RU2787432C2 - Комбинированная система охлаждения двигателя внутреннего сгорания - Google Patents

Комбинированная система охлаждения двигателя внутреннего сгорания Download PDF

Info

Publication number
RU2787432C2
RU2787432C2 RU2021116672A RU2021116672A RU2787432C2 RU 2787432 C2 RU2787432 C2 RU 2787432C2 RU 2021116672 A RU2021116672 A RU 2021116672A RU 2021116672 A RU2021116672 A RU 2021116672A RU 2787432 C2 RU2787432 C2 RU 2787432C2
Authority
RU
Russia
Prior art keywords
internal combustion
cooling system
fan
combustion engine
radiator
Prior art date
Application number
RU2021116672A
Other languages
English (en)
Other versions
RU2021116672A (ru
Inventor
Виктор Евгеньевич Тарасенко
Николай Николаевич Романюк
Валерий Андреевич Эвиев
Ангира Валерьевна Эвиева
Виктория Валерьевна Эвиева
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Калмыцкий государственный университет имени Б.Б. Городовикова"
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Калмыцкий государственный университет имени Б.Б. Городовикова" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Калмыцкий государственный университет имени Б.Б. Городовикова"
Publication of RU2021116672A publication Critical patent/RU2021116672A/ru
Application granted granted Critical
Publication of RU2787432C2 publication Critical patent/RU2787432C2/ru

Links

Images

Abstract

Изобретение может быть использовано в двигателях внутреннего сгорания. Комбинированная система охлаждения двигателя внутреннего сгорания содержит радиатор (3), вентилятор (7), эжекторы (6), направляющий кожух (4) и трубчатые магистрали (5). Система дополнительно содержит заслонку (2) радиатора, выполненную в виде активных жалюзей с изменяющимся проходным сечением и электроприводом (1), установленную перед радиатором (3) в вертикальных направляющих с возможностью реверсивного вращения жалюзей и перемещения от крайнего нижнего положения к верхнему. Имеются электромагнитная муфта (12) привода вентилятора (7) и электроприводной насос (14). Электроприводной насос (14) установлен на торцевой поверхности двигателя (16) внутреннего сгорания и осуществляет подачу охлаждающей жидкости первоначально в головку (15) блока цилиндров. Трубчатые магистрали (5) выполнены в виде активных выпускных коллекторов с изменяющимся внутренним проходным сечением посредством регулирующих заслонок (8), установленных на осях в каждом из выпускных коллекторов и имеющих электропривод (9). Управление системой охлаждения осуществляет блок управления (17) на основании сигналов датчиков оборотов коленчатого вала, частоты вращения вентилятора (7), положения активных жалюзей и регулирующих заслонок (8), давления в выпускном коллекторе и температуры охлаждающей жидкости системы охлаждения, в качестве которой используют глицерин. Технический результат заключается в обеспечении стабильного заданного температурного режима двигателя внутреннего сгорания при переменном характере нагрузки, и в снижении энергетических затрат на привод вентилятора и насоса. 1 ил.

