RU2787332C1 - Высокоэнтропийный жаропрочный сплав - Google Patents

Высокоэнтропийный жаропрочный сплав Download PDF

Info

Publication number
RU2787332C1
RU2787332C1 RU2022119160A RU2022119160A RU2787332C1 RU 2787332 C1 RU2787332 C1 RU 2787332C1 RU 2022119160 A RU2022119160 A RU 2022119160A RU 2022119160 A RU2022119160 A RU 2022119160A RU 2787332 C1 RU2787332 C1 RU 2787332C1
Authority
RU
Russia
Prior art keywords
alloy
niobium
titanium
calcium
temperatures
Prior art date
Application number
RU2022119160A
Other languages
English (en)
Inventor
Александр Фёдорович Дегтярев
Владимир Николаевич Скоробогатых
Евгений Львович Муханов
Алексей Владимирович Дуб
Жанна Владимировна Юргина
Анатолий Павлович Куликов
Виктор Михайлович Ефимов
Юрий Сергеевич Волобуев
Original Assignee
Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (АО "НПО "ЦНИИТМАШ")
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (АО "НПО "ЦНИИТМАШ") filed Critical Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (АО "НПО "ЦНИИТМАШ")
Application granted granted Critical
Publication of RU2787332C1 publication Critical patent/RU2787332C1/ru

Links

Abstract

Изобретение относится к области металлургии сплавов, а именно к высокоэнтропийным сплавам, которые могут быть использованы для производства элементов и деталей конструкций, работающих в условиях высоких температур в авиационных и ракетных двигателях, а также могут быть использованы для изготовления сопловых (направляющих) лопаток газотурбинных установок, работающих в агрессивных средах при температурах 700-1100°С. Высокоэнтропийный жаропрочный сплав содержит, ат.%: цирконий 5,50, алюминий 8,27, ниобий 25,5, титан 25,2, ванадий 25,5, кремний 5,0, хром 5,0, кальций и РЗМ 0,03. Сплав характеризуется низкой плотностью и повышенными прочностными характеристиками при повышенных температурах и воздействии знакопеременных нагрузок. 1 з.п. ф-лы, 1 табл., 1 пр.

