RU2788820C1 - Способ пространственной компенсации помех с использованием информации о направлении на источник сигнала - Google Patents

Способ пространственной компенсации помех с использованием информации о направлении на источник сигнала Download PDF

Info

Publication number
RU2788820C1
RU2788820C1 RU2022116454A RU2022116454A RU2788820C1 RU 2788820 C1 RU2788820 C1 RU 2788820C1 RU 2022116454 A RU2022116454 A RU 2022116454A RU 2022116454 A RU2022116454 A RU 2022116454A RU 2788820 C1 RU2788820 C1 RU 2788820C1
Authority
RU
Russia
Prior art keywords
signal
antenna array
interference
vector
source
Prior art date
Application number
RU2022116454A
Other languages
English (en)
Inventor
Александр Викторович Журавлев
Сергей Иванович Бабусенко
Владислав Викторович Кирюшкин
Виктор Григорьевич Маркин
Владимир Андреевич Шуваев
Александр Федорович Иванов
Евгений Михайлович Красов
Original Assignee
Акционерное общество научно-внедренческое предприятие "ПРОТЕК"
Filing date
Publication date
Application filed by Акционерное общество научно-внедренческое предприятие "ПРОТЕК" filed Critical Акционерное общество научно-внедренческое предприятие "ПРОТЕК"
Application granted granted Critical
Publication of RU2788820C1 publication Critical patent/RU2788820C1/ru

Links

Images

Abstract

Использование: изобретение относится к пространственной селекции сигналов и может быть использовано при приеме навигационных сигналов навигационной аппаратурой потребителя глобальной навигационной спутниковой системы (НАП ГНСС) в условиях воздействия преднамеренных помех. Сущность: способ пространственной компенсации помех с использованием информации о направлении на источник сигнала, использующий адаптивную антенную решетку, осуществляет на основании информации о направлении на источник сигнала
Figure 00000012
, поступающей от внешнего источника, формирование вектора s11)=[s1, s2, …, sK)] с элементами
Figure 00000013
где ρk и ϕk – полярные координаты k-го антенного элемента антенной решетки, λ - длина волны сигнала (помехи), который поступает на блок расчета весовых коэффициентов и используется там при вычислении значений весовых коэффициентов антенной решетки, обеспечивающих сохранение ориентации основного луча диаграммы направленности антенной решетки в направлении на источник полезного сигнала в процессе ее адаптации к помеховой обстановке, которая осуществляется в три этапа: на первом этапе оценивается уровень суммы сигнала и помех в каналах антенной решетки
Figure 00000014
,
где 0<μs<1, xk(t), k=1, 2, ..., K – компоненты вектора X(t)=[x1, x2, …, xK]T сигнала и помех на выходах антенных элементов, «Т» - оператор транспонирования; на втором этапе осуществляется расчет вектора весовых коэффициентов антенной решетки W(t)=[w1, w2, …, wK]T с элементами wk(t)=wk(t-1)-μy(t)xk(t)sk, k=1, 2, …, K, μ=μ0/A(t), 0<μ0<1; y(t)=X Н(t)W(t) – сумма сигнала и помех на выходе антенной решетки, «Н» – оператор комплексного сопряжения и транспонирования; на третьем этапе компоненты вектора W(t) нормируются следующим образом:
W(t+1)=W(t)-I*[
Figure 00000015
-1],
где I – единичный вектор-столбец. Технический результат: обеспечение компенсирования помехи, используя информацию о направлении на источник полезного сигнала. 5 ил.

