя выдавить даже под жестким давлением. Выдавленное вещество секрета мейбомиевых желез можно использовать для диагностики других заболеваний, таких как блефарит, отклонения края века от нормы, неправильность края века, утолщения края века, ограниченные железы и/или закупорка желез и т.д. [00326] In some embodiments, built-in imaging 160 may also be used during treatment to record the extrusion of meibomian gland secretions from the glands as they are heated and compressed by the eye treatment device 200. Extruded meibomian gland secretion can be scored as follows: 0 indicates clear meibomian gland secretion, easily extruded; 1 indicates cloudy secretion of the meibomian glands, squeezed out gently; 2 indicates cloudy meibomian gland secretion that can be squeezed out with more than moderate pressure; and 3 means that the secretion of the meibomian glands cannot be squeezed out even under severe pressure. The extruded meibomian gland secretion can be used to diagnose other conditions such as blepharitis, abnormal eyelid margins, irregular eyelid margins, thickened eyelid margins, restricted glands and/or blocked glands, etc.

[00327] В некоторых вариантах осуществления во встроенных средствах 160 визуализации также можно использовать ИК свет для установления местоположения мейбомиевых желез и определения того, заполнены ли железы веществом, которое может давать на БИК отклик, отличный от окружающей его ткани. Например, использования сложной камеры БИК высокого разрешения может быть достаточно для того, чтобы отличить области ткани от областей желез. Длину волны и оптику, используемые для БИК камеры, следует выбирать так, чтобы обеспечивать подходящее получение изображений мейбомиевых желез, и их можно оптимизировать экспериментально. Дополнительно преимущественной может являться цифровая обработка получаемых в результате изображений с увеличением уровня контраста и/или присвоения цветов с целью проведения различий между БИК откликами различных тканей. [00327] In some embodiments, the integrated imaging tools 160 can also use IR light to locate the meibomian glands and determine whether the glands are filled with a substance that may produce a different response to the NIR than its surrounding tissue. For example, the use of a sophisticated high-resolution NIR camera may be sufficient to distinguish tissue areas from glandular areas. The wavelength and optics used for the NIR camera should be selected to provide suitable imaging of the meibomian glands and can be optimized experimentally. Additionally, it may be advantageous to digitally process the resulting images, increasing the level of contrast and/or assigning colors to differentiate between the NIR responses of different tissues.

[00328] Методики повышения качества изображений широко используются во многих применениях обработки изображений, где субъективное качество изображений важно для их интерпретации человеком. Контраст является важным фактором при любой субъективной оценке качества изображений. Контраст создается за счет разности в светимости при отражении от двух смежных поверхностей. Иначе говоря, контраст представляет собой разность в визуальных свойствах, которая делает объект отличимым от других объектов и фона. При зрительном восприятии контраст определяется по разности в цвете и яркости объекта относительно других объектов. Для выполнения увеличения контраста было разработано и применено к задачам обработки изображений множество алгоритмов. Одним из них является алгоритм растягивания, который можно использовать для повышения контраста изображения, а также для увеличения освещенности. [00328] Image enhancement techniques are widely used in many image processing applications where the subjective quality of images is important to human interpretation. Contrast is an important factor in any subjective assessment of image quality. Contrast is created by the difference in luminosity when reflected from two adjacent surfaces. In other words, contrast is the difference in visual properties that makes an object distinguishable from other objects and the background. In visual perception, contrast is determined by the difference in color and brightness of an object relative to other objects. To perform contrast enhancement, many algorithms have been developed and applied to image processing problems. One of them is the stretching algorithm, which can be used to increase the contrast of the image and also to increase the illumination.

[00329] При выворачивании века для наблюдения, оно имеет искривленную поверхность. При съемке изображения искривленной поверхности некоторые области находятся в фокусе, тогда как другие части находятся не в фокусе. Одной возможностью является физическое сглаживание искривленной поверхности века. Другой возможностью является использование различных методик фотографирования для искривленных поверхностей. Для физического сглаживания века можно использовать прозрачный плоский элемент, такой как стекло. После выворачивания века этот прозрачный плоский элемент можно прижать к поверхности века для ее сглаживания перед камерой. Одним способом съемки изображений искривленных поверхностей вывернутых век является совмещение фокусов. Совмещение фокусов представляет собой методику цифровой обработки изображений, в которой несколько изображений, снятых с разными фокусными расстояниями, объединяют, получая результирующее изображение с глубиной поля (DOF) больше, чем у любого из отдельных исходных изображений. Отправным пунктом совмещения фокусов является ряд изображений, захваченных на разных глубинах фокусировки. На каждом изображении в фокусе будут находиться разные области вывернутого века. И хотя ни одно из этих изображений не содержит образец, полностью находящийся в фокусе, совместно они содержат все необходимые данные для генерирования изображения, на котором в фокусе находятся все части века. Находящиеся в фокусе области каждого изображения могут быть обнаружены автоматически, например, при помощи методики обнаружения краев или анализа Фурье, или их можно выбрать вручную. Находящиеся в фокусе участки затем смешивают друг с другом с целью генерирования конечного изображения века. [00329] When the eyelid is everted for observation, it has a curved surface. When taking an image of a curved surface, some areas are in focus while other parts are out of focus. One possibility is to physically smooth the crooked surface of the eyelid. Another possibility is to use different photography techniques for curved surfaces. A clear, flat piece such as glass can be used to physically smooth the eyelid. After inversion of the eyelid, this transparent flat element can be pressed against the surface of the eyelid to smooth it in front of the camera. One way to capture images of the curved surfaces of everted eyelids is through focus stacking. Focus stacking is a digital imaging technique in which multiple images taken at different focal lengths are combined to produce a resulting image with a depth of field (DOF) greater than that of any of the individual original images. The starting point for focus stacking is a series of images captured at different focusing depths. In each image, different areas of the everted eyelid will be in focus. Although none of these images contains a sample that is completely in focus, together they contain all the necessary data to generate an image in which all parts of the eyelid are in focus. The in-focus areas of each image can be detected automatically, for example using edge detection techniques or Fourier analysis, or they can be selected manually. The in-focus areas are then blended together to generate the final eyelid image.

