RU2797148C1 - Способ измерения дальности с помощью лазерного дальномера - Google Patents

Способ измерения дальности с помощью лазерного дальномера Download PDF

Info

Publication number
RU2797148C1
RU2797148C1 RU2022103316A RU2022103316A RU2797148C1 RU 2797148 C1 RU2797148 C1 RU 2797148C1 RU 2022103316 A RU2022103316 A RU 2022103316A RU 2022103316 A RU2022103316 A RU 2022103316A RU 2797148 C1 RU2797148 C1 RU 2797148C1
Authority
RU
Russia
Prior art keywords
signal
measuring
received
distance
laser
Prior art date
Application number
RU2022103316A
Other languages
English (en)
Inventor
Анатолий Борисович Атнашев
Александр Владимирович Емельянов
Владислав Владимирович Широбоков
Виктор Алексеевич Рогачев
Александр Александрович Михайлов
Original Assignee
Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации
Filing date
Publication date
Application filed by Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации filed Critical Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации
Application granted granted Critical
Publication of RU2797148C1 publication Critical patent/RU2797148C1/ru

Links

Images

Abstract

Использование: изобретение относится к лазерной технике и может быть использовано при измерении дальности до быстро перемещающихся объектов. Сущность: в способе, основанном на измерении интервала времени между излученным и принятым импульсами лазерного дальномера, преобразованными в радиосигнал, осуществляют вычисление корреляционной функции принятого зондирующего сигнала, используя опорный сигнал, записанный при передаче зондирующего сигнала, преобразованного для записи в импульсный сигнал, предварительно перед указанным вычислением осуществляют фильтрацию принятого и записанного сигналов, для компенсации доплеровского сдвига частоты выполняют мультипликативное преобразование частотного спектра сигналов, при этом измеренное расстояние определяют по положению максимума корреляционной функции на временной оси. В качестве зондирующего сигнала лазерного дальномера используют импульсный сигнал с переменным периодом следования импульсов или с переменной длительностью следования импульсов. Технический результат: увеличение диапазона измерения скорости объекта при измерении расстояния до объекта с помощью лазерного дальномера. 1 ил.

