RU2791568C1 - Способ имитации пространственной последовательности отражающих поверхностей оптико-электронного средства - Google Patents

Способ имитации пространственной последовательности отражающих поверхностей оптико-электронного средства Download PDF

Info

Publication number
RU2791568C1
RU2791568C1 RU2022117222A RU2022117222A RU2791568C1 RU 2791568 C1 RU2791568 C1 RU 2791568C1 RU 2022117222 A RU2022117222 A RU 2022117222A RU 2022117222 A RU2022117222 A RU 2022117222A RU 2791568 C1 RU2791568 C1 RU 2791568C1
Authority
RU
Russia
Prior art keywords
optical
reflective surfaces
ocr
oee
spatial
Prior art date
Application number
RU2022117222A
Other languages
English (en)
Inventor
Павел Евгеньевич Кулешов
Владимир Дмитриевич Попело
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Application granted granted Critical
Publication of RU2791568C1 publication Critical patent/RU2791568C1/ru

Links

Images

Abstract

Изобретение относится к области оптико-электронной техники, системам оптико-электронного противодействия. Способ имитации пространственной последовательности отражающих поверхностей оптико-электронного средства (ОЭС) заключается в следующем. Устанавливают в секторе поиска ОЭС ложную оптическую цель (ЛОЦ). Включают в ЛОЦ N оптических уголковых отражателей (ОУО) тетраэдрического типа прямыми углами при вершине. При этом высота n-го ОУО больше высоты n+1-го ОУО на длину, обеспечивающую задержку лазерного локационного излучения (ЛЛИ), аналогичную задержке ЛЛИ между n-й и n+1-й отражающими поверхностями имитируемого ОЭС, где
Figure 00000008
, а отражающие поверхности n-го и n+1-го ОУО имеют значения обобщенных коэффициентов отражения, равные значениям коэффициентов отражения соответствующих n-й и n+1-й отражающих поверхностей имитируемого ОЭС. Устанавливают N ОУО так, чтобы они имели общую прямую пространственных биссектрис трехгранных углов своих вершин, общую входную плоскость и параллельные тождественные ребра. Отражают ЛЛИ каждым ОУО ЛОЦ и имитируют пространственную последовательность отражающих поверхностей ОЭС. Технический результат - повышение эффективности ЛОЦ. 2 ил.