Description

Изобретение относится к пространственной селекции сигналов и может быть использовано при приеме навигационных сигналов навигационной аппаратурой потребителя глобальной навигационной спутниковой системы (НАП ГНСС) в условиях воздействия преднамеренных помех.
Известен способ пространственной селекции источников излучения [1], который обеспечивается адаптивной антенной решеткой (ААР), состоящей из K пространственно распределенных антенных элементов, диаграммообразующей схемы с весовыми коэффициентами w1, w2, …, wK которые управляют формой диаграммы направленности, сумматора, блока расчета весовых коэффициентов, позволяющего сформировать заданные коэффициенты усиления антенной решетки в направлениях на источники полезных сигналов и нули в направлениях на источники помех. Вектор весовых коэффициентов антенной системы, обеспечивающий заданные коэффициенты усиления антенной решетки в направлениях на источники полезных сигналов и помех рассчитывается способом наименьших квадратов с применением аппарата псевдообратных матриц при линейных ограничениях на диаграмму направленности (ДН) антенной решетки.
Недостатком этой ААР является необходимость наличия информации о направлениях на источники помех, что не всегда является возможным, особенно при наличии мобильных источников помех.
Целью изобретения является разработка способа пространственной компенсации помех, использующего информацию о направлении на источник полезного сигнала, которое может быть известно заранее.
Поставленная цель достигается ориентацией ААР в направлении на источник сигнала и обеспечением подавления помех в направлениях, отличных от направления на источник сигнала.
Сущность изобретения поясняется рисунками, где, на фиг. 1 приведена структурная схема ААР, на фиг. 2 приведены значения диаграмм направленности антенных элементов, на фиг. 3 приведен отклик согласованного фильтра (на фиг.1 не показан), подключенного к выходу сумматора ААР - сигнал и помехи до компенсации, на фиг. 4 приведен отклик согласованного фильтра подключенного к выходу сумматора ААР - сигнал и помехи после компенсации, на фиг. 5 приведены диаграммы направленности антенной решетки после компенсации.
Способ пространственной компенсации помех с использованием информации о направлении на источник сигнала осуществляется в антенной решетке 1 с антенными элементами 11, 12, …, 1K, где K – количество антенных элементов, диаграммообразующей схемой (ДОС) 2 с блоками комплексных весовых коэффициентов 21, 22, …, 2K, сумматором 3, блоком расчета весовых коэффициентов 4 и блоком ориентации антенной решетки в направлении на источник сигнала 5, которые имеют между собой следующие связи. Выходы антенных элементов 11, 12, …, 1К, соединены с входами блоков весовых коэффициентов 21, 22, …, 2К и с входами блока расчета весовых коэффициентов 4, выходы которого соединены с другими входами блоков весовых коэффициентов 21, 22, …, 2К. Выходы блоков весовых коэффициентов 21, 22, …, 2К соединены с входами сумматора 3, выход которого соединен с одним из входов блока расчета весовых коэффициентов 4 и является выходом ААР, один из входов блока расчета весовых коэффициентов 4 соединен с выходом блока ориентации антенной решетки в направлении на источник сигнала 5, вход которого соединен с источником информации о направлении прихода сигнала (на фиг. не показано).
Способ пространственной компенсации помех с использованием информации о направлении на источник сигнала осуществляется следующим образом.
На антенную решетку 1 поступают полезный u1(t) и помеховые сигналы u2(t), u2(t), …, uM(t) c амплитудами U1, U2, …, UM, где M – количество полезного сигнала и помех. Антенные элементы 11, 12, …, 1K, принимают их и отправляют сформированные напряжения x1(t), x2(t), …, xK(t) в блоки весовых коэффициентов 21, 22, …, 2K и в блок расчета весовых коэффициентов 4. Блок расчета весовых коэффициентов 4, получив сигналы с антенных элементов 11, 12, …, 1К и информацию о направлении на источник сигнала из блока ориентации антенной решетки в направлении на источник сигнала 5, формирует весовые коэффициенты w1(t), w2(t), …, wK(t), и передает их в блоки весовых коэффициентов 21, 22, …, 2K.
Блоки весовых коэффициентов 21, 22, …, 2K, умножают сигналы с выходов антенных элементов 11, 12, …, 1K на сформированные весовые коэффициенты w1(t), w2(t), …, wK(t). Эти сигналы поступают на сумматор 3, на выходе которого формируется выходной сигнал, поступающий также в блок расчета весовых коэффициентов 4.
Диаграмма направленности такой антенной решетки в сферической системе координат с учетом [2, с.43] принимает вид
Figure 00000001
где dk(α,θ) – значение ДН k-го антенного элемента в направлении на источник сигнала (помехи), θ – азимутальный угол на источник сигнала,
α – угол места, отсчитываемый от горизонтальной плоскости, ρk и ϕk – полярные координаты k-го антенного элемента антенной решетки 1,
λ – длина волны сигнала (помехи).
На выходах антенных элементов 11, 12, …, 1K антенной решетки 1 формируется сумма сигнала и помех
Figure 00000002
, k=1, 2, …, K,
где u1(t) – сигнал, u2(t), u3(t), …, uK(t) – помехи; nk(t) – аддитивный белый шум с дисперсией σ2.
В блоке ориентации антенной решетки в направлении на источник сигнала 5 на основании информации о направлении на источник сигнала
Figure 00000003
, поступающей от внешнего источника (на фиг. 1 не показано), формируется вектор
S11)=[s1, s2, …, sK)]
с элементами
Figure 00000004
