RU2794428C1 - Влагомер многофазный поточный - Google Patents

Влагомер многофазный поточный Download PDF

Info

Publication number
RU2794428C1
RU2794428C1 RU2022129829A RU2022129829A RU2794428C1 RU 2794428 C1 RU2794428 C1 RU 2794428C1 RU 2022129829 A RU2022129829 A RU 2022129829A RU 2022129829 A RU2022129829 A RU 2022129829A RU 2794428 C1 RU2794428 C1 RU 2794428C1
Authority
RU
Russia
Prior art keywords
wavelength
leds
matrix
moisture meter
nir
Prior art date
Application number
RU2022129829A
Other languages
English (en)
Inventor
Александр Фёдорович Павлов
Олег Викторович Коляда
Original Assignee
Акционерное общество "Инженерно-производственная фирма "Сибнефтеавтоматика"
Filing date
Publication date
Application filed by Акционерное общество "Инженерно-производственная фирма "Сибнефтеавтоматика" filed Critical Акционерное общество "Инженерно-производственная фирма "Сибнефтеавтоматика"
Application granted granted Critical
Publication of RU2794428C1 publication Critical patent/RU2794428C1/ru

Links

Images

Abstract

Изобретение относится к области измерительной техники и может быть использовано для определения количества воды, содержащейся во взаимно несмешивающихся с ней нефтепродуктах и свободном нефтяном или природном газах. Заявленный влагомер многофазный поточный содержит проточную ячейку с проточной частью в виде щели шириной от 3,3 до 4,5 мм и размещенные с противоположных сторон проточной ячейки напротив оптических окон и источник инфракрасного излучения ближней инфракрасной области (БИК), выполненный в виде матрицы инфракрасных светодиодов для различных значений длины волны X в диапазоне от длины волны максимального поглощения нефти до длины волны максимального поглощения воды, и приемник БИК излучения, выполненный в виде широкополосного сдвоенного фотодиода и соединенный с первичным преобразователем сигнала. Длине волны максимального поглощения нефти и длине волны максимального поглощения воды в матрице соответствуют сборки светодиодов, состоящие из четырех последовательно соединенных светодиодов, а каждому из промежуточных значений длины волны соответствует по одному светодиоду. Светодиоды в матрице и сдвоенный фотодиод приемника БИК излучения установлены на модули Пельтье, размещенные на теплоотводящем элементе, соединенным с внешним радиатором. Технический результат - повышение точности измерения обводненности в потоке углеводородной смеси. 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области измерительной техники, в частности к влагомерам многофазным поточным, и может быть использовано для определения количества воды, содержащейся во взаимно несмешивающихся с ней нефтепродуктах и свободном нефтяном или природном газах.
Известен поточный влагомер нефти типа УДВН, состоящий из первичного измерительного преобразователя сверхвысокой частоты (СВЧ), включающего цилиндрический корпус с измерительной линией и отверстиями для болтов (для крепления к фланцам нефтепровода), соединенного кабелем с блоком электронным. Первичный преобразователь состоит из СВЧ переключателя и платы управления и выдает аналоговые сигналы, пропорциональные СВЧ мощности в опорном и измерительном каналах. Величина сигнала в измерительном канале зависит от влагосодержания в измеряемой среде. Блок электронный осуществляет подачу искробезопасных питающих напряжений и токов на первичный преобразователь, а также обработку поступающих с преобразователя сигналов в сигнал, пропорциональный влагосодержанию нефти (http://udvn.ru/produktsiva/udvn-1pm).
Недостатком известного влагомера является низкая точность при определении влажности нефти с высокой обводненностью, а также невозможность определения количества солей, т.к. СВЧ частота рассчитана на поглощение энергии микроволнового излучения только молекулами воды.
Также известен диэлькометрический поточный влагомер ВСН-АТ, содержащий первичный преобразователь и электронный блок. Первичный преобразователь состоит из высокочастотного цифрового генератора колебаний и подключенного к нему волновода. Волновод состоит из внешней трубы, являющейся корпусом влагомера, и центрального металлического электрода. В корпусе влагомера находится датчик температуры для коррекции показаний влагомера в зависимости от температуры измеряемой среды. Электронный блок обеспечивает преобразование измеренного комплексного сопротивления волновода и резонансной частоты в объемную долю воды в водно-нефтяной смеси и передачу этой информации на табло или на внешнее электронное оборудование, осуществляет температурную компенсацию и диагностику влагомера (http://www.all-pribors.ru/opisanie/62863-15-vsn-at-69049).
Принцип действия влагомера основан на измерении комплексного электрического сопротивления первичного преобразователя влагомера и резонансной частоты электрических колебаний, создаваемых высокочастотным генератором в зависимости от объемной доли воды в водно-нефтяной смеси.
Недостатками влагомера являются ограничение по содержанию свободного газа в потоке газожидкостной эмульсии (его объемная доля не должна превышать 5%), существенная зависимость результатов измерений от солености воды и дисперсности эмульсии, а также высокие требования к однородности потока, особенно при прямом типе эмульсии «нефть в воде».