Description

Изобретение относится к области металлургии сплавов, а именно к высокоэнтропийным сплавам, которые могут быть использованы для производства элементов и деталей конструкций, работающих в условиях высоких температур в авиационных и ракетных двигателях, а также могут использованы для изготовления сопловых (направляющих) лопаток газотурбинных установок, работающих в агрессивных средах при температурах 700-1100°С.
Известен жаропрочный сплав для изготовления деталей горячей зоны авиационных двигателей и теплонагруженных элементов ракет, содержащий титан, ванадий, ниобий, алюминий, тантал и цирконий при следующем соотношении компонентов, ат.%: титан 20-35, ванадий 20-35, ниобий 20-35, алюминий 5-15, тантал 2-10, цирконий 1-15. При этом величина конфигурационной энтропии образования сплава соответствует следующему соотношению:
ΔSmix=R∑Ci⋅lnCi≥11,2, где
ΔSmix - конфигурационная энтропия, Дж/(моль⋅K),
R - универсальная газовая постоянная, равная 8,31 Дж/(моль⋅K),
Ci - концентрация i-го элемента, ат.%.
(RU2526657, С23С 30/00, опубликовано 27.08.2014) Недостатками известного сплава являются низкий удельный предел текучести при повышенных температурах не более 100⋅кПа⋅м /кг при температуре 700°С.
Известен жаропрочный высокоэнтропийный сплав AlNbTiVZrx, содержащий титан, ниобий, ванадий, цирконий и алюминий при следующем соотношении компонентов, ат.%: титан 24-24,6, ниобий 22,4-23,6, ванадий 21,9-22,8, цирконий 3,3-6,7, остальное - алюминий, при этом х принимает значения от 0,1 до 0,25. Известный сплав работоспособен при температурах до 800°С.
(RU2631066, С22С 30/00, опубликовано 18.09.2017) Известен деформируемый высокоэнтропийный сплав для высокотемпературных применений TiaNbbCrcVd, имеющий следующее соотношение компонентов, ат.%: титан (а) - 42,7, ниобий (b) - 23,0, хром (с) - 22,1, ванадий (d) - 12,2. Сплав имеет высокий удельный предел текучести более 150 кПа⋅м3/кг при температуре 700°С, плотность менее 6,5 г/см3, а также обладает высокой пластичностью не менее 50% при комнатной температуре и способностью к деформационной обработке холодной прокаткой.
(RU2696799, С22С 14/00, С22С 30/00, опубликовано 06.04.2019) Наиболее близким является высокоэнтропийный сплав с ОЦК-структурой Zr0,5AlNbTiMo0,5V, содержащий цирконий, алюминий, ниобий, титан, молибден и ванадий в количестве от 5 до 35 ат.% каждого. При этом известный сплав может содержать кремний и иттрий Y в количестве 0,01-5 ат.%, которые как элемент с малой площадью поперечного сечения поглощения нейтронов вводятся в сплав для упрочнения твердого раствора. Известные сплавы предназначены для работы при температурах до 1000°С в условиях воздействия нейтронного облучения.
(US2016326616 (A1), B22F 3/105; B22F 3/15; С22С 1/02; С22С 1/04; С22С 14/00; С22С 16/00; С22С 21/00; С22С 27/02; С22С 27/04; С22С 27/06; С22С 30/00; G21C 1/02; G21C 11/08, опубликовано 10.11.2016)
Недостатками данного сплава являются низкие прочностные свойства при повышенных температурах в условиях воздействия знакопеременных нагрузок, а также заметное снижение пластичности при комнатной температуре после гомогенизации вследствие выделения частиц фазы Лавеса.
Задачей и техническим результатом изобретения является создание высокоэнтропийного жаропрочного сплава с низкой плотностью и повышенными прочностными характеристиками при повышенных температурах и воздействия знакопеременных нагрузок.
Технический результат достигается тем, что высокоэнтропийный жаропрочный сплав содержит цирконий, алюминий, ниобий, титан, ванадий и кремний, причем он дополнительно содержит хром и смесь кальция с, по меньшей мере, одним редкоземельным металлом, выбранным из группы: лантан, церий, неодим, при следующем соотношении компонентов, ат.%:
цирконий 5,50
алюминий 8,27
ниобий 25,5
титан 25,2
ванадий 25,5
кремний 5,0
хром 5,0
кальций и РЗМ 0,03
Технический результат также достигается тем, что смесь кальция и редкоземельного металла лантана, церия и неодима содержит более 0,001 мас. % каждого металла, причем их суммарное содержание в смеси составляет 0,03 мас. %
Более легкие металлы, такие как Al, Si и Ti, обеспечиваю уменьшение плотности и улучшения пластичности, а тугоплавки металлы, такие как Nb, V и Zr, отвечают за тугоплавкие и прочностные характеристики сплава.
Несмотря на то, что Al это ГЦК-металл, он обладает большой растворимостью во многих ОЦК-металлах и в концентрации 8,27 ат. % может стабилизировать неупорядоченную структуру с пространственной группой Im-3m. Алюминий также способствует образованию защитной оксидной пленки, которая улучшает стойкость сплава к окислению
коррозии.