Description

Изобретение относится к лазерной технике и оптике, а также может быть использовано при измерении дальности до объекта, перемещающегося с высокой скоростью, и его селекции.
Известен способ лазерной локации, основанный на генерации модулированного лазерного излучения, приеме и обработке оптического сигнала, отраженного от подвижного объекта [1]. Данный способ локации позволяет измерять дальность до объекта. При этом информация о доплеровском смещении частоты излучения, по которому можно судить о скорости движения объекта, не используется и в рассматриваемом случае является источником ошибок при измерении дальности.
Известен также способ локации, в основу которого положено использование доплеровского эффекта для пеленгации и измерения радиальной скорости подвижного объекта (движущейся цели) [2]. Несмотря на многие преимущества указанного способа такие, как возможность обеспечения высокой чувствительности, его применение ограничивается, как правило, областью радиолокации. Ввиду затруднений, возникающих при обработке широкополосных сигналов, в лазерной локации данный способ не используется.
Наиболее близким к заявляемому способу является выбранный в качестве прототипа способ измерения дальности до объекта, основанный на измерении интервала времени между моментом излучения зондирующего лазерного импульса и моментом приема излучения, отраженного от объекта, с последующим умножением на скорость распространения света [3].
Недостаток указанного дальномера заключается в наличии погрешности временной фиксации принятого импульса. В зависимости от дальности объекта, состояния локационной трассы и типа цели амплитуда сигнала может меняться на 4-6 порядков. При этом из-за ограничения скорости сигнала в приемном тракте ограничивается точность измерения. Кроме того, сигнал может искажаться шумами и помехами аддитивного и мультипликативного характера. Известный способ не предназначен для измерения дальности высокоскоростных целей, что является его недостатком.
Задачей изобретения является измерения дальности до объекта, двигающегося с повышенной скоростью, улучшение помехозащищенности способа.
Указанная задача решается за счет того, что в способе обработки зондирующего сигнала, основанном на измерении интервала времени между излученным и принятым импульсами, осуществляют вычисление корреляционной функции сигнала принятого от объекта, двигающегося с повышенной скоростью, используя опорный сигнал, записанный при передаче зондирующего сигнала, преобразованного для записи в импульсный сигнал, предварительно перед указанным вычислением осуществляют фильтрацию принятого и записанного сигналов узкополосыми фильтрами, выполняют мультипликативное преобразование частотного спектра сигналов, при этом измеренное расстояние определяют по положению максимума корреляционной функции на временной оси, в качестве зондирующего сигнала используют импульсный сигнал с переменным периодом следования импульсов.
Техническим результатом изобретения является измерение расстояния до объекта, двигающегося с повышенной скоростью, а также повышение помехозащищенности способа измерения дальности.
Сущность изобретения рассматривается на примере генерации и обработки зондирующего сигнала при измерении дальности до подвижного объекта и поясняется чертежом, представленным на фиг. 1, где изображена упрощенная схема формирования, фильтрации опорного и зондирующего сигналов, а также обработки сигнала, отраженного от объекта.
Согласно чертежу схема содержит управляющее устройство 1, к которому подключен излучатель 2 лазерного сигнала, генерирующий луч в направлении на объект 3, узкополосный фильтр 4, связывающий посредством передачи излучения 5 объект 3 с фотоприемником 6, подключенным к входу вычислителя 7, другой вход которого соединен с дополнительным фотоприемником 8, который связан с излучателем 2 через узкополосный фильтр 9. Управляющее устройство 1 подключено к преобразователю 10 частотного спектра сигнала и к вычислителю 7. Через
Figure 00000001
обозначен выход вычислителя 7.
Генерацию и обработку зондирующего сигнала осуществляют следующим образом.
По сигналу управляющего устройства 1 включают излучатель 2, на который подается импульсный сигнал с управляющего устройства 1. Излучатель 2 начинает генерировать лазерные колебания, которые распространяются в пространстве и достигают зондирующего объекта 3. Отраженный от объекта оптический сигнал 5 возвращается через узкополосый фильтр 4 на фотоприемник 6, где происходит преобразование электромагнитных колебаний в электрические. Параллельно лазерные колебания излучателя 2 подают на дополнительный фотоприемник 8 через узкополосый фильтр 9. С помощью фотоприемника 8 формируют опорный сигнал. После усиления электрический сигнал, снимаемый с дополнительного фотоприемника 8, подают на преобразователь 10 частотного спектра сигнала для мультипликативного сдвига частоты с целью компенсации смещения частоты, возникающего у отраженного сигнала при движении объекта 3. Как известно, вычисление корреляционной функции возможно при равных частотах коррелируемых сигналов [4]. После мультипликативного сдвига частоты в соответствии с радиальной скоростью объекта опорный электрический сигнал подается на один из входов вычислителя 7, на другой вход которого подается электрический сигнал, снимаемый с фотоприемника 6, несущий информацию об удаленности объекта. По сигналу управляющего устройства 1 происходит вычисление взаимной корреляционной функции названных сигналов. По положению импульса, соответствующего максимальному значению корреляционной функции на временной оси, определяют отрезок времени, затраченный на прохождение лазерного луча до объекта 3 и обратно. По значению временного отрезка вычисляют, зная скорость света, расстояние до объекта 3. Информацию снимают с выхода
Figure 00000002
вычислителя 7. Возможно определение величины мультипликативного сдвига частоты опорного электрического сигнала по значению радиальной скорости объекта, как это делают в [4]. Скорость объекта 3 известна заранее.
Исследования, в частности, моделирование показали, что точность измерения расстояния может зависеть от ширины полосы сигнала (в данном случае импульсного сигнала, используемого для модуляции оптического излучения). Результаты исследования полностью согласуются с материалом, изложенным в [5]. Непосредственной связи точности измерения со скоростью объекта в вычислении дальности нет.
Описанная выше совокупность признаков предлагаемого способа обеспечивает решение поставленной задачи, позволяет реализовать возможность измерения расстояния до цели в условиях высокой скорости объекта, независимо от фоновой обстановки.
Как показали предварительные расчеты, а также моделирование процесса преобразования сигналов, предлагаемый способ позволяет достичь высокой точности в измерении расстояния до целей, в том числе и двигающихся с повышенной скоростью.
Благодаря значительной эффективности и сравнительной простоте реализации, способ может найти широкое практическое применение.
Источники информации, использованные при составлении описания и формулы изобретения.
[1] Петровский В.И., Пожидаев О.А. Локаторы на лазерах. - М.: Воениздат, 1969. - С. 54-81.
[2] Белоцерковский Г.Б. Основы радиолокации и радиолокационные устройства. - М.: Сов. радио, 1975. - С. 84-85.
[3] Вильнер В, Ларюшкин А, Рудь Е. Методы повышения точности импульсных лазерных дальномеров // - Электроника: Наука, Технология, Бизнес.2008, №3. с. 118-119 (прототип).
[4] Пат. 2302077 Российская Федерация МПК Н04В 1/04. Способ обработки сигнала / А.Б. Атнашев, В.Б. Атнашев. №2004139135: заявл. 23.12.2007, Бюл. №18.
[5] Лезин Ю.С. Введение в теорию и технику радиотехнических систем / - М: Радио и связь, 1986. - С. 100-103.