Наиболее близким к предлагаемому техническим решением является измеритель обводненности типа Red Eye, содержащий проточную ячейку с проточной частью в виде щели, с расположенными друг напротив друга оптическими окнами, размещенные с противоположных сторон проточной ячейки напротив оптических окон источник инфракрасного излучения ближней инфракрасной области (БИК) и приемник БИК, соединенный с первичным преобразователем сигнала. Электронный блок обработки информации обеспечивает формирование аналогового выходного сигнала, пропорционального содержанию воды (заявка США № US 2006/0186340 А1, 2006 г.).
В известном измерителе контролируемая водонефтяная смесь проходит через проточную ячейку с длиной оптического пути около 2 мм. Электронный блок обработки информации обеспечивает обработку результатов измерений и формирование аналогового выходного сигнала, пропорционального содержанию воды.
Данный измеритель обеспечивает достаточную точность измерений при больших значениях обводненности, но его использование ограничено при малой обводненности, ввиду сильного влияния оптической плотности смеси (на длине волны λ=1,1 мкм) на точность измерения. Также недостатком данного датчика является то, что в качестве источника инфракрасного излучения используется широкополосная лампа, находящаяся в режиме излучения во время всей работы датчика, это приводит к износу самой лампы и соответственно снижению уровня принимаемого сигнала, что не позволяет обеспечивать заявленную точность. Высокий износ лампы также значительно снижает ее ресурс.
Кроме того, из-за узкого измерительного канала в проточной ячейке (2 мм) попадающая в него капля нефти, ввиду более высокой вязкости, замедляется относительно основного потока. Задержка более вязкой фракции приводит к искажениям в измерениях. Зависимость проводимых измерений от вязкости нефти требует проведения калибровки известного измерителя на тот тип нефти, в котором он будет эксплуатироваться.
Задачей заявленного технического решения является повышение точности измерения обводненности в потоке нефти путем увеличения длины оптического пути в проточной ячейке, а также за счет увеличения мощности источников БИК излучения и расширения количества длин волн для измерений, повышение ресурса влагомера многофазного поточного путем уменьшения длительности работы при единичном измерении и стабилизации температуры поверхности излучателей и приемников БИК.
Технический результат достигается тем, что в поточном влагомере, содержащем проточную ячейку с проточной частью в виде щели с расположенными друг напротив друга оптическими окнами и размещенные с противоположных сторон проточной ячейки напротив оптических окон источник БИК излучения и приемник БИК излучения, соединенный с преобразователем сигнала, ширина щели проточной ячейки составляет от 3,5 до 4,5 мм, источник БИК излучения представляет собой матрицу инфракрасных светодиодов для различных значений длины волны λ в диапазоне от длины волны максимального поглощения нефти до длины волны максимального поглощения воды, причем длине волны максимального поглощения нефти и длине волны максимального поглощения воды в матрице соответствуют сборки светодиодов, представляющие собой четыре последовательно соединенных светодиода, а каждому промежуточному значению длины волны соответствует один светодиод, при этом приемник БИК излучения выполнен в виде широкополосного сдвоенного фотодиода, причем светодиоды в матрице источника БИК излучения и широкополосный сдвоенный фотодиод в приемнике БИК излучения установлены на модули Пельтье, размещенные на теплоотводящем элементе.
Кроме того, матрица инфракрасных светодиодов включает в себя 12 светодиодов, соответствующих следующим длинам волн λ1-4=1,07 мкм; λ5=1,34 мкм; λ6=1,46 мкм; λ7=1,63 мкм; λ8=1,75 мкм; λ9-12=1,94 мкм, при этом на элементах Пельтье установлены термисторы.
Выполнение ширины проточной части проточной ячейки от 3,5 до 4,5 мм способствует свободному прохождению через нее капель нефти без их замедления относительно основного потока, что исключает возможность искажения в измерениях в зависимости от вязкости нефти и тем самым повышает точность измерения. Выполнение ширины щели проточной ячейки менее 3,5 мм снижает точность измерений влагосодержания потока измеряемой среды из-за возможности искажений, возникающих вследствие вязкости нефтяной фракции. Выполнение щели свыше 4,5 мм приводит к необходимости увеличения мощности источников БИК излучения, что непосредственно влияет на ресурс влагомера.
Использование в качестве источника БИК излучения объединенных в матрицу инфракрасных светодиодов позволяет обеспечить последовательное кратковременное включение этих светодиодов в работу, что увеличивает ресурс работы источника излучения, повышая точность измерений.
Размещение светодиодов матрицы и сдвоенного фотодиода на элементах Пельтье обеспечивает стабилизацию температуры на поверхности светодиодов. При этом размещение на элементах Пельтье термисторов позволяет контролировать и регулировать температуру поверхности источника и приемника БИК излучения. Поддержание температуры на одном уровне (20°С) обеспечивает стабильность измерений вне зависимости от температуры измеряемой среды в диапазоне температур от минус -5 до плюс +95°С и увеличивает срок службы влагомера.
Выполнение матрицы инфракрасных светодиодов для различных значений длины волны λ в диапазоне от длины волны максимального поглощения нефти до длины волны максимального поглощения воды в ближней инфракрасной области позволяет обеспечить измерения в максимально возможном диапазоне длин волн.