, который поступает на блок расчета весовых коэффициентов и используется там при вычислении значений весовых коэффициентов антенной решетки с целью сохранения ориентации основного луча диаграммы направленности антенной решетки в направлении на источник полезного сигнала в процессе ее адаптации к помеховой обстановке.
Адаптация антенной решетки 1 к помеховой обстановке осуществляется в блоке расчета весовых коэффициентов 2 в процессе расчета весовых коэффициентов w1(t), w2(t), …, wK(t) антенной решетки 1, обеспечивающих формирование «нулей» диаграммы направленности антенной решетки 1 в направлениях на помехи. Этот процесс итеративный и состоит из трех этапов.
На первом этапе оценивается уровень суммы сигнала и помех в каналах антенной решетки 1
Figure 00000005
где 0<μs<1, xk(t), k=1, 2, ..., K – компоненты вектора X(t)=[x1, x2, …, xK]T сигнала и помех на выходах антенных элементов 11, 12, …, 1K, «Т» оператор транспонирования.
На втором этапе осуществляется расчет вектора весовых коэффициентов w1(t), w2(t), …, wK(t) антенной решетки 1 W(t)=[w1, w2, …, wK]T, обеспечивающих формирование «нулей» диаграммы направленности антенной решетки 1 в направлениях на помехи при сохранении ориентации основного луча диаграммы направленности антенной решетки 1 в направлении на источник полезного сигнала
wk(t)=wk(t-1)-μy(t)xk(t)sk, k=1, 2, …, K,
где μ=μ0/A(t), 0<μ0<1; y(t)=X Н(t)W(t) – сумма сигнала и помех на выходе антенной решетки 1, «Н» – оператор комплексного сопряжения и транспонирования.
При этом за счет использования в последнем выражении множителя sk, k=1, 2, …, K, обеспечивается синфазность сигнальных компонент в каналах антенной решетки 1. В результате этого основной луч диаграммы направленности антенной решетки 1 ориентируется в направлении на источник полезного сигнала.
Однако, несмотря на ориентацию в направлении на источник сигнала, формирование весовых коэффициентов w1(t), w2(t), …, wK(t) в таком виде в процессе адаптации приведет их к нулевым значениям и к подавлению полезного сигнала.
Чтобы этого не случилось необходимо, чтобы в процессе адаптации среднее значение весовых коэффициентов
Figure 00000006
было близко к 1.
Для этого на третьем этапе с целью обеспечения подавления помех в направлениях, отличных от направления на источник полезного сигнала, вектор W(t) преобразуется следующим образом
W(t+1)=W(t)-I*[
Figure 00000007
-1],
где I – единичный вектор столбец.
Это преобразование обеспечивает ограничение весовых коэффициентов w1(t), w2(t), …, wK(t). Их среднее значение в процессе адаптации будет оставаться равной 1, что обеспечит прохождение полезного сигнала на выход антенной решетки без изменения при формировании «нулей» диаграммы направленности антенной решетки 1 в направлении на помехи.
Выходной сигнал антенной решетки определяется в виде
y(t)=X Н(t)W(t).
При моделировании способа пространственной компенсации помех с использованием информации о направлении прихода сигнала, в качестве антенной решетки 1 использовалась 6-ти элементная кольцевая антенная решетка из патч антенных элементов, размещенных по кругу равноудаленно от центра на расстоянии ρ=0.6λ, где λ – длина волны, и имеющих диаграмму направленности с минимумом в горизонтальной плоскости и максимумом в вертикальной плоскости.
В качестве сигнала, приходящего с направления, близкого к вертикальному, брался фазоманипулированный сигнал с расширением спектра М-последовательностью длиной 1023 символа с 10 цифровыми отсчетами на символе.
Помехи, поступающие на антенную решетку 1 с направлений, близких к горизонтальным, были сигналоподобными, т.е. копиями сигнала с различными временными задержками, разными амплитудами и приходящими с разных направлений.
Исходные данные для моделирования антенной решетки 1:
ρk =0,6λ, k=1, 2, …, 6;
ϕ1=0, ϕ2=600, ϕ3=1200, ϕ4=1800, ϕ5=2400, ϕ6=3000,
σ=0,5.
В Таблице 1 (фиг. 2) приведены исходные данные для моделирования сигнала и помех: амплитуды U, азимутальные углы θ и углы места α направлений прихода сигнала и помех, а также значения диаграмм направленности антенных элементов d в соответствующих направлениях.
На фиг. 3 приведен отклик согласованного фильтра (на фиг. 1 не показан), подключенного к выходу сумматора ААР, на принимаемую смесь сигнала и помех в отсутствии компенсации.
Для сравнения на фиг. 4 показан отклик того же согласованного фильтра с компенсацией помех при параметрах μ0=0.00001, μs=0.2, А(0)=100. Из рисунка видно, что после компенсации уровень сигнала превосходит уровень помех более чем в 20 раз.
На фиг. 5 приведены диаграммы направленности ААР после компенсации для разных углов места.
На фиг. 5а показана диаграмма направленности ААР при α=10, т.е. при угле места, близкому к углам места источников помех. Видно, что в направлениях 300, 700, 900 на источники помех сформированы глубокие провалы.
На фиг. 5б показана диаграмма направленности ААР при угле места α=800, равного углу места источника сигнала при этом диаграмма направленности близка круговой, с максимумом в направлении 1500 на источник сигнала.
Таким образом, предлагаемый способ пространственной компенсации помех позволяет компенсировать помехи, используя информацию о направлении на источник полезного сигнала.
Источники информации
1. Журавлев А.В., Маркин В.Г. Пространственная компенсация помех, направления прихода которых известны. Радиотехника 2018. №7. С. 105-108.
2. Монзинго Р.А., Миллер Т.У. Адаптивные антенные решетки. Введение в теорию. М.: Радио и связь. 1986. 448 с.

