RU2790914C1 - Ракетный двигатель твердого топлива - Google Patents

Ракетный двигатель твердого топлива Download PDF

Info

Publication number
RU2790914C1
RU2790914C1 RU2022127568A RU2022127568A RU2790914C1 RU 2790914 C1 RU2790914 C1 RU 2790914C1 RU 2022127568 A RU2022127568 A RU 2022127568A RU 2022127568 A RU2022127568 A RU 2022127568A RU 2790914 C1 RU2790914 C1 RU 2790914C1
Authority
RU
Russia
Prior art keywords
nozzle
heat
shielding coating
section
cuff
Prior art date
Application number
RU2022127568A
Other languages
English (en)
Inventor
Александр Владимирович Смирнов
Борис Андреевич Белобрагин
Сергей Олегович Захаров
Алексей Владимирович Власов
Сергей Викторович Попов
Андрей Александрович Евланов
Евгений Александрович Хомяков
Original Assignee
Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева"
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева" filed Critical Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева"
Application granted granted Critical
Publication of RU2790914C1 publication Critical patent/RU2790914C1/ru

Links

Images

Abstract

Изобретение относится к ракетной технике и предназначено для использования в реактивных снарядах. Ракетный двигатель твердого топлива (РДТТ) содержит корпус, сопловую манжету, сопло с теплозащитным покрытием и вкладыш критического сечения сопла. Согласно изобретению теплозащитное покрытие дозвуковой части сопла выполнено на участке, ограниченном поперечным сечением, проходящем через торец сопловой манжеты, длиной 0,35…0,45 L, с утолщением, причем толщина теплозащитного покрытия на данном участке составляет 1,4…1,8 толщины теплозащитного покрытия в сечении, отстоящем от сопловой манжеты на расстояние 0,75 L, где L - расстояние от торца сопловой манжеты до торца теплозащитного покрытия у вкладыша в критическом сечении. Изобретение обеспечивает повышение надежности работы РДТТ с зарядом из высокометаллизированных топлив с большим содержанием конденсированной фазы в продуктах сгорания. 1 ил.