Выполнение в матрице для длины волны максимального поглощения нефти и длины волны максимального поглощения воды связок светодиодов, состоящих из четырех последовательно соединенных светодиодов, позволяет увеличить мощность источников БИК излучения для данных длин волн, что обеспечивает выполнение измерений вне зависимости от влияния оптической плотности смеси и позволяет производить высокоточные измерения во всем диапазоне влагосодержания 0-100%.
Включение в матрицу инфракрасных светодиодов с длинами волн λ1-4=1,07 мкм; λ5=1,34 мкм; λ6=1,46 мкм; λ7=1,63 мкм; λ8=1,75 мкм; λ9-12=1,94 мкм позволяет проводить измерения в широком диапазоне длин волн. Измерение спектра поглощения на длинах волн λ=1,07 мкм; λ=1,34 мкм обеспечивает точное вычисление количества нефтяной фракции вне зависимости от типа нефтепродукта по признаку темные-светлые нефтепродукты. Измерение спектра поглощения на длине волны λ=1,94 мкм обеспечивает точное вычисление количества воды. Промежуточные измерения спектра поглощения на длинах волн λ=1,46 мкм; λ=1,63 мкм; λ=1,75 мкм обеспечивают выполнение корректировки измеренных параметров в зависимости от уровня преломления и отражения первичных сигналов БИК излучения.
Изобретение поясняется графически, где на фиг. 1 представлен предлагаемый влагомер многофазный поточный, на фиг. 2 представлена схема светодиодной матрицы, на фиг. 3 изображена схема приемника БИК излучения.
Влагомер многофазный поточный содержит проточную ячейку 1 с проточной частью в виде щели 2, размещаемой непосредственно в потоке измеряемой среды. Щель 2 имеет ширину от 3,5 до 4,5 мм. В проточной ячейке 1 выполнены оптические окна 3,4, в которых, соответственно, размещены источник БИК излучения в виде матрицы 5 инфракрасных светодиодов 7 и приемник 6 БИК излучения, представляющий собой сдвоенный фотодиод 8. Инфракрасные светодиоды 7 соответствуют следующим значениям длины волны λ1-4=1,07 мкм; λ5=1,34 мкм; λ6=1,46 мкм; λ7=1,63 мкм; λ8=1,75 мкм; λ9-12=1,94 мкм. Длине волны максимального поглощения нефти λ1-4 в матрице 5 соответствует сборка светодиодов, включающая четыре последовательно соединенных светодиода L1, L2, L3, L4 (фиг. 2), а длине волны максимального поглощения воды λ9-12 в матрице 5 соответствуют сборка светодиодов, включающая четыре последовательно соединенных светодиода L9, L10, L11, L12. Длине волны λ5=1,34 мкм соответствует светодиод L5; длине волны λ6=1,46 мкм соответствует светодиод L6; длине волны λ7=1,63 мкм соответствует светодиод L7 и длине волны λ8=1,75 мкм соответствует светодиод L8. Светодиоды L1-L12 в матрице 5, а также сдвоенный фотодиод 8 (фиг. 3) приемника 6 БИК излучения установлены на элементах Пельтье 9, на которых также установлены термисторы 10. Элемент Пельтье 9 светодиодной матрицы 5 имеет термоотводящий элемент 11, соединенный с внешним радиатором 12. Проточная ячейка удерживается в потоке измеряемой среды на штанге 13, являющейся защитным корпусом для всего измерительного устройства. Влагомер также включает в себя первичный электронный преобразователь сигнала 14, к которому подключается приемник 6 БИК излучения. Первичный преобразователь 14 электрически связан со вторичным преобразователем 15. Штанга 13 крепится к герметизирующему устройству 16, позволяющему использовать различные виды фланцев 17. Влагомер работает следующим образом.
Поток измеряемой среды проходит через измерительную щель 2. Первичный преобразователь сигнала 14 производит импульсную подачу стабилизованного токового сигнала на светодиоды 7. Длительность каждого импульса, в течение которого светодиоды 7 (L4, L5, L6, L7, L8, L10) или сборки светодиодов (L1-L4, L9-L12) поочередно излучают, равна 300 мкс. Температура светодиодов 7, измеряемая при помощи термисторов 10, принудительно поддерживается от элементов Пельтье 9 на уровне 20°С, тепловая энергия от которых отводится через теплоотводящий элемент 11 на радиатор 12.
Стабилизация температуры на светодиодах 7 матрицы 5 позволяет избежать искажений проводимых измерений из-за повышенной или пониженной температуры и измерять поглощение измеряемой средой БИК излучения на точно выбранных узких полосах инфракрасного сигнала, а также увеличивает эксплуатационный ресурс влагомера.
Во время излучения на приемной стороне, посредством усиления сигнала сдвоенного фотодиода 8, первичным преобразователем 14 выполняется измерение величины проходящего радиочастотного излучения. Каждый цикл измерений состоит из последовательного измерения величины пропускания сигнала БИК на каждой из длин волн, путем подключения соответствующего светодиода 7 (L4, L5, L6, L7, L8, L10) или сборки светодиодов 7: (L1-L4, L9-L12). После каждого цикла измерений вычисляется спектр пропускания сигнала. Первичный преобразователь 14 путем сравнения с записанными в память эталонными спектрами вычисляет объемное содержание воды и углеводородной смеси, включая газовый конденсат, нефть, бензин, дизельное топливо, а также объемное содержание газовой фазы.
Далее цифровой сигнал передается через последовательный порт во вторичный преобразователь 15, который преобразует полученные значения содержания каждого из компонентов измеряемой среды в выходные сигналы посредством цифровой обработки через градуировочные таблицы в стандартный токовый сигнал 4-20 мА, частотный сигнал 0-1000 Гц, а также цифровые сигналы посредством протоколов ModBus и HART, с учетом настроек пользователя.
Применение предложенного изобретения позволит значительно повысить точность измерения объемного содержания воды в нефтяной продукции и может найти применение в измерительных установках, нефтеперерабатывающем оборудовании и нефтепроводах, а также в процессе подготовки сырья в системах контроля качества нефтяной продукции.