[00330] Общепринятой методикой интерпретации изображений как части процесса медицинской диагностики является визуальная интерпретация. Визуальная интерпретация делает процесс зависящим от наблюдателя. Зрительное восприятие изображений человеком зависит небольшого набора характеристик изображения: яркости, контраста, резкости, насыщенности и динамики. Для повышения пригодности изображений для считывания и уменьшения влияния факторов на извлечение и восприятие информации, качество изображений повышают. Термин «повышение качества изображений» относится к методике повышения качества или модификации цифровых изображений, для того чтобы результирующее изображение лучше, чем оригинальное, подходило для конкретного применения. В ходе процесса повышения качества изображений модифицируют один или несколько атрибутов изображения. Набор модифицированных атрибутов, способ модификации и диапазон возможных значений атрибутов являются характерными для конкретной задачи. Одной методикой повышения качества изображений является получение изображений с расширенным динамическим диапазоном (High Dynamic Range, HDR). В способах получения изображений HDR потеря деталей компенсируется путем съемки множества изображений с разными уровнями экспозиции и их сшивания друг с другом с целью создания изображения, представляющего большее количество деталей как в темных, так и в светлых областях. Другой методикой повышения качества изображений является псевдоокрашивание. Целью псевдоокрашивания является задействование способностей восприятия зрительной системы человека с целью извлечения большего количества информации из изображения, например изображения века. Термин «псевдоокрашивание», или «окрашивание искусственными цветами», используется для проведения различий между способом присвоения цветов монохромным изображениям в результате процесса, связанного с изображениями в естественных цветах. Процесс псевдоокрашивания может значительно повышать возможность обнаружения слабовыраженных элементов, структур и картин на изображении благодаря предоставлению деталей изображения, которые иначе не были бы замечены. [00330] A common technique for interpreting images as part of the medical diagnostic process is visual interpretation. Visual interpretation makes the process dependent on the observer. Human visual perception of images depends on a small set of image characteristics: brightness, contrast, sharpness, saturation and dynamics. To increase the suitability of images for reading and reduce the influence of factors on the extraction and perception of information, the quality of images is increased. The term "image enhancement" refers to a technique for enhancing or modifying digital images so that the resulting image is better suited to a particular application than the original image. During the image enhancement process, one or more attributes of the image are modified. The set of modified attributes, the modification method, and the range of possible attribute values are specific to a specific task. One technique for improving image quality is obtaining High Dynamic Range (HDR) images. HDR imaging techniques compensate for the loss of detail by taking many images at different exposure levels and stitching them together to create an image that presents more detail in both dark and light areas. Another technique for improving image quality is pseudocoloring. The purpose of pseudocoloring is to harness the perceptual abilities of the human visual system to extract more information from an image, such as an image of an eyelid. The term pseudocoloring, or false coloring, is used to distinguish between the way colors are assigned to monochrome images through a process associated with natural color images. The process of pseudocoloring can greatly enhance the ability to detect subtle features, structures, and patterns in an image by providing image details that would otherwise not be noticed.

[00331] На фиг. 26В показан один вариант осуществления внутренней прокладки 300 для века, обеспечивающей возможность наблюдения внутренней стороны века 14 и просвечивания мейбомиевых желез из-за века 14. В некоторых вариантах осуществления отражающая поверхность неподвижной внутренней прокладки 300 для века также может быть выполнена с возможностью наблюдения внутренней поверхности века 14 при помощи средств 160 визуализации. В некоторых вариантах осуществления наблюдение внутренней поверхности века 14 включает просвечивание века 14 и мейбомиевых желез. Преобразователь 155 изображения обеспечивает возможность наблюдения внутренней стороны века 14 и просвечивания мейбомиевых желез из-за века 14. [00331] In FIG. 26B shows one embodiment of an inner eyelid liner 300 that allows viewing of the inside of the eyelid 14 and visibility of the meibomian glands from behind the eyelid 14. In some embodiments, the reflective surface of the fixed inner eyelid liner 300 may also be configured to view the inside of the eyelid. 14 using visualization tools 160. In some embodiments, observing the inner surface of the eyelid 14 includes candling the eyelid 14 and the meibomian glands. The image converter 155 provides the ability to view the inside of the eyelid 14 and to view the meibomian glands from behind the eyelid 14.