Description

Изобретение относится к ракетной технике и предназначено для использования в реактивных снарядах.
К числу основных задач, решаемых при создании ракетных двигателей твердого топлива (РДТТ) является обеспечение надежности работы. В том числе за счет обеспечения тепловой защитой одной из наиболее теплонапряженных участков: дозвуковой части сопла.
Известны конструкции РДТТ, содержащие камеру сгорания и сопла в виде многосоплового блока, причем дозвуковая часть сопел выполнена без теплозащитного покрытия, а работоспособность РДТТ достигается за счет значительного увеличения толщины конструкционных материалов в области дозвуковой части сопла (см. Боевая машина БМ-21. Техническое описание и инструкция по эксплуатации. - М.: Воениздат МОСССР, 1977, с. 74-75).
Задачей данного технического решения являлась разработка РДТТ с зарядами с низкой температурой сгорания.
Общими признаками с предлагаемым РДТТ является наличие в нем камеры сгорания и сопла.
Приведенная конструкция РДТТ имеет недостатки, заключающиеся в том, что данная конструкция неработоспособна в РДТТ с высокой температурой продуктов сгорания, поскольку в этом случае происходит интенсивный унос материала дозвуковой части с последующим разрушением РДТТ.
Наиболее близкой по технической сути и достигаемому техническому результату является РДТТ содержащий камеру сгорания и сопло с теплозащитным покрытием дозвуковой части (см. Кэрт Б.Э. и др. Разделение неуправляемых снарядов систем залпового огня. -М.: Машиностроение, 2008, с. 417), принятый авторами за прототип.В данном РДТТ применено теплозащитное покрытие дозвуковой части сопла с толщиной, увеличивающейся по направлению к критическому сечению сопла (поскольку величина тепловых потоков от продуктов сгорания к дозвуковой части сопла возрастает по направлению движения), что позволило обеспечить работоспособность и надежность работы РДТТ.
Известный РДТТ работает следующим образом: При горении заряда продукты сгорания движутся по камере сгорания, втекают в дозвуковую часть сопла, проходят критическое сечение сопла и вытекают из сверхзвуковой части сопла. За счет выполнения толщины теплозащитного покрытия дозвуковой части сопла увеличивающейся к критическому сечению сопла обеспечивается надежность работы РДТТ при минимальной массе покрытия. Однако, как показали результаты данных исследований, существующая конструкция не обеспечивает надежность работы при применении высокоэнергетических топлив с высоким предельно допустимым содержанием металлического горючего, а, следовательно, и высоким содержанием конденсированной фазы в продуктах сгорания.
Причиной этого является образование в дозвуковой части сопла в области сопловой манжеты при горении заряда рециркуляционной зоны с обратным движением газа и конденсированной фазы, приводящей к резкой локальной концентрации высокотемпературных частиц конденсированной фазы на сопловой манжете.
Таким образом задачей данного технического решения (прототипа) являлось обеспечение работоспособности РДТТ со сравнительно невысокими энергетическими характеристиками топлива.
Общими признаками с предлагаемым устройством является наличие корпуса, сопловой манжеты, сопла с теплозащитным покрытием и вкладыша в критическом сечении сопла.
В отличие от прототипа в предлагаемом РДТТ теплозащитное покрытие дозвуковой части сопла выполнено на участке, ограниченном поперечным сечением, проходящем через торец сопловой манжеты, длиной 0,35…0,45 L, с утолщением, причем толщина теплозащитного покрытия на данном участке составляет 1,4…1,8 толщины теплозащитного покрытия в сечении, отстоящем от сопловой манжеты на расстояние 0,75 L, где L - расстояние от сопловой манжеты до торца теплозащитного покрытия у вкладыша в критическом сечении.
Именно это позволяет сделать вывод о наличии причинно-следственной связи между совокупностью существенных признаков заявляемого технического решения и достигаемым техническим результатом.
Указанные признаки, отличительные от прототипа и на которые распространяется испрашиваемый объем правовой охраны во всех случаях достаточны.
Задачей предполагаемого изобретения является обеспечение надежной работы РДТТ с зарядом из высокометаллизированных топлив с большим содержанием конденсированной фазы в продуктах сгорания.
Указанный технический результат при осуществлении изобретения достигается тем, что в известном РДТТ имеется корпус, сопловая манжета, сопло с теплозащитным покрытием и вкладыш в критическом сечении сопла. Особенность заключается в том, что теплозащитное покрытие дозвуковой части сопла выполнено на участке, ограниченном поперечным сечением, проходящем через торец сопловой манжеты, длиной 0,35…0,45 L, с утолщением, причем толщина теплозащитного покрытия на данном участке составляет 1,4…1,8 толщины теплозащитного покрытия в сечении, отстоящем от сопловой манжеты на расстояние 0,75 L, где L - расстояние от сопловой манжеты до торца теплозащитного покрытия у вкладыша в критическом сечении.