Description

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия.
Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ имитации оптико-электронного средства (ОЭС) (см., например, [1]), основанный на установке в секторе поиска ОЭС ложной оптической цели (ЛОЦ), делении падающего на ЛОЦ оптического излучения на N субволновых пучков, где N - количество отражающих поверхностей реального ОЭС, задерживании i-ого субволнового пучка на время прохождения оптического излучения до i-ой отражающей поверхности реального ОЭС, где
Figure 00000001
, отражении i-ого субволнового пучка с временными и энергетическими параметрами отражения равными временным и энергетическим параметрам отражения i-ой отражающей поверхности реального ОЭС.
Недостатками способа являются сложная техническая реализация, требующая использования высокотехнологических элементов, а также ограничение по угловой плотности отраженного потока в направлении лазерного локатора.
Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности ЛОЦ с имитацией пространственной последовательности отражающих поверхностей ОЭС.
Сущность изобретения заключается в имитации ОЭС путем формирования ЛОЦ с совокупностью отражающих поверхностей построением «оптический уголковый отражатель в … в оптическом уголковом отражателе» заданных пространственных и отражающих параметров.
Технический результат достигается тем, что в известном способе имитации пространственной последовательности отражающих поверхностей ОЭС, основанном на установке в секторе поиска ОЭС ЛОЦ, включают в ЛОЦ N оптических уголковых отражателей (ОУО) тетраэдрического типа прямыми углами при вершине, при этом высота n-го ОУО больше высоты n+1-го ОУО на длину, обеспечивающую задержку лазерного локационного излучения (ЛЛИ) аналогичную задержке ЛЛИ между n-ой и n+1-ой отражающими поверхностями имитируемого ОЭС, где
Figure 00000001
, а отражающие поверхности n-го и n+1-го ОУО имеют значения обобщенных коэффициентов отражения равные значениям коэффициентов отражения соответствующих n-ой и n+1-ой отражающих поверхностей имитируемого ОЭС, устанавливают N ОУО, так чтобы они имели общую прямую пространственных биссектрис трехгранных углов своих вершин, общую входную плоскость и параллельные тождественные ребра, отражают ЛЛИ каждым ОУО ЛОЦ и имитируют пространственную последовательность отражающих поверхностей ОЭС.
В качестве ЛОЦ используют отражатели различной конструкции, параметры отражения оптического излучения которых близки к реальным ОЭС. В случае «сложного» по структуре отражающих поверхностей ОЭС необходимо учитывать при построении ЛОЦ вклад каждой из них в отраженный сигнал (см, например, [2]). Таким образом, ЛОЦ как объект активной локации можно представить в виде совокупности отражателей с различными параметрами отражения. Наиболее распространенным отражателем для решения задач локации является ОУО (см, например, [3], стр. 107). Для расширения совокупности отражающих поверхностей предлагается использовать ЛОЦ построением «ОУО в … в ОУО».
Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - первый ОУО; 2 - второй ОУО; 3 - траектория ЛЛИ при отражении от внутренней отражающей поверхности первого ОУО и внешней отражающей поверхности второго ОУО (T11, …,T17 - приведенные толщины оптических промежутков на траектории ЛЛИ при отражении от внутренней отражающей поверхности первого ОУО и внешней отражающей поверхности второго ОУО соответственно; h1, h2 - высоты первого и второго ОУО соответственно; ρ11 - коэффициент отражения внутренней отражающей поверхности первого ОУО; ρ22 - коэффициент отражения внешней отражающей поверхности второго ОУО; ρ21 - коэффициент отражения внутренней отражающей поверхности второго ОУО). ОУО 1, 2 имеют тетраэдрический тип с тремя прямыми углами при вершине. Для простоты понимания сущности способа на фигуре 1 изображение ЛОЦ представлено в виде двух УОУ 1, 2 для одной координатной плоскости.
ЛЛИ, падающее на ЛОЦ, отражается от ОУО 1,2. Второй ОУО 2 расположен «внутри» первого ОУО, так чтобы они имели общую прямую пространственных биссектрис трехгранных углов своих вершин, общую входную плоскость и параллельные тождественные ребра. При этом высота h1 первого ОУО 1 больше высоты h2 второго ОУО 2 на длину Δh, обеспечивающую задержку ЛЛИ аналогичную задержке ЛЛИ между 1-ой и 2-ой отражающими поверхностями имитируемого ОЭС, например, между модулятором и фотоприемником ОЭС. Следовательно, длина траектории ЛЛИ 3 при отражении от внутренней отражающей поверхности первого ОУО 1 и внешней отражающей поверхности второго ОУО 2 должна быть равна удвоенному расстоянию между отражающими поверхностями имитируемого ОЭС 2ΔТ. Если задержка ЛЛИ между отражающими поверхностями ОЭС составляет
Figure 00000002
где ΔT - расстояние между отражающими поверхностями ОЭС, с - скорость распространения ЛЛИ, то применительно двухмерному ограничению (фигура 1)
Figure 00000003
Тогда, при h1=h2+Δh,
Figure 00000004
Внутренняя отражающая поверхность первого ОУО 1 и внешняя отражающая поверхность второго ОУО 2 обеспечивают значение обобщенного коэффициента отражения ρ1 равное значению коэффициента отражения ρ1OЭC соответствующей 1-ой отражающей поверхности имитируемого ОЭС
Figure 00000005
где K - число отражений от внутренней отражающей поверхности первого ОУО 1; М - число отражений от внешней отражающей поверхности второго ОУО 2.
Внутренняя отражающая поверхность второго ОУО 2 обеспечивает значение обобщенного коэффициента отражения ρ2 равное значению коэффициента отражения ρ2OЭС соответствующей 2-ой отражающей поверхности имитируемого ОЭС
Figure 00000006
где L - число отражений от внутренней отражающей поверхности второго ОУО 2.
Задержка отражения ЛЛИ ОУО 1, 2 ЛОЦ имитирует пространственную последовательность отражающих поверхностей ОЭС и обеспечивает высокую угловую плотность отраженного потока в направлении лазерного локатора.
На фигуре 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства включает защитный экран 4 и основание 5, остальные обозначения соответствуют фигуре 1.
Устройство работает следующим образом. Защитный экран 4 обеспечивает удержание ОУО 1, 2 относительно друг друга, а основание 5 - крепление ЛОЦ к поверхности.
Таким образом, у заявляемого способа появляются свойства, заключающиеся в повышении эффективности ЛОЦ с имитацией пространственной последовательности отражающих поверхностей ОЭС за счет использования ЛОЦ построением «ОУО в … в ОУО». Тем самым, предлагаемый авторами, способ устраняет недостатки прототипа.
Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ имитации пространственной последовательности отражающих поверхностей ОЭС, основанный на установке в секторе поиска ОЭС ЛОЦ, включении в ЛОЦ N ОУО тетраэдрического типа прямыми углами при вершине, при этом высота n-го ОУО больше высоты n+1-го ОУО на длину, обеспечивающую задержку ЛЛИ аналогичную задержке ЛЛИ между n-ой и n+1-ой отражающими поверхностями имитируемого ОЭС, где
Figure 00000001
, а отражающие поверхности n-го и n+1-го ОУО имеют значения обобщенных коэффициентов отражения равные значениям коэффициентов отражения соответствующих n-ой и n+1-ой отражающих поверхностей имитируемого ОЭС, установке N ОУО, так чтобы они имели общую прямую пространственных биссектрис трехгранных углов своих вершин, общую входную плоскость и параллельные тождественные ребра, отражении ЛЛИ каждым ОУО ЛОЦ и имитации пространственной последовательности отражающих поверхностей ОЭС.
Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы оптические материалы заданных характеристик.
1 Пат. 2712940 RU, МПК G01S 17/02. Способ имитации оптико-электронного средства / Козирацкий Ю.Л., Глушков А.Н., Кулешов П.Е. и др.; заявитель и патентообладатель ВУНЦ ВВС «ВВА имени профессора Н.Е. Жуковского и Ю.А. Гагарина» (г. Воронеж). №2018146920; заявл. 26.12.2018; опубл. 03.02.2020, Бюл. №4.
2 Попело В.Д., Кулешов П.Е., Проскурин Д.К., Чернухо И.И. Модель оптико-электронного средства в условиях его активного импульсного лазерного зондирования как объекта с нелокальным отражением // Радиотехника. 2022. №2. С. 13-21.
3 Козинцев В.И., Белов М.В., Орлов В.М. и др. Основы импульсной лазерной локации. М.: Изд. МГТУ им. Н.Э. Баумана, 2006. 512 с.