[00332] Энергия 170 освещения, которая может представлять собой видимое или инфракрасное излучение, например, проходит через веко 14 и, таким образом, через мейбомиевы железы 18 , где она отражается от отражающей поверхности неподвижной внутренней прокладки 300 для века, и в конечном итоге выходит над краем 14a века. Таким образом, отражающая поверхность обеспечивает возможность наблюдения просвечивающегося изображения 190 внутренней стороны века 14 при прямой визуализации или при помощи увеличительного элемента или камеры, которые совокупно показаны как устройство визуализации, или средства 160 визуализации, без необходимости в выворачивании века 14. На фиг. 2F представлен вид спереди варианта осуществления, показанного на фиг. 26В, на котором показаны просвечивающиеся изображения 190 мейбомиевых желез. [00332] Illumination energy 170, which may be visible or infrared radiation, for example, passes through the eyelid 14 and thus through the meibomian glands 18, where it is reflected from the reflective surface of the stationary eyelid liner 300, and ultimately exits over the edge of the 14a century. Thus, the reflective surface allows the translucent image 190 of the inside of the eyelid 14 to be viewed by direct imaging or by a magnifying element or camera, collectively shown as an imaging device or imaging means 160, without the need to evert the eyelid 14. FIG. 2F is a front view of the embodiment shown in FIG. 26B, which shows transillumination images of 190 meibomian glands.

[00333] Некоторые медицинские устройства могу переносить бактерии, которые могут приводить к инфекциям или перекрестному микробиологическому загрязнению. Риск инфекций могут снижать антибактериальные покрытия устройств 200 для защиты глаза, такие как антибиотики или частицы серебра. В некоторых вариантах осуществления устройство 200 для лечения глаза и/или стерильный одноразовый компонент 260 содержат одно или несколько антибактериальных покрытий для предотвращения перекрестного микробиологического загрязнения или распространения бактерий. [00333] Some medical devices can carry bacteria, which can lead to infections or microbiological cross-contamination. The risk of infections may be reduced by antibacterial coatings of eye protection devices 200, such as antibiotics or silver particles. In some embodiments, the ocular treatment device 200 and/or the sterile disposable component 260 comprise one or more antibacterial coatings to prevent microbiological cross-contamination or the spread of bacteria.

[00334] В некоторых вариантах осуществления стерильный одноразовый компонент 260 используется для лечения обоих глаз пациента. В промежутке между лечением разных глаз стерильный одноразовый компонент 260 следует обработать дезинфицирующим средством для предотвращения перекрестного микробиологического загрязнения глаз. Протирка стерильного одноразового компонента 260 в промежутке между лечением разных глаз также очищает его от каких-либо текучих сред или выделений века из стерильного одноразового компонента 260. [00334] In some embodiments, the sterile disposable component 260 is used to treat both eyes of a patient. Between treating different eyes, the sterile disposable component 260 should be treated with a disinfectant to prevent cross-microbiological contamination of the eyes. Wiping the sterile disposable component 260 between treatments of different eyes also clears it of any fluid or eyelid secretions from the sterile disposable component 260.

[00335] В некоторых вариантах осуществления устройство содержит емкостный датчик, или контактный датчик 238, или другой датчик приближения для обнаружения положения устройства 200 для лечения глаза относительно глазного яблока 20 или века 14 пациента. В некоторых вариантах осуществления контактный датчик 238 может содержать один или несколько электродов, выполненных с возможностью обнаружения емкости и/или изменения емкости при касании контактным датчиком 238 глазного яблока 20 или века 14. В некоторых вариантах осуществления контактный датчик 238 может содержать микропереключатели или силовые или прижимные контактные датчики 238, все из которых генерируют изменение характеристик сигнала при его прикосновении к глазному яблоку 20 или коже века 14. Таким образом, контактные датчики 238 можно использовать для содействия определению размещения устройства 200 для лечения глаза. [00335] In some embodiments, the device includes a capacitive sensor or contact sensor 238 or other proximity sensor for detecting the position of the eye treatment device 200 relative to the eyeball 20 or eyelid 14 of the patient. In some embodiments, the contact sensor 238 may include one or more electrodes configured to detect capacitance and/or a change in capacitance when the contact sensor 238 touches the eyeball 20 or eyelid 14. In some embodiments, the contact sensor 238 may include microswitches or force or pressure contact sensors 238, all of which generate a change in signal characteristics when it touches the eyeball 20 or the skin of the eyelid 14. Thus, the contact sensors 238 can be used to assist in determining the placement of the eye treatment device 200.

[00336] Для лечения внутренней части века внутренняя прокладка 300 для века должна находиться в контакте с внутренней поверхностью века. Чтобы определять это, некоторые варианты осуществления устройства 200 для лечения глаза содержат емкостный датчик или контактный датчик 238 для обнаружения того, касается ли внутренняя прокладка 300 для века внутренней части века или глазного яблока. Если контактный датчик 238 обнаруживает глазное яблоко или находится слишком близко к глазному яблоку, устройство 200 для лечения глаза может передавать пользователю сигнал для вытягивания дальше наружу, к веку. Если контактный датчик 238 обнаруживает касание века, устройство 200 для лечения глаза находится в правильном положении для лечения. [00336] To treat the inside of the eyelid, the inner eyelid pad 300 must be in contact with the inner surface of the eyelid. To determine this, some embodiments of the eye treatment device 200 include a capacitive sensor or contact sensor 238 for detecting whether the inner eyelid pad 300 is touching the inside of the eyelid or the eyeball. If the contact sensor 238 detects the eyeball or is too close to the eyeball, the eye treatment device 200 may transmit a signal to the user to pull further outward toward the eyelid. If the contact sensor 238 detects the contact of the eyelid, the eye treatment device 200 is in the correct position for treatment.