Новая совокупность конструктивных элементов, а также наличие связей между ними позволяет, в частности, за счет выполнения в нем теплозащитного покрытия дозвуковой части сопла выполненного на участке ограниченном поперечным сечением, проходящем через торец сопловой манжеты, длиной 0,35…0,45 L, с утолщением, причем толщина теплозащитного покрытия на данном участке составляет 1,4…1,8 толщины теплозащитного покрытия в сечении, отстоящем от сопловой манжеты на расстояние 0,75 L, где L - расстояние от сопловой манжеты до торца теплозащитного покрытия у вкладыша в критическом сечении обеспечить требуемый тепловой режим дозвуковой части при работе РДТТ для надежного функционирования. При уменьшении длины участка теплозащитного покрытия менее 0,35 L длина участка становится меньше длины рециркуляционной зоны, что приводит к осаждению высокотемпературных частиц конденсированной фазы на участки теплозащитного покрытия с меньшей толщиной, что требуется для исключения прогара теплозащитного покрытия и демонтажа РДТТ. При увеличении длины участка свыше 0,45 L, длина утолщения превышает длину рециркуляционной зоны, что нерационально, так как приводит к увеличению пассивной массы РДТТ. При уменьшении толщины теплозащитного покрытия на участке местного утолщения менее 1,4 толщины теплозащитного покрытия в сечении отстоящем на расстояние 0,5L от торца покрытия у вкладыша в критическом сечении сопла (т.е. в середине сечения), как показали стендовые испытания ряда РДТТ с высокометаллизированными топливами, не обеспечивается надежность работы РДТТ. При увеличении указанной толщины свыше 1,8 нерационально возрастает пассивная масса.
Признаки, отличающие предлагаемое техническое решение от прототипа, не выявлены в других технических решениях и неизвестны из уровня техники в процессе проведения патентных исследований, что позволяет сделать вывод о соответствии изобретения критерию «новизны».
Исследуя уровень техники в ходе проведения патентного поиска по всем видам сведений доступных в странах бывшего СССР и зарубежных странах, обнаружено, что предлагаемое техническое решение явным образом не следует из известного уровня техники, следовательно, можно сделать вывод о соответствии критерию «изобретательский уровень».
Сущность изобретения заключается в том, что ракетный двигатель твердого топлива содержит корпус, сопловую манжету, сопло с теплозащитным покрытием и вкладыш в критическом сечении сопла. Согласно изобретению теплозащитное покрытие дозвуковой части сопла выполнено на участке, ограниченном поперечным сечением, проходящем через торец сопловой манжеты, длиной 0,35…0,45 L, с утолщением, причем толщина теплозащитного покрытия на данном участке составляет 1,4…1,8 толщины теплозащитного покрытия в сечении, отстоящем от сопловой манжеты на расстояние 0,75 L, где L - расстояние от сопловой манжеты до торца теплозащитного покрытия у вкладыша в критическом сечении.
Сущность изобретения поясняется чертежом, где на фиг. 1 изображен предлагаемый РДТТ который содержит корпус 1, сопловую манжету 2, сопло 3 с теплозащитным покрытием 4 и вкладышем 5. Теплозащитное покрытие 4 выполнено на участке L1, ограниченным поперечным сечением, проходящим через торец сопловой манжеты 2 длиной 0,35…0,45L с утолщением, причем толщина теплозащитного покрытия 4 на данном участке (61) составляет 1,4…1,6 толщины теплозащитного покрытия 4 (62) в сечении, отстоящем на расстоянии L2, равном 0,75L, где L - расстояние от сопловой манжеты 2 до торца теплозащитного покрытия 4 у вкладыша 5.
Предложенное устройство работает следующим образом. При работе РДТТ продукты сгорания втекают в дозвуковую часть сопла 3 и истекает через критическое сечение вкладыша 5. При движении продуктов сгорания за сопловой манжетой 2 образуется рециркуляционная зона с обратным течением продуктов сгорания. Ввиду малых скоростей течения в рециркуляционной зоне у поверхность теплозащитного покрытия 4 на участке L1 возрастают локальные концентрации высокотемпературных частей конденсированной фазы, осаждаются на поверхности теплозащитного покрытия 4 на участке L1. Это приводит к деструкции теплозащитного покрытия 4 и его интенсивному прогреву. При этом за счет выбранной длине L1 участка с увеличенной толщиной покрытия 4 (61) по сравнению с толщиной (62), в середине сужающейся части сопла 4, обеспечивается требуемый тепловой режим сопла 3.
Выполнение РДТТ в соответствии с изобретением позволило обеспечить надежное функционирование РДТТ.
Изобретение может быть использовано при разработке различных РДТТ.
Указанный положительный эффект подтвержден испытаниями опытных образцов РДТТ, выполненных в соответствии с изобретением.
В настоящее время разработана конструкторская документация, намечено серийное производство.