Claims (1)

  1. Способ имитации пространственной последовательности отражающих поверхностей оптико-электронного средства, основанный на установке в секторе поиска оптико-электронного средства ложной оптической цели, отличающийся тем, что включают в ложную оптическую цель N оптических уголковых отражателей тетраэдрического типа прямыми углами при вершине, при этом высота n-го оптического уголкового отражателя больше высоты n+1-го оптического уголкового отражателя на длину, обеспечивающую задержку лазерного локационного излучения, аналогичную задержке лазерного локационного излучения между n-й и n+1-й отражающими поверхностями имитируемого оптико-электронного средства, где
    Figure 00000007
    , а отражающие поверхности n-го и n+1-го оптических уголковых отражателей имеют значения обобщенных коэффициентов отражения, равные значениям коэффициентов отражения соответствующих n-й и n+1-й отражающих поверхностей имитируемого оптико-электронного средства, устанавливают N оптических уголковых отражателей так, чтобы они имели общую прямую пространственных биссектрис трехгранных углов своих вершин, общую входную плоскость и параллельные тождественные ребра, отражают лазерное локационное излучение каждым оптическим уголковым отражателем ложной оптической цели и имитируют пространственную последовательность отражающих поверхностей оптико-электронного средства.
RU2022117222A 2022-06-24 Способ имитации пространственной последовательности отражающих поверхностей оптико-электронного средства RU2791568C1 (ru)