[00337] В некоторых таких вариантах осуществления устройство управления запрограммировано предотвращать приведение в действие устройства 200 для лечения глаза до тех пор, пока устройство управления не обнаружит, посредством сигналов с контактных датчиков 238, что устройство 200 для лечения глаза правильно расположено смежно с внутренней частью века. Дополнительно, в некоторых вариантах осуществления устройство управления запрограммировано для прекращения подачи энергии, если сигналы, полученные из контактных датчиков 238, указывают, что устройство 200 для лечения глаза больше не расположено у века надлежащим образом. [00337] In some such embodiments, the control device is programmed to prevent activation of the eye treatment device 200 until the control device detects, through signals from the contact sensors 238, that the eye treatment device 200 is correctly positioned adjacent to the inside of the eyelid. . Additionally, in some embodiments, the control device is programmed to shut off power if signals received from the contact sensors 238 indicate that the eye treatment device 200 is no longer properly positioned against the eyelid.

[00338] Для введения за веко неподвижной внутренней прокладки 300 для века многие люди тянут ресницы с целью поднятия века в сторону от глазного яблока для введения внутренней прокладки 300 для века. Во многих случаях данный способ вытягивает веки и вызывает боль. [00338] To insert the fixed inner eyelid liner 300 behind the eyelid, many people pull on the eyelashes to lift the eyelid away from the eyeball for insertion of the inner eyelid liner 300. In many cases, this method stretches the eyelids and causes pain.

[00339] В некоторых вариантах осуществления к наружной поверхности века может присоединяться всасывающее устройство, выполненное с возможностью оттягивания века вверх для освобождения места для внутренней прокладки 300 для века. После размещения внутренней прокладки 300 для века всасывающее устройство можно отделить и извлечь. Например, поднятие века при помощи всасывающего устройства может включать: размещение всасывающей части всасывающего устройства на наружном веке, создание всасывания для вхождения в контакт с кожей, оттягивание века от глазного яблока и, после введения за веко внутренней прокладки 300 для века, прекращение всасывания и извлечение всасывающего устройства. [00339] In some embodiments, a suction device may be attached to the outer surface of the eyelid, configured to pull the eyelid upward to make room for the inner eyelid pad 300. After placing the inner eyelid pad 300, the suction device can be separated and removed. For example, lifting the eyelid with a suction device may include: placing the suction portion of the suction device on the outer eyelid, creating suction to come into contact with the skin, pulling the eyelid away from the eyeball, and, after inserting the inner eyelid pad 300 behind the eyelid, stopping the suction and removing suction device.

[00340] В некоторых вариантах осуществления оттягивающее устройство, содержащее искривленный или крюкообразный наконечник, может скользить за веко и оттягивать веко в сторону от глазного яблока для обеспечения места для внутренней прокладки 300 для века. После того, как внутренняя прокладка 300 для века окажется на месте, оттягивающее устройство можно извлечь. [00340] In some embodiments, a retractor device comprising a curved or hook-shaped tip can slide behind the eyelid and pull the eyelid away from the eyeball to provide space for the inner eyelid liner 300. Once the inner eyelid pad 300 is in place, the retraction device can be removed.

[00341] В некоторых вариантах осуществления стерильный одноразовый компонент 260 или внутренняя прокладка 300 для века могут содержать подъемный элемент, такой как искривленный наконечник, крючок или другой аналогичный элемент, для поднятия века в сторону от глазного яблока. Подъемный элемент может быть встроен в конструкцию внутренней прокладки 300 для века, или может представлять собой дополнительную часть. Поднятие века подъемным устройством может включать: скольжение подъемного элемента на дальнем конце подъемного устройства за веком, поднятие века в сторону от глазного яблока, и, после вставки внутренней прокладки 300 для века за веком, выведение подъемного устройства. [00341] In some embodiments, the sterile disposable component 260 or inner eyelid liner 300 may include a lifting element, such as a curved tip, hook, or other similar element, to lift the eyelid away from the eyeball. The lifting element may be built into the structure of the inner eyelid liner 300, or may be an additional part. Lifting the eyelid with the lifting device may include: sliding the lifting member on the distal end of the lifting device behind the eyelid, lifting the eyelid away from the eyeball, and, after inserting the inner eyelid liner 300 behind the eyelid, withdrawing the lifting device.

[00342] В некоторых вариантах осуществления стерильный одноразовый компонент 260 или внутренняя прокладка 300 для века может содержать источник света для осмотра века, например с целью просвечивания или мейбографии. Для просвечивания, например, осветительный элемент на стерильном одноразовом компоненте может освещать светом одну сторону века, например внутреннюю часть века, чтобы пользователь имел возможность осматривать железы внутри века. В некоторых вариантах осуществления инфракрасное излучение проецируется на или через вывернутое веко, и для наблюдения мейбомиевых желез используется ИК-чувствительная камера. Для мейбографии стерильный одноразовый компонент 260 может содержать инфракрасный светодиодный источник света, освещающий веко так, что камера получает изображение. Мейбография предоставляет вид всех мейбомиевых желез в веке. В некоторых вариантах осуществления для сокращения количества и/или устранения бактерий источник света излучает синий или фиолетовый свет в диапазоне 400-450 нм. [00342] In some embodiments, the sterile disposable eyelid component 260 or inner eyelid liner 300 may include a light source for viewing the eyelid, such as for transillumination or meibography purposes. For transillumination, for example, a lighting element on a sterile disposable component may illuminate one side of the eyelid, such as the inside of the eyelid, to allow the user to view the glands within the eyelid. In some embodiments, infrared light is projected onto or through the everted eyelid and an IR sensitive camera is used to view the meibomian glands. For meibography, the sterile disposable component 260 may contain an infrared LED light source that illuminates the eyelid so that the camera receives an image. Meibography provides a view of all meibomian glands in the eyelid. In some embodiments, the light source emits blue or violet light in the range of 400-450 nm to reduce and/or eliminate bacteria.