Claims (7)

  1. Способ пространственной компенсации помех с использованием информации о направлении на источник сигнала, использующий адаптивную антенную решетку, отличающийся тем, что осуществляет на основании информации о направлении на источник сигнала
    Figure 00000008
    , поступающей от внешнего источника, формирование вектора s11)=[s1, s2, …, sK)] с элементами
  2. Figure 00000009
  3. где ρk и ϕk – полярные координаты k-го антенного элемента антенной решетки, λ - длина волны сигнала (помехи), который поступает на блок расчета весовых коэффициентов и используется там при вычислении значений весовых коэффициентов антенной решетки, обеспечивающих сохранение ориентации основного луча диаграммы направленности антенной решетки в направлении на источник полезного сигнала в процессе ее адаптации к помеховой обстановке, которая осуществляется в три этапа: на первом этапе оценивается уровень суммы сигнала и помех в каналах антенной решетки
  4. Figure 00000010
    ,
  5. где 0<μs<1, xk(t), k=1, 2, ..., K – компоненты вектора X(t)=[x1, x2, …, xK]T сигнала и помех на выходах антенных элементов, «Т» - оператор транспонирования; на втором этапе осуществляется расчет вектора весовых коэффициентов антенной решетки W(t)=[w1, w2, …, wK]T с элементами wk(t)=wk(t-1)-μy(t)xk(t)sk, k=1, 2, …, K, μ=μ0/A(t), 0<μ0<1; y(t)=X Н(t)W(t) – сумма сигнала и помех на выходе антенной решетки, «Н» – оператор комплексного сопряжения и транспонирования; на третьем этапе компоненты вектора W(t) нормируются следующим образом:
  6. W(t+1)=W(t)-I*[
    Figure 00000011
    -1],
  7. где I – единичный вектор-столбец.
RU2022116454A 2022-06-20 Способ пространственной компенсации помех с использованием информации о направлении на источник сигнала RU2788820C1 (ru)

Publications (1)

Publication Number Publication Date
RU2788820C1 true RU2788820C1 (ru) 2023-01-24

Family

ID=

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483923B1 (en) * 1996-06-27 2002-11-19 Andrea Electronics Corporation System and method for adaptive interference cancelling
US6867726B1 (en) * 1991-12-16 2005-03-15 Lockheed Martin Corporation Combining sidelobe canceller and mainlobe canceller for adaptive monopulse radar processing
US20090022336A1 (en) * 2007-02-26 2009-01-22 Qualcomm Incorporated Systems, methods, and apparatus for signal separation
RU2446562C2 (ru) * 2006-04-14 2012-03-27 Таль Способ и устройство борьбы с помехами в системе связи
RU2456631C1 (ru) * 2011-02-17 2012-07-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ адаптивной пространственной компенсации помех при моноимпульсном амплитудном суммарно-разностном пеленговании и наличии ошибок калибровки приемных каналов
RU2488137C2 (ru) * 2011-10-25 2013-07-20 Открытое акционерное общество "Научно-производственное предприятие "Конверсия" Способ комплексирования сигналов пеленгования объекта визирования инерциального и радиолокационного дискриминаторов и система для его осуществления
RU2660140C1 (ru) * 2017-06-23 2018-07-05 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Компенсатор помех для навигационной аппаратуры потребителя глобальной навигационной спутниковой системы
RU2671247C1 (ru) * 2018-03-28 2018-10-30 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" /АО "НПО НИИИП-НЗиК"/ Способ компенсации помехи и радиолокационная станция для его осуществления
RU2677931C1 (ru) * 2018-02-26 2019-01-22 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Устройство пространственной селекции сигналов с компенсацией преднамеренных помех
RU2704007C1 (ru) * 2018-10-30 2019-10-23 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК") Способ компенсации помех и радиолокационная станция для его осуществления