Титан в концентрации 25,2 ат.% и цирконий в концентрации 5,5 ат.% так же, как и ниобий в концентрации 25,5 ат.% и ванадий в концентрации 25,5 ат.%, имеют полную растворимость друг в друге. При этом цирконий и титан, так же, как и ниобий и ванадий, существуют в ОЦК-фазе в области высоких температур (до 1600°С) и во всем твердотельном диапазоне (до 2000°С) соответственно. Эта комбинация элементов демонстрирует сильные тенденции к упорядочению в присутствии алюминия, а также демонстрирует тенденции разделения из-за положительных параметров взаимодействия между цирконием и ниобием и между титаном и ниобием. Добавление алюминия, как к цирконию, так и к титану способствует образованию не только фаз ОЦК-типа, но и большого количества интерметаллидов. Поскольку высокотемпературная ОЦК-фаза преобладает в исследуемых элементах, а также в их сплавах, вероятность формирования одиночной фазы с высокой энтропией очень высока.
Присутствие Cr в сплаве в концентрациях до 5 ат.% способствует предотвращению выделения неблагоприятной для низкотемпературной пластичности фазы Лавеса. Хром также благотворно влияет на жаропрочность сплава. Превышение в сплаве содержания Cr более 5,0 ат.% приводит к выделению фазы Лавеса.
Повышение прочности сплава при высоких температурах связана с присутствием кремния, который в концентрациях 5 ат.% способствует образованию силицида.
Добавление смеси кальция с редкоземельными металлами (РЗМ) лантаном, церием и неодимом в количестве 0,03 ат.% приводит к увеличению искажение решетки матричного сплава и его упрочнению за счет измельчения зерна в присутствии редкоземельных металлов.
Свои положительные упрочняющие свойства РЗМ проявляют в количестве более 0,001 мас. % каждого и их суммарном содержании в смеси с кальцием 0,03 ат.%.
Присутствие кальция усиливает действие лантаноидов. Кальций очищает и упрочняет границы зерен и измельчает структуру сплава, что приводит к повышению прочности, пластичности и ударной вязкости. Кроме того, кальций имеет пониженную плотность, что способствует снижению плотности сплава.
Сплавы ZrAlNbTiVSiCr с добавками Са и РЗМ соответствуют всем критериям, установленным для оценки того, может ли данная комбинация элементов сформировать ВЭС.
Можно с большей вероятностью прогнозировать, что сплавы на основе ZrAlNbTiVSiCr с добавками Са и РЗМ представляют собой неупорядоченные однофазные твердые растворы со структурой ОЦК-типа.
Изобретение можно проиллюстрировать следующим примером.
Сплавы по изобретению TiAlCrNbVSiZr с добавками Са и РЗМ были изготовлены методом плазменно-дуговой плавки.
Чистые шихтовые материалы размещались в кристаллизаторе таким образом, чтобы наиболее тугоплавкие компоненты располагались непосредственно в области воздействия струи плазмы.
Плавку проводили при остаточном давлении порядка 10-2 Па в атмосфере аргона. Жидкая ванна поддерживалась не менее 5 минут при каждом переплаве. После очередного переплава слиток переворачивался и производился следующий переплав. Для обеспечения гомогенности переплав повторялся 5-7 раз.
В результате были получены слитки массой 1,5 кг. Слитки имели блестящую поверхность. Химический анализ слитков показал их гомогенность по основным элементам и соответствие полученного химического состава заданному составу.
Слитки были разделаны методом гидроабразивной резки, при этом продемонстрировали достаточно хорошую обрабатываемость. Значимых макроскопических дефектов структуры не было выявлено.
Образцы данного сплава были подвергнуты горячей деформации методом свободной ковки при температурах 1100-1300°С. Сплав продемонстрировал достаточно хорошую для жаропрочных материалов пластичность. Вместе с тем, поведение сплава указывает на то, что оптимальные температуры деформации лежат выше, а оптимальным методом обработки могут быть прессование или экструзия.
Из слитков и деформированных заготовок получали образцы для структурных исследований и испытаний. Заготовки вырезали гидроабразивным или электроэрозионным способом, подвергали обработкой резанием (точением, строганием, фрезерованием) и далее шлифовали. Сплав продемонстрировал удовлетворительную обрабатываемость инструментом из твердых сплавов.
Образцы сплавов в литом и горячедеформированном состоянии были подвергнуты структурным исследованиям, испытаниям механических свойств, испытаниям на жаропрочность и устойчивость к воздействию знакопеременных нагрузок.
Figure 00000001
Полученный сплав устойчив к воздействию знакопеременных нагрузок, обеспечивает твердость 500HV~620HV и механические свойства при сжатии при комнатной температуре: σ0,2 до 1450 МПа, при 750°С, σ0,2 до 1000 МПа; при 850°С, σ0,2 до 650 МПа; при 1000°С, σ0,2 до 200 МПа.
Результаты испытаний показали, что высокоэнтропийный жаропрочный сплав по изобретению обеспечивает достижение поставленного технического результата: обладает низкой плотностью и повышенными прочностными характеристиками при повышенных температурах и воздействия знакопеременных нагрузок.