[00343] На фиг. 27 показан один вариант осуществления отражающей внутренней прокладки 300 для века, которую можно расположить между веком 14 и глазным яблоком 20 для защиты чувствительной анатомии системы 10 глаза с целью предотвращения контакта излучения с глазом. Внутренняя 300 прокладка для века выполнена с возможностью приема световой энергии, передаваемой через веко 14, и ее отражения обратно на внутреннюю поверхность века для нагрева. [00343] In FIG. 27 shows one embodiment of a reflective inner eyelid liner 300 that can be positioned between the eyelid 14 and the eyeball 20 to protect the sensitive anatomy of the eye system 10 to prevent radiation from contacting the eye. The inner eyelid pad 300 is configured to receive light energy transmitted through the eyelid 14 and reflect it back onto the inner surface of the eyelid for heating.

[00344] Отражающая внутренняя прокладка 300 для века может содержать набор датчиков 310 температуры, расположенных в направлении к внутренней части века. Эти датчики могут представлять собой дискретные элементы (например, термопары из очень тонкой проволоки или миниатюрные термисторы), встроенные или расположенные во внутренней прокладке 300 для века, или они могут представлять собой термопары, выполненные путем нанесения тонких пленок соответствующих металлов на промежуточные слои внутренней прокладки 300 для века. [00344] The reflective inner eyelid pad 300 may include a set of temperature sensors 310 positioned toward the inner portion of the eyelid. These sensors may be discrete elements (e.g., very fine wire thermocouples or miniature thermistors) embedded or located in the inner eyelid liner 300, or they may be thermocouples made by depositing thin films of appropriate metals onto the interlayers of the inner liner 300 for the century.

[00345] Для предотвращения нагрева отражающей внутренней прокладкой 300 для века датчиков отражающая энергию поверхность содержит окошки для датчиков, предназначенные для прохождения датчиков и прямого их контакта с внутренней поверхностью века. [00345] To prevent the reflective inner eyelid pad 300 from heating the sensors, the energy reflective surface includes sensor windows for passage of the sensors and direct contact with the inner surface of the eyelid.

[00346] В некоторых вариантах осуществления отражающая внутренняя прокладка 300 для века может действовать в качестве зеркала для обеспечения возможности наблюдения внутренней стороны века 14 при помощи средств визуализации и просвечивания мейбомиевых желез из-за века. В некоторых вариантах осуществления излучение, отраженное от отражающей поверхности внутренней прокладки 300 для века, может использоваться для просвечивания века и мейбомиевых желез. [00346] In some embodiments, the reflective inner eyelid liner 300 may act as a mirror to enable viewing of the inside of the eyelid 14 through imaging and transillumination of the meibomian glands from behind the eyelid. In some embodiments, radiation reflected from the reflective surface of the inner eyelid liner 300 may be used to illuminate the eyelid and meibomian glands.

[00347] На фиг. 27 также показана часть стерильного одноразового компонента 260, имеющего внутреннюю прокладку 300 для века, которая может содержать энергопоглощающую лицевую поверхность 302 для нагрева внутренней части века. Энергопоглощающая лицевая поверхность 302 может содержать источник света для нагрева. В некоторых вариантах осуществления источник света может находиться на внутренней прокладке 300 для века и быть направленным к внутренней части века для нагрева желез. Например, источник света может излучать длины волн в диапазоне от приблизительно 500 нм до приблизительно 600 нм, например для достижения наибольшего поглощения световых лучей в ткани. [00347] In FIG. 27 also shows a portion of the sterile disposable component 260 having an inner eyelid liner 300 that may include an energy-absorbing facial surface 302 for heating the inside of the eyelid. The energy-absorbing face surface 302 may include a light source for heating. In some embodiments, the light source may be located on the inner eyelid pad 300 and directed toward the inside of the eyelid to heat the glands. For example, the light source may emit wavelengths in the range from about 500 nm to about 600 nm, for example, to achieve maximum absorption of light rays into tissue.

[00348] В некоторых вариантах осуществления энергопоглощающая лицевая поверхность 302 может содержать оптический волновод и/или другие преломляющие элементы, приспособленные направлять тепловое излучение в направлении к внутренней прокладке 300 для века и освещать этим излучением внутреннюю часть века для нагрева мейбомиевых желез из-за века. [00348] In some embodiments, the energy-absorbing facial surface 302 may include an optical waveguide and/or other refractive elements adapted to direct thermal radiation toward the inner eyelid pad 300 and illuminate the interior of the eyelid with that radiation to heat the meibomian glands behind the eyelid.