Claims (1)

  1. Способ измерения дальности с помощью лазерного дальномера, основанный на измерении интервала времени между излученным и принятым импульсами, отличающийся тем, что осуществляют преобразование импульсов в радиосигнал, вычисляют корреляционную функцию принятого сигнала, отраженного от объекта, двигающегося с высокой скоростью, используя опорный сигнал, записанный при передаче зондирующего сигнала, перед указанным вычислением осуществляют фильтрацию принятого и записанного сигналов узкополосными фильтрами, выполняют мультипликативное преобразование частотного спектра сигналов, при этом измеренное расстояние определяют по положению максимума корреляционной функции на временной оси, при этом в качестве зондирующего сигнала используют импульсный сигнал с переменным периодом следования импульсов или с переменной длительностью следования импульсов.
RU2022103316A 2022-02-09 Способ измерения дальности с помощью лазерного дальномера RU2797148C1 (ru)

Publications (1)

Publication Number Publication Date
RU2797148C1 true RU2797148C1 (ru) 2023-05-31

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413905A (en) * 1978-08-08 1983-11-08 Honeywell Inc. Laser range meter
RU2302077C2 (ru) * 2004-12-23 2007-06-27 Анатолий Борисович Атнашев Способ обработки сигнала
US20210055392A1 (en) * 2019-08-20 2021-02-25 Samsung Electronics Co., Ltd. LiDAR DEVICE AND OPERATING METHOD THEREOF
US20210072382A1 (en) * 2018-01-31 2021-03-11 Robert Bosch Gmbh Lidar Time-of-Flight and Intensity Detection Signal-Path Based on Phase-Coded Multi-Pulse Transmission and Single-Bit Oversampled Matched Filter Detection
US20210325515A1 (en) * 2017-07-13 2021-10-21 Texas Instruments Incorporated Transmit signal design for an optical distance measurement system
CN113917485A (zh) * 2020-07-10 2022-01-11 原子能和辅助替代能源委员会 具有改进的信噪比的相干激光雷达系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413905A (en) * 1978-08-08 1983-11-08 Honeywell Inc. Laser range meter
RU2302077C2 (ru) * 2004-12-23 2007-06-27 Анатолий Борисович Атнашев Способ обработки сигнала
US20210325515A1 (en) * 2017-07-13 2021-10-21 Texas Instruments Incorporated Transmit signal design for an optical distance measurement system
US20210072382A1 (en) * 2018-01-31 2021-03-11 Robert Bosch Gmbh Lidar Time-of-Flight and Intensity Detection Signal-Path Based on Phase-Coded Multi-Pulse Transmission and Single-Bit Oversampled Matched Filter Detection
US20210055392A1 (en) * 2019-08-20 2021-02-25 Samsung Electronics Co., Ltd. LiDAR DEVICE AND OPERATING METHOD THEREOF
CN113917485A (zh) * 2020-07-10 2022-01-11 原子能和辅助替代能源委员会 具有改进的信噪比的相干激光雷达系统

Similar Documents

Publication Publication Date Title
JP6945262B2 (ja) 光チャープレンジ検出のために方形波デジタルチャープ信号を使用するための方法およびシステム
JP5138854B2 (ja) 光学距離測定
US10261187B2 (en) Optical phasograms for LADAR vibrometry
CA2800267C (en) Method and apparatus for a pulsed coherent laser range finder
US11243307B2 (en) Method for processing a signal from a coherent lidar in order to reduce noise and related lidar system
US11125879B2 (en) Method for processing a signal arising from coherent lidar and associated lidar system
CN100478704C (zh) Ld抽运固体激光器混沌激光测距的装置及方法
RU191111U1 (ru) Оптоволоконный когерентный доплеровский лидар
CN113238246A (zh) 基于脉冲序列的距离速度同时测量方法及装置及存储介质
CN111708004A (zh) 一种新型激光测距方法及激光雷达系统
CN112654895A (zh) 一种雷达探测方法及相关装置
US10408925B1 (en) Low probability of intercept laser range finder
CN104111450B (zh) 一种利用双脉冲探测目标微多普勒特征的方法及系统
RU2797148C1 (ru) Способ измерения дальности с помощью лазерного дальномера
CN112859044A (zh) 一种基于涡旋光的水下激光雷达系统
CN115290175B (zh) 一种海水声速测量装置、方法以及海洋测距系统
CN116908875A (zh) 一种面向远距离高并行性的激光成像方法及系统
CN114966100B (zh) 一种基于激光雷达的波后粒子速度场测量系统及方法
CN105911537A (zh) 一种减小主动声纳探测盲区的方法
RU2720268C1 (ru) Лазерный дальномер
CN116520343A (zh) 一种激光雷达高精度测距系统
RU2755518C1 (ru) Радиолокационная станция
RU2254557C1 (ru) Высокоинформативный распознающий дальномер
RU2434247C1 (ru) Способ формирования интерференционного сигнала в доплеровских лидарах
US20240004043A1 (en) Frequency-modulated coherent lidar