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867726B1 (en) * 1991-12-16 2005-03-15 Lockheed Martin Corporation Combining sidelobe canceller and mainlobe canceller for adaptive monopulse radar processing
US6483923B1 (en) * 1996-06-27 2002-11-19 Andrea Electronics Corporation System and method for adaptive interference cancelling
RU2446562C2 (ru) * 2006-04-14 2012-03-27 Таль Способ и устройство борьбы с помехами в системе связи
US20090022336A1 (en) * 2007-02-26 2009-01-22 Qualcomm Incorporated Systems, methods, and apparatus for signal separation
RU2456631C1 (ru) * 2011-02-17 2012-07-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ адаптивной пространственной компенсации помех при моноимпульсном амплитудном суммарно-разностном пеленговании и наличии ошибок калибровки приемных каналов
RU2488137C2 (ru) * 2011-10-25 2013-07-20 Открытое акционерное общество "Научно-производственное предприятие "Конверсия" Способ комплексирования сигналов пеленгования объекта визирования инерциального и радиолокационного дискриминаторов и система для его осуществления
RU2660140C1 (ru) * 2017-06-23 2018-07-05 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Компенсатор помех для навигационной аппаратуры потребителя глобальной навигационной спутниковой системы
RU2677931C1 (ru) * 2018-02-26 2019-01-22 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Устройство пространственной селекции сигналов с компенсацией преднамеренных помех
RU2671247C1 (ru) * 2018-03-28 2018-10-30 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" /АО "НПО НИИИП-НЗиК"/ Способ компенсации помехи и радиолокационная станция для его осуществления
RU2704007C1 (ru) * 2018-10-30 2019-10-23 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК") Способ компенсации помех и радиолокационная станция для его осуществления

Similar Documents

Publication Publication Date Title
EP3783738A1 (en) Wideband beam broadening for phased array antenna systems
US5173700A (en) Mainbeam jammer nulling with monopulse angle correction
Cuntz et al. Field test: jamming the DLR adaptive antenna receiver
Celik et al. Implementation and experimental verification of a smart antenna system operating at 60 GHz band
Kiong et al. Minimum variance distortionless response beamformer with enhanced nulling level control via dynamic mutated artificial immune system
RU2567120C1 (ru) Способ формирования компенсационной диаграммы направленности в плоской антенной решетке с электронным управлением лучом
RU2788820C1 (ru) Способ пространственной компенсации помех с использованием информации о направлении на источник сигнала
CN112134604A (zh) 使用相控阵天线搜索信号的方法和相控阵天线系统
Shcherbyna et al. Prospect for using low-element adaptive antenna systems for radio monitoring stations
Okorogu et al. Design and simulation of a low cost digital beamforming (DBF) receiver for wireless communication
Nayeri et al. A comparison of digital beamforming and power minimization adaptive nulling algorithms using a software defined radio antenna array
RU2731875C1 (ru) Адаптивная антенная решетка для бистатической радиолокационной системы
RU2577827C1 (ru) Многолучевая самофокусирующаяся антенная решетка
RU2649096C1 (ru) Многолучевая антенная система с одним выходом
Zhao et al. Robust Virtual Array Transformation Beamforming Approach Against Jammer Motion
Dosaranian-Moghadam et al. Adaptive beamforming method based on constrained LMS algorithm for tracking mobile user
USH739H (en) Auxiliary antenna interference canceller
RU2609792C1 (ru) Способ обработки сигналов в модульной адаптивной антенной решетке при приеме коррелированных сигналов и помех
RU2810696C1 (ru) Способ формирования компенсационной диаграммы направленности в плоской антенной решетке с электронным управлением лучом
RU2633029C1 (ru) Передающая адаптивная антенная решетка
Senapati et al. Performances of some combined algorithms for adaptive beamforming in smart antenna using linear array
US20240178885A1 (en) A radio system using a phase-reconfigurable reflectarray for adaptive beamforming
Drenkhahn et al. A Hardware-Efficient Hybrid Approach for Suppression of Multiple Jammers in GNSS Receivers
Pham Statistical behavior and performance of adaptive antennas in multipath environments
Ozdemir et al. GPS jamming mitigation through Taguchi's optimization method