Description

Предлагаемое изобретение относится к области машиностроения, а именно к двигателестроению, в частности, к выполнению комбинированной системы охлаждения двигателя внутреннего сгорания, и может быть использовано на мобильных транспортных средствах, имеющих двигатели внутреннего сгорания.
Широко известна система охлаждения двигателя внутреннего сгорания серийного трактора ДЭТ-250, состоящая из двух масляных и двух водяных радиаторов, эжекторов, трубчатых соединений, корпусных элементов (см. Дизель-электрический трактор ДЭТ-250. - Л.: Машиностроение, 1965. - 480с.). В системе охлаждения трактора ДЭТ-250 отсутствует вентилятор и его привод, а воздушные потоки, охлаждающие радиаторы, создаются эжекторами, использующими энергию отработавших газов.
Известны результаты экспериментального исследования эжекторного охлаждения (см. Железко, Б. Е. Анализ экспериментального исследования эжекторного охлаждения дизельного двигателя. Автомобиле- и тракторостроение. Исследование автотракторных двигателей. - Минск, 1971. - C. 99-110), в результате которого установлено, что охлаждение двигателя с помощью эжектора так же эффективно, как и с помощью вентилятора. При этом степень использования поверхности теплоотдачи радиатора при эжекторном охлаждении выше, чем при вентиляторном.
Известна также система жидкостного охлаждения преимущественно двигателя внутреннего сгорания (см. патент RU 2044895 С1, МПК F01P 5/00, 1995), состоящая из радиатора, осевого вентилятора, кожуха вентилятора и эжектора.
Общим недостатком этих систем охлаждения является невозможность поддержания стабильного заданного температурного режима двигателя внутреннего сгорания по мере изменения нагрузки, а также сложность конструктивного исполнения.
Известна система охлаждения двигателя внутреннего сгорания (см. патент RU 2252324 С2, МПК F01P 7/14, F01М 5/00, 2005), которая содержит масляный и водяной радиаторы, два эжектора, трубчатые соединения, два вентилятора с гидромуфтами, наличие последних позволяет автоматизировать включение и отключение вентиляторов.
Недостатком этой системы охлаждения является невозможность поддержания стабильного заданного температурного режима двигателя в широких диапазонах изменения нагрузки по той причине, что при отключении вентиляторов зона действия двух эжекторов не может полностью покрыть поверхность охлаждения как масляного, так и водяного радиаторов. Кроме того, привод двух вентиляторов требует дополнительных затрат мощности двигателя.
Известна система охлаждения двигателя внутреннего сгорания (см. патент BY 13150 С1, МПК F01P 5/00, F01P 7/14, F01P 3/00, 2010), наиболее близкая по техническому устройству предлагаемой, которая принята в качестве прототипа, содержащая водяной радиатор, вентилятор, эжекторы, направляющий кожух, трубчатые магистрали, предполагает поступление отработавших газов от выхлопного коллектора двигателя внутреннего сгорания по трубчатым магистралям к эжекторам, на выходе из которых создается область пониженного давления.
Функционирование такой системы охлаждения зависит от режима работы двигателя, а именно от интенсивности поступления отработавших газов к эжекторам. Это обстоятельство в сочетании с отсутствием средств автоматического регулирования режима работы вентилятора не позволяет обеспечить увеличение теплоотдачи от поверхности теплообменников при необходимости, что является существенным недостатком данной системы охлаждения.
Задачей предлагаемого изобретения является обеспечение стабильного заданного температурного режима двигателя внутреннего сгорания и оптимизация режима его работы при переменном характере нагрузки, снижение энергозатрат на привод вентилятора и жидкостного насоса.
Поставленная задача решается за счет того, что комбинированная система охлаждения двигателя внутреннего сгорания, содержащая радиатор, вентилятор, эжекторы, направляющий кожух, трубчатые магистрали, дополнительно содержит заслонку радиатора, выполненную в виде активных жалюзей с изменяющимся проходным сечением и электроприводом, установленную перед радиатором в вертикальных направляющих с возможностью реверсивного вращения жалюзей и перемещения от крайнего нижнего положения к верхнему, электромагнитную муфту привода вентилятора, электроприводной насос, который установлен на торцевой поверхности двигателя внутреннего сгорания и осуществляет подачу охлаждающей жидкости первоначально в головку блока цилиндров, а трубчатые магистрали выполнены в виде активных выпускных коллекторов с изменяющимся внутренним проходным сечением посредством регулирующих заслонок, установленных на осях в каждом из выпускных коллекторов и имеющих электропривод, при этом управление системой охлаждения осуществляет блок управления на основании сигналов датчиков оборотов коленчатого вала, частоты вращения вентилятора, положения активных жалюзей и регулирующих заслонок, давления в выпускном коллекторе и температуры охлаждающей жидкости системы охлаждения, в качестве которой используют глицерин.
На фиг. 1 изображена комбинированная система охлаждения двигателя внутреннего сгорания.
Предлагаемая комбинированная система охлаждения двигателя внутреннего сгорания включает в себя расположенный на входе в воздушный тракт жидкостный радиатор 3, к поверхности которого крепится направляющий кожух 4 с расположенными в нем эжекторами 6, вентилятор 7 и трубчатые магистрали 5. В направляющем кожухе 4 эжекторы 6 расположены по окружности симметрично по отношению к оси вращения вентилятора 7 с возможностью поступления к ним отработавших газов по двум трубчатым магистралям 5, образующим замкнутый контур между выхлопным коллектором двигателя внутреннего сгорания 16 и эжекторами. При этом зона пониженного давления, создаваемая эжекторами 6, соответствует площади, ометаемой крыльчаткой вентилятора 7.
Перед жидкостным радиатором 3 на пути следования нагнетаемых вентилятором 7 воздушных масс в вертикальных направляющих (на фиг. 1 не показаны) установлена заслонка 2 радиатора, которая выполнена в виде активных жалюзей с изменяющимся проходным сечением. Заслонка 2 под действием электропривода 1 имеет возможность реверсивного вращения жалюзей и перемещения от крайнего нижнего положения к верхнему. Привод вентилятора 7 осуществляется посредством электромагнитной муфты 12, которая управляется электронным блоком 17. Трубчатые магистрали 5 выполнены в виде активных выпускных коллекторов с изменяющимся внутренним проходным сечением посредством регулирующих заслонок 8, установленных на осях в каждом из выпускных коллекторов и имеющих электропривод 9. Принудительная циркуляция охлаждающей жидкости по системе охлаждения осуществляется насосом 14 с электроприводом 13. Насос 14 установлен на торцевой поверхности двигателя внутреннего сгорания 16 и осуществляет подачу охлаждающей жидкости первоначально в головку блока цилиндров 15 и далее по рубашке охлаждения двигателя. Нагретая охлаждающая жидкость по патрубку 10 поступает в жидкостный радиатор 3, несколько охлаждается и по патрубку 11 вновь подается насосом 14 в полости рубашки охлаждения двигателя внутреннего сгорания 16. При этом патрубки 10 и 11 имеют достаточно большое поперечное сечение и выполнены из термостойкой резины.