Claims (4)

1. Влагомер многофазный поточный, содержащий проточную ячейку с проточной частью в виде щели с расположенными друг напротив друга оптическими окнами, размещенные с противоположных сторон проточной ячейки напротив оптических окон источник инфракрасного излучения ближней инфракрасной области (БИК) и приемник БИК излучения, соединенный с первичным преобразователем сигнала, отличающийся тем, что источник БИК излучения представляет собой матрицу инфракрасных светодиодов для различных значений длины волны λ в диапазоне от длины волны максимального поглощения нефти до длины волны максимального поглощения воды, причем длине волны максимального поглощения нефти и длине волны максимального поглощения воды в матрице соответствуют сборки светодиодов, состоящие из четырех последовательно соединенных светодиодов, а каждому из промежуточных значений длины волны соответствует по одному светодиоду, при этом приемник БИК излучения выполнен в виде широкополосного сдвоенного фотодиода, а ширина щели проточной ячейки составляет от 3,5 до 4,5 мм, причем светодиоды в матрице и сдвоенный фотодиод приемника БИК излучения установлены на модули Пельтье, размещенные на теплоотводящем элементе.
2. Влагомер по п. 1, отличающийся тем, что матрица инфракрасных светодиодов включает в себя 12 светодиодов, соответствующих следующим длинам волн λ1-4=1,07 мкм; λ5=1,34 мкм; λ6=1,46 мкм; λ7=1,63 мкм; λ8=1,75 мкм; λ9-12=1,94 мкм.
3. Влагомер по п. 1 или 2, отличающийся тем, что на элементах Пельтье установлены термисторы.
4. Влагомер по п. 1, отличающийся тем, что теплоотводящий элемент соединен с внешним радиатором.
RU2022129829A 2022-11-17 Влагомер многофазный поточный RU2794428C1 (ru)