Claims (3)

1. Высокоэнтропийный жаропрочный сплав, содержащий цирконий, алюминий, ниобий, титан, ванадий и кремний, отличающийся тем, что он дополнительно содержит хром и смесь кальция с по меньшей мере одним редкоземельным металлом, выбранным из группы: лантан, церий, неодим, при следующем соотношении компонентов, ат.%:
цирконий 5,50 алюминий 8,27 ниобий 25,5 титан 25,2 ванадий 25,5 кремний 5,0 хром 5,0 кальций и РЗМ 0,03
2. Высокоэнтропийный жаропрочный сплав по п. 1, отличающийся тем, что смесь кальция и редкоземельного металла лантана, церия, неодима содержит более 0,001 мас.% каждого металла, причем их суммарное содержание в смеси составляет 0,03 мас.%.
RU2022119160A 2022-07-13 Высокоэнтропийный жаропрочный сплав RU2787332C1 (ru)

Publications (1)

Publication Number Publication Date
RU2787332C1 true RU2787332C1 (ru) 2023-01-09

Family

ID=

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526657C1 (ru) * 2013-09-06 2014-08-27 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав
US20160326616A1 (en) * 2015-05-04 2016-11-10 Seoul National University R&Db Foundation Entropy-controlled bcc alloy having strong resistance to high-temperature neutron radiation damage
RU2631066C1 (ru) * 2016-10-27 2017-09-18 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Жаропрочный высокоэнтропийный сплав
CN110669977A (zh) * 2018-10-22 2020-01-10 南京航空航天大学 一种轻质超韧高强NbTiVAlxZry铸态高熵合金
CN111088490A (zh) * 2020-01-11 2020-05-01 贵州大学 一种高硬度高耐磨性的高熵合金涂层及其制备方法
CN112553488A (zh) * 2020-12-16 2021-03-26 湘潭大学 一种CrAlNbTiVZr高熵合金材料及其制备方法
WO2021123239A1 (en) * 2019-12-20 2021-06-24 BJØRSETH, Alf Metal alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526657C1 (ru) * 2013-09-06 2014-08-27 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав
US20160326616A1 (en) * 2015-05-04 2016-11-10 Seoul National University R&Db Foundation Entropy-controlled bcc alloy having strong resistance to high-temperature neutron radiation damage
RU2631066C1 (ru) * 2016-10-27 2017-09-18 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Жаропрочный высокоэнтропийный сплав
CN110669977A (zh) * 2018-10-22 2020-01-10 南京航空航天大学 一种轻质超韧高强NbTiVAlxZry铸态高熵合金
WO2021123239A1 (en) * 2019-12-20 2021-06-24 BJØRSETH, Alf Metal alloy
CN111088490A (zh) * 2020-01-11 2020-05-01 贵州大学 一种高硬度高耐磨性的高熵合金涂层及其制备方法
CN112553488A (zh) * 2020-12-16 2021-03-26 湘潭大学 一种CrAlNbTiVZr高熵合金材料及其制备方法

Similar Documents

Publication Publication Date Title
EP0408313B1 (en) Titanium base alloy and method of superplastic forming thereof
US11718897B2 (en) Precipitation hardenable cobalt-nickel base superalloy and article made therefrom
Loria The status and prospects of alloy 718
CA3110188C (en) High strength fastener stock of wrought titanium alloy and method of manufacturing the same
EP3844314B1 (en) Creep resistant titanium alloys
US20070044872A1 (en) Precipitation-strengthened nickel-iron-chromium alloy and process therefor
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
US2996379A (en) Cobalt-base alloy
RU2526657C1 (ru) Жаропрочный сплав
RU2787332C1 (ru) Высокоэнтропийный жаропрочный сплав
US3132938A (en) Aged steel
Yangshan et al. Mechanical properties of Fe3Al-based alloys with cerium addition
RU2804232C1 (ru) Высокоэнтропийный жаропрочный сплав (варианты)
RU2690257C1 (ru) Сплав на основе титана
DE112019001491B4 (de) Ni-BASIERTE LEGIERUNG UND HITZEBESTÄNDIGES PLATTENMATERIAL, DAS UNTER VERWENDUNG DERSELBEN ERHALTEN WIRD
RU2772153C1 (ru) Стойкие к ползучести титановые сплавы
JP2000001754A (ja) オーステナイト合金とそれを用いた構造物
CN115627387B (zh) 一种高强度TiZr基合金及其制备方法
RU2627304C1 (ru) Интерметаллидный сплав на основе титана и изделие из него
RU2606677C1 (ru) Сплав на основе титана (варианты) и изделие, выполненное из него
JPH11140570A (ja) 高強度高耐食ニッケル合金およびその製造方法
Qazi Thermohydrogen processing (THP) of titanium alloy and titanium-aluminum alloys