Управление системой охлаждения осуществляет блок управления 17 на основании сигналов датчиков оборотов коленчатого вала, частоты вращения вентилятора 7, положения активных жалюзей заслонки 2 и регулирующих заслонок 8, давления в выпускном коллекторе и температуры охлаждающей жидкости системы охлаждения (на фиг. 1 не показаны). В качестве охлаждающей жидкости используют глицерин.
Функционирование комбинированной системы охлаждения двигателя внутреннего сгорания 16 предусматривает поступление отработавших газов к эжекторам 6 от выхлопного коллектора двигателя (на фиг. 1 не показан).
Комбинированная система охлаждения работает следующим образом.
При запуске двигателя внутреннего сгорания 16 температура охлаждающей жидкости приближена к температуре окружающего воздуха и потребность в ее циркуляции по рубашке охлаждения и головке блока цилиндров 15 отсутствует. Это вызвано необходимостью скорейшего достижения оптимального температурного режима, при котором двигатель внутреннего сгорания 16 развивает наилучшие мощностно-экономические показатели. Поэтому жидкостный насос 14 и крыльчатка вентилятора 7 не вращаются, охлаждающая жидкость быстрыми темпами прогревается до более высоких температур. Заслонка 2 жидкостного радиатора 3 при этом опущена в крайнее нижнее положение для снижения вероятности загрязнения сердцевины жидкостного радиатора 3 различными мелкими растительными остатками и пылью. Заслонки 8, приводимые в действие электроприводом 9, перекрывают доступ отработавших газов к эжекторам 6 и все отработавшие газы через выхлопной коллектор выбрасываются в окружающую среду.
Датчики оборотов коленчатого вала, частоты вращения вентилятора 7, положения активных жалюзей заслонки 2 и регулирующих заслонок 8, давления в выпускном коллекторе и температуры охлаждающей жидкости системы охлаждения осуществляют непрерывное преобразование значений соответствующих параметров в величины электрического сигнала, а электронный блок управления 17 на основании полученных данных управляет работой электромагнитной муфты 12 привода вентилятора 7, электропривода 13 жидкостного насоса 14, электропривода 1 заслонки 2 жидкостного радиатора 3, электроприводом 9 регулирующих заслонок 8. Так, при достижении температуры охлаждающей жидкости значения 75±1°С по команде электронного блока управления 17 начинает осуществляться привод жидкостного насоса 14, подача охлаждающей жидкости первоначально осуществляется в область головки блока цилиндров 15, детали которой подвержены наибольшему температурному воздействию. Одновременно охлаждающая жидкость поступает по патрубку 10 в жидкостный радиатор 3, где охлаждается и по патрубку 11 направляется к жидкостному насосу 14. При этом крыльчатка вентилятора 7 не вращается, а электропривод 1 поворачивает элементы жалюзи заслонки 2 на некоторый угол для доступа набегающих потоков воздуха.
При дальнейшей работе двигателя внутреннего сгорания 16 осуществляется привод жидкостного насоса 14, в связи с чем поддерживается принудительная циркуляция охлаждающей жидкости по контуру системы охлаждения для переноса теплоты от нагретых деталей двигателя к жидкостному радиатору 3. При этом более полное включение электронным блоком 17 электропривода 13 жидкостного насоса 14 происходит при достижении температуры охлаждающей жидкости значения 85±1°С, что позволяет довести вязкость охлаждающей жидкости (глицерина) до оптимальных значений, снизить затраты мощности на привод жидкостного насоса 14.
Особенно актуально такое техническое решение в условиях низких температур окружающего воздуха. При этом жидкостный насос 14, приводимый в действие электроприводом 13, обеспечивает циркуляцию охлаждающей жидкости по системе охлаждения с некоторой усредненной производительностью. При дальнейшем росте температуры охлаждающей жидкости производительность жидкостного насоса 14 посредством электропривода 13 пропорционально возрастает, а электронный блок управления 17 посредством электропривода 9 приоткрывает регулирующие заслонки 8 и позволяет отработавшим газам поступать к эжекторам 6.
Отработавшие газы от выхлопного коллектора по двум трубчатым магистралям 5 поступают к эжекторам 6. Выходя из эжекторов 6 с большой скоростью, отработавшие газы создают некоторое разряжение (зону пониженного давления), куда стремительно направляются дополнительные воздушные массы, тем самым повышая интенсивность процесса теплоотдачи от поверхности жидкостного радиатора 3 и эффективность всей системы охлаждения в целом. Постоянный поток воздуха, проходящий через сердцевину жидкостного радиатора 3, отнимает существенную часть теплоты и уносит ее в окружающее пространство.
Расположение эжекторов 6 симметрично по отношению к оси вращения вентилятора 7 в направляющем кожухе 4 позволяет создавать зону пониженного давления, соответствующую площади ометаемой крыльчаткой вентилятора 7, что обеспечивает равномерное по всей площади охлаждения радиатора 3 засасывание воздушных масс. Отсутствие застойных участков поверхности охлаждения радиатора 3, в которых интенсивность теплоотдачи крайне мала, позволяет поддерживать стабильный заданный температурный режим двигателя внутреннего сгорания 16 при различных нагрузках.
Обязательным условием работы комбинированной системы охлаждения является обеспечение температуры охлаждающей жидкости (глицерина) в пределах 95±1°С. Для этого посредством электропривода 13 жидкостный насос 14 выводится на номинальную производительность, электропривод 1 поворачивает элементы жалюзи заслонки 2 на угол 90° для более полного доступа потоков воздуха. Интенсивность циркуляции воздушных потоков обеспечивается электроприводом 9 регулирующих заслонок 8. В случае роста температуры охлаждающей жидкости (глицерина) выше 95±1°С электропривод 1 осуществляет перемещение заслонки 2 по вертикальным направляющим в крайнее верхнее положение, а электромагнитная муфта 12 обеспечивает включение в работу вентилятора 7 до момента достижения температуры охлаждающей жидкости заданного предела.
При частичном использовании мощности двигателя внутреннего сгорания 16, на режимах, когда нет необходимости в интенсивном отводе теплоты от радиатора 3, а также при низких температурах окружающей среды, электронный блок управления 17 посредством электромагнитной муфты 12 отключает вентилятор 7. Использование энергии отработавших газов в эжекторах 6 позволяет функционировать системе охлаждения только на эффекте эжекции, что позволяет существенно снизить энергозатраты на привод вентилятора 7.
Предлагаемая комбинированная система охлаждения двигателя внутреннего сгорания позволяет обеспечить стабильный заданный температурный режим двигателя внутреннего сгорания и оптимизировать режим его работы при переменном характере нагрузки, снизить энергозатраты на привод вентилятора и жидкостного насоса.