[00349] В некоторых вариантах осуществления мейбомиевы железы могут являться воспаленными или дисфункциональными, поэтому может быть желательно получить пробу секрета мейбомиевых желез для анализа. Например, мейбомиевы железы могут становиться воспаленными вследствие выработки секрета мейбомиевых желез с увеличенным содержанием незаменимых омега-6 жирных кислот. Дополнительно и/или альтернативно, бактерии могут находиться в мейбомиевых железах и вызывать воспаление. В этих случаях устройство 200 для лечения глаза или стерильный одноразовый компонент 260 могут содержать часть для размещения пробы, выполненную с возможностью размещения пробы секрета мейбомиевых желез при его выдавливании. Например, часть для размещения пробы может представлять собой резервуар для секрета мейбомиевых желез в стерильном одноразовом компоненте 260, принимающий секрет мейбомиевых желез. В некоторых вариантах осуществления может иметься несколько частей для размещения проб, например по одной для каждого века. После получения проба секрета мейбомиевых желез может подвергаться анализу. В некоторых вариантах осуществления анализ может включать введение секрета мейбомиевых желез в контакт с цветочувствительным маркером, в котором цвет используется для указания присутствия бактерий. Если бактерии присутствуют, СОФ может прописать план лечения. Дополнительно и/или альтернативно, при получении пробы секрета мейбомиевых желез может быть полезна камера. Например, камера может наблюдать секрет мейбомиевых желез по мере его выдавливания путем съемки видеоизображения или изображений с целью документирования отбора пробы секрета мейбомиевых желез. [00349] In some embodiments, the meibomian glands may be inflamed or dysfunctional, so it may be desirable to obtain a sample of meibomian gland secretions for analysis. For example, the meibomian glands may become inflamed due to the production of meibomian gland secretions with increased levels of essential omega-6 fatty acids. Additionally and/or alternatively, bacteria may reside in the meibomian glands and cause inflammation. In these cases, the eye treatment device 200 or the sterile disposable component 260 may include a sample receiving portion configured to receive a sample of meibomian gland secretion when extruded. For example, the sample housing portion may be a meibomian gland secretion reservoir in the sterile disposable component 260 that receives meibomian gland secretion. In some embodiments, there may be multiple sample housing portions, such as one for each eyelid. Once obtained, a sample of meibomian gland secretion can be analyzed. In some embodiments, the assay may include contacting meibomian gland secretions with a color-sensitive marker in which color is used to indicate the presence of bacteria. If bacteria are present, the SOF may prescribe a treatment plan. Additionally and/or alternatively, a camera may be useful in obtaining a sample of meibomian gland secretions. For example, a camera may observe the meibomian gland secretion as it is extruded by capturing a video image or images to document the collection of the meibomian gland secretion sample.

[00350] Глаза и веки могут иметь множество размеров для взрослых и детей. Для учета этой возможности, одноразовая внутренняя прокладка 300 для века может быть выполнена с разными размерами. Например, может иметься детский размер, малый взрослый размер, средний взрослый размер и большой взрослый размер. [00350] Eyes and eyelids can come in a variety of sizes for adults and children. To accommodate this possibility, the disposable eyelid liner 300 can be configured in a variety of sizes. For example, there may be a child size, a small adult size, a medium adult size, and a large adult size.

[00351] На фиг. 28А и 28В показан другой вариант осуществления устройства 200 для лечения глаза. В некоторых вариантах осуществления и устройство 200 для лечения глаза, и стерильный одноразовый компонент 260 могут поворачиваться на 180 градусов для лечения нижнего века и верхнего века. Наряду с этим, все элементы управления устройством 200 для лечения глаза также могут поворачиваться, для того чтобы при лечении верхнего века элементы управления переворачивались. Для некоторых пользователей это может представлять проблему. Как показано на фиг. 28А и 28В, одной возможностью избежать этой потенциальной проблемы является поворот стерильного одноразового компонента 260 на 180 градусов, в то время как ручной инструмент 1800 остается неподвижным, так что устройство 200 для лечения глаза находится в одном положении, тогда как стерильный одноразовый компонент 260 может находиться в двух положениях. [00351] In FIG. 28A and 28B show another embodiment of an eye treatment device 200. In some embodiments, both the eye treatment device 200 and the sterile disposable component 260 can be rotated 180 degrees to treat the lower eyelid and upper eyelid. In addition, all controls of the eye treatment device 200 can also be rotated so that the controls are reversed when treating the upper eyelid. This may be a problem for some users. As shown in FIG. 28A and 28B, one option to avoid this potential problem is to rotate the sterile disposable component 260 180 degrees while the hand instrument 1800 remains stationary so that the eye treatment device 200 is in one position while the sterile disposable component 260 may be positioned in two positions.

[00352] В некоторых вариантах осуществления может потребоваться подогрев или нагрев мейбомиевых желез без сжатия века. Например, устройство 200 для лечения глаза может быть выполнено как бесконтактное инфракрасное нагревательное устройство, в котором используются ИК-светодиоды, с возможностью нагрева мейбомиевых желез в веке без сжатия века. [00352] In some embodiments, it may be necessary to heat or heat the meibomian glands without compressing the eyelid. For example, the eye treatment device 200 may be configured as a non-contact infrared heating device that uses IR LEDs to heat the meibomian glands in the eyelid without compressing the eyelid.

[00353] Подводя итог настоящему описанию, в данном документе были описаны некоторые аспекты, преимущества и признаки. Следует понимать, что все эти преимущества необязательно достигаются в соответствии с каждым частным вариантом осуществления. Так, описанные устройства и способы могут быть воплощены или осуществлены таким образом, чтобы достичь или оптимизировать одно преимущество или группу преимуществ, описанных в данном документе, без необходимости достижения других преимуществ, которые могут быть учтены или предложены в данном документе. [00353] To summarize the present disclosure, certain aspects, advantages and features have been described herein. It should be understood that all of these advantages are not necessarily achieved in accordance with every particular embodiment. Thus, the described devices and methods may be implemented or implemented in such a way as to achieve or optimize one benefit or group of benefits described herein, without the need to achieve other benefits that may be considered or proposed herein.