Publications (1)

Publication Number Publication Date
RU2794428C1 true RU2794428C1 (ru) 2023-04-18

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU57466U1 (ru) * 2006-03-21 2006-10-10 "Центр Разработки Нефтедобывающего Оборудования (Црно)" Полнодиапазонный поточный влагомер сырой нефти (варианты)
US7233001B2 (en) * 2005-02-24 2007-06-19 Weatherford/Lamb, Inc. Multi-channel infrared optical phase fraction meter
CN103760116B (zh) * 2014-01-27 2016-08-17 东北大学 无可动部件在线连续测量式近红外水分仪
RU178357U1 (ru) * 2017-11-22 2018-03-30 Общество с ограниченной ответственностью "Ойл Автоматика" Инфракрасный влагомер
RU2669156C1 (ru) * 2017-11-09 2018-10-08 Акционерное общество "ГМС Нефтемаш" Поточный влагомер
RU2704034C1 (ru) * 2019-01-29 2019-10-23 Акционерное общество "ГМС Нефтемаш" Поточный влагомер

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233001B2 (en) * 2005-02-24 2007-06-19 Weatherford/Lamb, Inc. Multi-channel infrared optical phase fraction meter
RU57466U1 (ru) * 2006-03-21 2006-10-10 "Центр Разработки Нефтедобывающего Оборудования (Црно)" Полнодиапазонный поточный влагомер сырой нефти (варианты)
CN103760116B (zh) * 2014-01-27 2016-08-17 东北大学 无可动部件在线连续测量式近红外水分仪
RU2669156C1 (ru) * 2017-11-09 2018-10-08 Акционерное общество "ГМС Нефтемаш" Поточный влагомер
RU178357U1 (ru) * 2017-11-22 2018-03-30 Общество с ограниченной ответственностью "Ойл Автоматика" Инфракрасный влагомер
RU2704034C1 (ru) * 2019-01-29 2019-10-23 Акционерное общество "ГМС Нефтемаш" Поточный влагомер

Similar Documents

Publication Publication Date Title
CA2617186C (en) A method and apparatus for measuring the water conductivity and water volume fraction of a multiphase mixture containing water
CA2572955C (en) A method and apparatus for measuring the composition and water salinity of a multiphase mixture containing water
US8569686B2 (en) Multi-channel infrared optical phase fraction meter
DK174374B1 (da) Sammensætningsmonitor og fremgangsmåde ved monitorering under anvendelse af impedansmålinger, samt flowmeter
JP2523342B2 (ja) 他の流体中に含まれる一つの流体の濃度を測定する装置
CA2548063C (en) A method and flow meter for determining the flow rates of the components of a multiphase fluid
US9002650B2 (en) Multiphase flow meter for subsea applications using hydrate inhibitor measurement
US2427094A (en) Super-high-frequency wattmeter
CN106053428B (zh) 一种基于f-p光学信号增强的石化载氢管道气体含量在线测量的传感装置
US10365209B1 (en) Apparatus and method for performing dissolved gas analysis on a piece of electrical equipment using resonant photo-acoustic spectroscopy and use thereof
US5625293A (en) Determination of the watercut of a multiphase flow directly from measured microwave frequency dielectric properties
AU6510490A (en) Improvements to oil/water measurement
US6536946B1 (en) Device and method for directly measuring calorific energy contained in a fuel gas
US11280724B2 (en) Apparatus and method for performing calibration of a dissolved gas analysis system using optical absorption spectroscopy and use thereof in an apparatus and method for performing dissolved gas analysis (DGA) on a piece of electrical equipment
RU2794428C1 (ru) Влагомер многофазный поточный
RU2669156C1 (ru) Поточный влагомер
RU2632275C2 (ru) Мультифазный поточный влагомер
KR20180048644A (ko) 액체 매질 중의 물질 농도 또는 물질을 측정하기 위한 방법 및 장치
JP2021179434A (ja) ミリ波及び超音波センサ
RU2331058C1 (ru) Способ определения октанового числа бензинов и устройство для его реализации
AU2016203810B1 (en) A transformer and method of manufacture
US3017802A (en) Optical apparatus for detecting substances in fluids
CN105738298B (zh) 一种基于色坐标值的水溶液浊度测量方法及装置
RU94344U1 (ru) Влагомер поточный
RU118757U1 (ru) Полнодиапазонный поточный влагомер сырой нефти