Claims (1)

  1. Комбинированная система охлаждения двигателя внутреннего сгорания, содержащая радиатор, вентилятор, эжекторы, направляющий кожух, трубчатые магистрали, отличающаяся тем, что дополнительно содержит заслонку радиатора, выполненную в виде активных жалюзей с изменяющимся проходным сечением и электроприводом, установленную перед радиатором в вертикальных направляющих с возможностью реверсивного вращения жалюзей и перемещения от крайнего нижнего положения к верхнему, электромагнитную муфту привода вентилятора, электроприводной насос, который установлен на торцевой поверхности двигателя внутреннего сгорания и осуществляет подачу охлаждающей жидкости первоначально в головку блока цилиндров, а трубчатые магистрали выполнены в виде активных выпускных коллекторов с изменяющимся внутренним проходным сечением посредством регулирующих заслонок, установленных на осях в каждом из выпускных коллекторов и имеющих электропривод, при этом управление системой охлаждения осуществляет блок управления на основании сигналов датчиков оборотов коленчатого вала, частоты вращения вентилятора, положения активных жалюзей и регулирующих заслонок, давления в выпускном коллекторе и температуры охлаждающей жидкости системы охлаждения, в качестве которой используют глицерин.
RU2021116672A 2021-06-09 Комбинированная система охлаждения двигателя внутреннего сгорания RU2787432C2 (ru)