[00354] Хотя настоящее изобретение было описано в связи с тем, что в настоящее время считается применимыми на практике вариантами осуществления, специалистам в данной области техники должно быть понятно, что различные модификации и изменения могут осуществляться без выхода за пределы объема настоящего изобретения. Также специалистам в данной области техники должно быть понятно, что части, смешанные с одним вариантом осуществления, являются взаимозаменяемыми с другими вариантами осуществления; одна или несколько частей из изображенного варианта осуществления могут быть включены в другие изображенные варианты осуществления в любой комбинации. Например, любой из различных компонентов, описанных в данном документе и/или изображенных на фигурах, может комбинироваться, обмениваться или исключаться из других вариантов осуществления. Что касается применения в данном документе терминов в по существу любых множественных и/или единственных числах, специалисты в данной области техники могут переводить множественное число в единственное и/или единственное число в множественное в соответствии с контекстом и/или применением. Различные перестановки единственного и/или множественного числа могут быть для ясности изложены в данном документе в явном виде. [00354] Although the present invention has been described in connection with what are currently considered to be practical embodiments, those skilled in the art will appreciate that various modifications and changes may be made without departing from the scope of the present invention. It will also be appreciated by those skilled in the art that parts mixed with one embodiment are interchangeable with other embodiments; one or more parts from the illustrated embodiment may be included in other depicted embodiments in any combination. For example, any of the various components described herein and/or depicted in the figures may be combined, exchanged, or omitted from other embodiments. With respect to the use of substantially any plural and/or singular terms herein, those skilled in the art may translate plural into singular and/or singular into plural according to context and/or application. Various permutations of the singular and/or plural may be stated explicitly herein for the sake of clarity.

[00355] Хотя в настоящем изобретении были описаны некоторые примерные варианты осуществления, следует понимать, что настоящее изобретение не ограничивается описанными вариантами осуществления, но, напротив, предназначено для охвата различных модификаций и эквивалентных компоновок, включенных в объем приложенной формулы изобретения, а также их эквивалентов. [00355] Although certain exemplary embodiments have been described in the present invention, it should be understood that the present invention is not limited to the described embodiments, but rather is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, as well as their equivalents .

Claims (21)