Publications (1)

Publication Number Publication Date
RU2791568C1 true RU2791568C1 (ru) 2023-03-10

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813678C1 (ru) * 2023-07-21 2024-02-15 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ имитации поверхностей отражения оптико-электронного средства

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297941B2 (en) * 2011-07-21 2016-03-29 Giesecke & Deverient Gmbh Optically variable element, in particular security element
US10124621B2 (en) * 2014-12-18 2018-11-13 Giesecke+Devrient Currency Technology Gmbh Optically variable transparent security element
RU2698466C1 (ru) * 2018-12-04 2019-08-27 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ формирования ложной оптической цели
RU2712940C1 (ru) * 2018-12-26 2020-02-03 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ имитации оптико-электронного средства
RU2761688C1 (ru) * 2021-05-13 2021-12-13 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Имитатор надводной и подводной цели

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297941B2 (en) * 2011-07-21 2016-03-29 Giesecke & Deverient Gmbh Optically variable element, in particular security element
US10124621B2 (en) * 2014-12-18 2018-11-13 Giesecke+Devrient Currency Technology Gmbh Optically variable transparent security element
RU2698466C1 (ru) * 2018-12-04 2019-08-27 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ формирования ложной оптической цели
RU2712940C1 (ru) * 2018-12-26 2020-02-03 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ имитации оптико-электронного средства
RU2761688C1 (ru) * 2021-05-13 2021-12-13 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Имитатор надводной и подводной цели

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813678C1 (ru) * 2023-07-21 2024-02-15 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ имитации поверхностей отражения оптико-электронного средства

Similar Documents

Publication Publication Date Title
Gschwandtner et al. BlenSor: Blender sensor simulation toolbox
US9110154B1 (en) Portable programmable ladar test target
CN105430740B (zh) 基于WiFi信号强度仿真与位置指纹算法的室内无线定位方法
CN106680812B (zh) 一种基于解析面元的微波关联成像仿真方法
CN106019306A (zh) 一种基于计算鬼成像原理实现水下目标探测的装置
CN111694014A (zh) 一种基于点云模型的激光非视域三维成像场景建模方法
Steinvall et al. Three-dimensional laser radar modeling
Tulldahl et al. Simulation of sea surface wave influence on small target detection with airborne laser depth sounding
CN103558604A (zh) 飞行时间原理的调制型漫反射表面反射成像方法与系统
Grzegorczyk et al. Optical mirror from laser-trapped mesoscopic particles
RU2791568C1 (ru) Способ имитации пространственной последовательности отражающих поверхностей оптико-электронного средства
RU2586966C1 (ru) Способ имитации радиолокационных сигналов радиолокационных систем навигации летательных аппаратов
CN103439698A (zh) 获取雷达散射面积的方法
Zhang et al. Detection of the near-field targets by non-coaxial underwater single-photon counting lidar
CN102721529A (zh) 大口径反射光学元件高反射率扫描测量多波长集成方法
RU2813678C1 (ru) Способ имитации поверхностей отражения оптико-электронного средства
Cabrera et al. Sound reflections in Indian stepwells: Modelling acoustically retroreflective architecture
RU2796811C1 (ru) Способ имитации оптико-электронного средства
CN111896934A (zh) 一种mems激光雷达接收系统及方法
CN101667136B (zh) 一种基于前向光线跟踪技术的星图模拟方法
RU2621329C1 (ru) Способ имитации радиосигнала
CN115600375A (zh) 一种高精度定日镜能流密度计算方法
RU2751644C1 (ru) Способ скрытия оптико-электронных средств от лазерных локационных систем
CN107124295A (zh) 一种含有镜面反射的室内可见光功率分布仿真计算方法
Rosen BL Lacertae variability and superluminal motion via a helical filament/shock interface