Publications (2)

Publication Number Publication Date
RU2021116672A RU2021116672A (ru) 2022-12-09
RU2787432C2 true RU2787432C2 (ru) 2023-01-09

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2252324C2 (ru) * 2003-05-22 2005-05-20 ООО "Волгоградская машиностроительная компания "ВгТЗ" Система охлаждения двигателя транспортного средства
RU2418178C1 (ru) * 2010-02-19 2011-05-10 Государственное образовательное учреждение высшего профессионального образования "Курганский государственный университет" Модернизированная эжекционная система охлаждения двигателя внутреннего сгорания
US9857126B2 (en) * 2015-02-16 2018-01-02 Hyundai Motor Company Radiator for vehicle
US20180080417A1 (en) * 2015-11-20 2018-03-22 Ford Global Technologies, Llc Systems and methods for purging a fuel vapor canister

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2252324C2 (ru) * 2003-05-22 2005-05-20 ООО "Волгоградская машиностроительная компания "ВгТЗ" Система охлаждения двигателя транспортного средства
RU2418178C1 (ru) * 2010-02-19 2011-05-10 Государственное образовательное учреждение высшего профессионального образования "Курганский государственный университет" Модернизированная эжекционная система охлаждения двигателя внутреннего сгорания
US9857126B2 (en) * 2015-02-16 2018-01-02 Hyundai Motor Company Radiator for vehicle
US20180080417A1 (en) * 2015-11-20 2018-03-22 Ford Global Technologies, Llc Systems and methods for purging a fuel vapor canister

Similar Documents

Publication Publication Date Title
KR101619278B1 (ko) 냉각수 제어밸브를 갖는 엔진시스템
KR101601236B1 (ko) 냉각수 제어밸브를 갖는 엔진시스템
CN101368504B (zh) 一种发动机冷却系统
US5121714A (en) Cooling of an internal-combustion engine
JP4119222B2 (ja) 車両用熱交換器の通風装置およびその制御方法
KR101601234B1 (ko) 냉각수 제어밸브를 갖는 엔진시스템
KR101646128B1 (ko) 냉각수 제어밸브를 갖는 엔진시스템
JP4288200B2 (ja) 高、低温冷却系を備えた内燃機関
CN105863812B (zh) 一种复合风冷与水冷的发动机多元冷却系统
WO2009151379A1 (en) Cooling arrangement for a supercharged combustion engine
BRPI1005802A2 (pt) disposição para resfriamento de gases de exaustão recirculantes de um motor de combustao
US20110174243A1 (en) Internal combustion engine cooling unit
SE0802031A1 (sv) Arrangemang hos en överladdad förbränningsmotor
SE534270C2 (sv) Arrangemang för kylning av återcirkulerande avgaser hos en förbränningsmotor
KR20190028965A (ko) 오일온도를 제어할 수 있는 인터쿨러 냉각장치 및 이의 제어방법
SE528123C2 (sv) Arrangemang för återcirkulation av avgaser hos en förbränningsmotor i ett fordon
SE1050444A1 (sv) Arrangemang och förfarande för att värma kylvätska som cirkulerar i ett kylsystem
CN205477881U (zh) 一种发动机冷却系统
RU2787432C2 (ru) Комбинированная система охлаждения двигателя внутреннего сгорания
RU155350U1 (ru) Двигатель внутреннего сгорания с жидкостным охлаждением со вторичным контуром
BR112017000919B1 (pt) Superalimentador de onda de pressão
WO2009048408A1 (en) Arrangement and method for recirculation of exhaust gases from a combustion engine
KR101684553B1 (ko) 냉각수 제어밸브를 갖는 엔진시스템
KR20130067981A (ko) 차량용 가변형 그릴장치
RU2746010C1 (ru) Система охлаждения двигателя внутреннего сгорания с электроприводным регулируемым вентилятором