1. Система для лечения глаза млекопитающего, который имеет веко, содержащая:1. A system for treating the eye of a mammal that has an eyelid, comprising: портативное устройство, имеющее:portable device having: корпус инструмента с защелкой крепления и электрическим соединительным штифтом;tool body with fastening latch and electrical connecting pin; переключатель управления, который управляет преобразователем энергии, содержащим устройство, излучающее световую энергию на длинах волн, в том числе на первой длине волны, выбранной для прохождения через веко, и второй длине волны, выбранной для поглощения веком для нагрева; иa control switch that controls a power converter comprising a device emitting light energy at wavelengths including a first wavelength selected to pass through the eyelid and a second wavelength selected to be absorbed by the eyelid for heating; And привод, управляемый кнопкой управления сжатием, для перемещения подвижного кожуха в сторону от корпуса инструмента, при этом подвижный кожух выполнен с возможностью удержания и подачи световой энергии через подвижный кожух;an actuator controlled by a compression control button for moving the movable housing away from the tool body, the movable housing being configured to hold and deliver light energy through the movable housing; присоединяемый компонент, имеющий:an attached component having: язычок крепления, выполненный с возможностью соединения с защелкой крепления корпуса инструмента;a fastening tongue configured to be connected to a fastening latch of the tool body; наружную прокладку для века, выполненную с возможностью размещения перед или на наружной поверхности века, при этом наружная прокладка для века выполнена из прозрачного материала, пропускающего световую энергию, доставляемую подвижным кожухом; иan outer eyelid seal configured to be placed in front of or on the outer surface of the eyelid, wherein the outer eyelid seal is made of a transparent material that transmits light energy delivered by the movable housing; And заднюю пластину, выполненную с возможностью размещения позади или на внутренней поверхности века, причем задняя пластина выполнена из отражающего энергию материала или покрыта отражающим энергию материалом, выполненным с возможностью приема первой длины волны световой энергии, пропущенной через веко, и ее отражения обратно в веко;a backplate configured to be positioned behind or on an inner surface of the eyelid, the backplate being made of or covered with an energy reflective material configured to receive a first wavelength of light energy transmitted through the eyelid and reflect it back into the eyelid; причем, когда веко расположено между наружной прокладкой для века и задней пластиной, световая энергия из преобразователя энергии нагревает целевую область ткани века в достаточной степени для расплавления секрета мейбомиевых желез внутри области мейбомиевых желез, расположенных внутри целевой области ткани или смежно с ней, и wherein, when the eyelid is positioned between the outer eyelid pad and the backplate, light energy from the energy converter heats the target tissue region of the eyelid sufficiently to melt meibomian gland secretions within the region of meibomian glands located within or adjacent to the target tissue region, and причем, когда подвижный кожух отходит от корпуса инструмента, подвижный кожух вынуждает наружную прокладку для века продвигаться к задней пластине и сжимать веко для выжимки мейбомиевых желез.wherein, as the movable housing moves away from the body of the instrument, the movable housing forces the outer eyelid pad to advance toward the back plate and compress the eyelid to squeeze out the meibomian glands. 2. Система по п. 1, в которой преобразователь энергии дополнительно выполнен с возможностью предоставления световой энергии на третьей длине волны, выбранной для бактериологической обработки.2. The system according to claim 1, in which the energy converter is further configured to provide light energy at a third wavelength selected for bacteriological treatment. 3. Система по п. 1, дополнительно содержащая устройство визуализации для осмотра века во время лечения.3. The system of claim 1, further comprising an imaging device for viewing the eyelid during treatment. 4. Система по п. 1, в которой преобразователь энергии содержит по меньшей мере одно из светодиода, лазера, лампы накаливания, ксеноновой лампы, галогенной лампы, люминесцентной лампы, разрядной лампы высокой интенсивности и газоразрядной лампы.4. The system of claim 1, wherein the power converter comprises at least one of an LED, a laser, an incandescent lamp, a xenon lamp, a halogen lamp, a fluorescent lamp, a high intensity discharge lamp, and a gas discharge lamp. 5. Система по п. 1, дополнительно содержащая один или более компонентов, выбранных из группы, состоящей из: дисплея или приборной доски, выполненных с возможностью отображения состояния устройства; устройства измерения температуры, выполненного с возможностью измерения различных температур века, в том числе температур внутренней и/или наружной поверхностей века; регистратора данных; диктофона; батареи, выполненной с возможностью обеспечения питания компонентов устройства; средств зарядки батареи; устройства управления; печатной схемной платы; и схемы связи между задней пластиной и преобразователем энергии.5. The system of claim 1, further comprising one or more components selected from the group consisting of: a display or instrument panel configured to display the status of the device; a temperature measuring device configured to measure various temperatures of the eyelid, including temperatures of the inner and/or outer surfaces of the eyelid; data logger; voice recorder; a battery configured to provide power to the components of the device; battery charging means; control devices; printed circuit board; and communication circuits between the back plate and the power converter. 6. Система по п. 2, в которой привод представляет собой по меньшей мере одно из рычага, кнопки, колеса, ползуна и переключателя. 6. The system of claim 2, wherein the actuator is at least one of a lever, a button, a wheel, a slide and a switch. 7. Система по п. 1, в которой датчик температуры выполнен с возможностью предоставления информации о температуре века, причем преобразователь энергии соединен с возможностью связи с датчиком температуры и выполнен с возможностью 7. The system according to claim 1, in which the temperature sensor is configured to provide information about the temperature of the eyelid, and the energy converter is connected to the temperature sensor and is configured to обнаружения, когда температура века достигает первой заданной пороговой температуры, detection when the temperature of the eyelid reaches the first set threshold temperature, уменьшения интенсивности света, излучаемого преобразователем энергии, с первой интенсивности на вторую интенсивность, когда температура века достигает первой заданной пороговой температуры, decreasing the intensity of light emitted by the energy converter from a first intensity to a second intensity when the eyelid temperature reaches a first predetermined threshold temperature, обнаружения, когда температура глаза достигает второй заданной пороговой температуры, выбранной на основе безопасности пациента и постоянной терапевтической эффективности, иdetecting when the eye temperature reaches a second predetermined threshold temperature selected based on patient safety and ongoing therapeutic efficacy, and разрешения увеличения интенсивности света до первой интенсивности при обнаружении второй заданной пороговой температуры.allowing the light intensity to increase to a first intensity when a second predetermined threshold temperature is detected.
RU2021119548A 2018-12-06 2019-12-04 Systems and methods for treating eye diseases RU2808478C2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62/776,333 2018-12-06

Publications (2)

Publication Number Publication Date
RU2021119548A RU2021119548A (en) 2023-01-09
RU2808478C2 true RU2808478C2 (en) 2023-11-28

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130110101A1 (en) * 2011-09-08 2013-05-02 Marcia Van Valen Methods for treating eye conditions
WO2013114127A1 (en) * 2012-02-03 2013-08-08 Anant Sharma Eye Massage Device
US20150057701A1 (en) * 2013-04-30 2015-02-26 Brian S. Kelleher Systems and methods for the treatment of eye conditions
RU181572U1 (en) * 2018-03-02 2018-07-19 Леонид Кононович Розломий EYE MASSAGE DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130110101A1 (en) * 2011-09-08 2013-05-02 Marcia Van Valen Methods for treating eye conditions
WO2013114127A1 (en) * 2012-02-03 2013-08-08 Anant Sharma Eye Massage Device
US20150057701A1 (en) * 2013-04-30 2015-02-26 Brian S. Kelleher Systems and methods for the treatment of eye conditions
RU181572U1 (en) * 2018-03-02 2018-07-19 Леонид Кононович Розломий EYE MASSAGE DEVICE

Similar Documents

Publication Publication Date Title
US11065152B2 (en) Systems and methods for the treatment of eye conditions
US10456298B2 (en) Systems and methods for the treatment of eye conditions
US20230043137A1 (en) Systems and methods for the treatment of eye conditions
JP6927881B2 (en) Systems and methods for treating eye disorders
US8255039B2 (en) Meibomian gland illuminating and imaging
US20120088980A1 (en) Meibomian gland illuminating and imaging
US20070219600A1 (en) Devices and methods for targeted nasal phototherapy
US11844958B2 (en) Gland treatment devices and methods for treating dry eye disease
RU2808478C2 (en) Systems and methods for treating eye diseases
KR20230026995A (en) Apparatus for treatment of the retina by radiation
JP2023531674A (en) Systems, methods and devices for laser treatment of the eye
KR20210019619A (en) An Apparatus For Treatment of Dry Eye Syndrome