Claims (1)

  1. Ракетный двигатель твердого топлива, содержащий корпус, сопловую манжету, сопло с теплозащитным покрытием и вкладыш в критическом сечении сопла, отличающийся тем, что в нем теплозащитное покрытие дозвуковой части сопла выполнено на участке, ограниченном поперечным сечением, проходящем через торец сопловой манжеты, длиной 0,35…0,45 L, с утолщением, причем толщина теплозащитного покрытия на данном участке составляет 1,4…1,8 толщины теплозащитного покрытия в сечении, отстоящем от сопловой манжеты на расстояние 0,75 L, где L - расстояние от сопловой манжеты до торца теплозащитного покрытия у вкладыша в критическом сечении.
RU2022127568A 2022-10-24 Ракетный двигатель твердого топлива RU2790914C1 (ru)

Publications (1)

Publication Number Publication Date
RU2790914C1 true RU2790914C1 (ru) 2023-02-28

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2808695C1 (ru) * 2023-08-04 2023-12-01 Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева" Ракетная часть реактивного снаряда, запускаемого из трубчатой направляющей

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3122884A (en) * 1961-05-19 1964-03-03 Atlantic Res Corp Rocket motor
RU2133368C1 (ru) * 1997-04-10 1999-07-20 Конструкторское бюро приборостроения Ракетный двигатель твердого топлива
RU2245450C1 (ru) * 2003-06-24 2005-01-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Ракетный двигатель твёрдого ракетного топлива
RU2780076C1 (ru) * 2021-12-09 2022-09-19 Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева" Корпус ракетной части

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3122884A (en) * 1961-05-19 1964-03-03 Atlantic Res Corp Rocket motor
RU2133368C1 (ru) * 1997-04-10 1999-07-20 Конструкторское бюро приборостроения Ракетный двигатель твердого топлива
RU2245450C1 (ru) * 2003-06-24 2005-01-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Ракетный двигатель твёрдого ракетного топлива
RU2780076C1 (ru) * 2021-12-09 2022-09-19 Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева" Корпус ракетной части

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Кэрт Б.Э. и др. Разделение неуправляемых снарядов систем залпового огня, М., Машиностроение, 2008, с.417. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2814001C1 (ru) * 2023-06-02 2024-02-21 Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева" Ракетная часть реактивного снаряда
RU2808695C1 (ru) * 2023-08-04 2023-12-01 Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева" Ракетная часть реактивного снаряда, запускаемого из трубчатой направляющей

Similar Documents

Publication Publication Date Title
RU2790914C1 (ru) Ракетный двигатель твердого топлива
RU2282741C1 (ru) Заряд твердого ракетного топлива для разгонно-маршевого ракетного двигателя управляемой ракеты
EP1298389B8 (en) Coaxial spray nozzle injector
RU2798116C1 (ru) Ракетная часть вращающегося реактивного снаряда, запускаемого из гладкоствольной трубчатой направляющей
RU2687500C1 (ru) Двухрежимный ракетный двигатель твердого топлива
US3199295A (en) Conical vortex injection and comrustion device for reaction motors
RU2133864C1 (ru) Ракетный двигатель твердого топлива
RU2780076C1 (ru) Корпус ракетной части
RU2279564C1 (ru) Ракетный двигатель твердого топлива
RU2293201C1 (ru) Сопло реактивного двигателя твердого топлива
EP3874138B1 (en) Injector with injector elements in circumferential rows with counter-clockwise and clockwise swirl
RU2790916C1 (ru) Двухрежимный ракетный двигатель твердого топлива
RU2783054C1 (ru) Двухрежимный ракетный двигатель на твердом топливе
RU2220312C1 (ru) Заряд ракетного твердого топлива
RU2200243C2 (ru) Ракетный двигатель на твердом топливе
RU2569989C1 (ru) Ракетный двигатель твердого топлива
RU2798046C1 (ru) Ракетный двигатель твердого топлива
RU2791165C1 (ru) Корпус ракетной части реактивного снаряда
RU2808695C1 (ru) Ракетная часть реактивного снаряда, запускаемого из трубчатой направляющей
RU2313685C1 (ru) Ракетный двигатель твердого топлива
RU2391530C1 (ru) Заряд ракетного твердого топлива
RU2229617C1 (ru) Ракетный двигатель твердого топлива
RU2708755C1 (ru) Газогенератор твердотопливный
RU2816347C1 (ru) Ракетный двигатель твердого топлива
RU2806232C1 (ru) Реактивный снаряд, запускаемый из трубчатой направляющей