RU2787139C1 - Способ контроля плотности потока тепловых нейтронов и устройство для его осуществления - Google Patents
Способ контроля плотности потока тепловых нейтронов и устройство для его осуществления Download PDFInfo
- Publication number
- RU2787139C1 RU2787139C1 RU2022118940A RU2022118940A RU2787139C1 RU 2787139 C1 RU2787139 C1 RU 2787139C1 RU 2022118940 A RU2022118940 A RU 2022118940A RU 2022118940 A RU2022118940 A RU 2022118940A RU 2787139 C1 RU2787139 C1 RU 2787139C1
- Authority
- RU
- Russia
- Prior art keywords
- fissile
- detector
- irradiation
- capsule
- fuel
- Prior art date
Links
- 230000004907 flux Effects 0.000 title claims abstract description 34
- 230000001276 controlling effect Effects 0.000 title claims abstract description 9
- 239000000446 fuel Substances 0.000 claims abstract description 35
- 239000002775 capsule Substances 0.000 claims abstract description 26
- 230000000694 effects Effects 0.000 claims abstract description 26
- 239000011819 refractory material Substances 0.000 claims abstract description 12
- 210000001736 Capillaries Anatomy 0.000 claims abstract description 10
- 230000001105 regulatory Effects 0.000 claims abstract description 4
- 238000005259 measurement Methods 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 11
- 238000001228 spectrum Methods 0.000 claims description 9
- 210000004940 Nucleus Anatomy 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 238000005303 weighing Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 8
- 238000011068 load Methods 0.000 description 5
- FCTBKIHDJGHPPO-UHFFFAOYSA-N dioxouranium Chemical compound O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 4
- 230000004992 fission Effects 0.000 description 4
- 229910052770 Uranium Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium(0) Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 description 2
- 230000036499 Half live Effects 0.000 description 1
- 101710028361 MARVELD2 Proteins 0.000 description 1
- 239000004698 Polyethylene (PE) Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N Silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- XKRFYHLGVUSROY-OUBTZVSYSA-N argon-41 Chemical compound [41Ar] XKRFYHLGVUSROY-OUBTZVSYSA-N 0.000 description 1
- 125000004429 atoms Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 230000004059 degradation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000001681 protective Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004642 transportation engineering Methods 0.000 description 1
Images
Abstract
Группа изобретений относится к средствам контроля плотности потока тепловых нейтронов при высокотемпературном (1000-1800°С) облучении топливных образцов (ТО) в составе капсулы облучательного устройства в исследовательском ядерном реакторе. В способе осуществляют доставку делящегося детектора по транспортной магистрали под воздействием газа к месту облучения топливных образцов и по окончании облучения осуществляют эвакуацию делящегося детектора к месту регистрации активности реперных радионуклидов делящегося детектора. Устройство включает транспортную магистраль с расположенным в ней делящимся детектором и гамма-спектрометрическое устройство. Транспортная магистраль снабжена системой электроклапанов. Для обеспечения заданного перемещения делящегося детектора по транспортной магистрали используется газорегулируемый двухконцевой капилляр, проходящий через капсулу с топливными образцами. Участок транспортной магистрали внутри капсулы выполнен из тугоплавкого материала, а в его внутреннем объеме установлена дроссельная шайба из тугоплавкого материала с проходным сечением, обеспечивающим доставку делящегося детектора во внутренний объем капсулы, фиксацию делящегося детектора на период его облучения реакторными нейтронами и последующую эвакуацию делящегося детектора к гамма-спектрометрическому устройству. Техническим результатом является повышение надежности контроля энерговыделения и выгорания в ТО на любом этапе облучения за счет ускорения, упрощения и повышения точности измерения плотности потока тепловых нейтронов. 2 н. и 1 з.п. ф-лы, 1 ил.
Description
Группа изобретений относится к области ядерных технологий, а именно к контролю плотности потока тепловых нейтронов при высокотемпературном (1000-1800°С) облучении топливных образцов (ТО) в составе капсулы облучательного устройства в исследовательском ядерном реакторе.
Основой изучения поведения ТО при их облучении в исследовательских ядерных реакторах являются инженерные эксперименты, цель которых - определение основополагающих характеристик топлива в конкретных условиях. Известно, что такие свойства топлива, как ползучесть, изменение геометрических размеров и формы, кинетика утечки продуктов деления, очень сильно зависят от интенсивности нейтронного облучения и времени облучения. Поэтому для представительности условий облучения топлива в исследовательских ядерных реакторах необходимо с большой точностью и надежностью определять значения нейтронно-физических параметров, в частности, плотность потока тепловых нейтронов. Кроме того, знание нейтронно-физических параметров испытаний необходимо для проектирования экспериментальных установок и оптимизации условий реакторных испытаний в целях максимального приближения к рабочим условиям эксплуатации топлива ядерно-энергетических установок.
Как правило, ТО облучают в составе капсулы облучательного устройства, оборудованной термопарами и подключенной посредством трубопроводов к газовакуумной системе испытательного реакторного стенда. Термопары и иные средства измерения (СИ), в том числе плотности потока нейтронов, размещаются на наружной поверхности капсулы или, если позволяют условия эксплуатации этих СИ (основным ограничительным условием является предельная рабочая температура СИ), внутри капсулы непосредственно вблизи ТО (например, патенты RU 2680721, RU 2515516).
Известен способ непрерывного контроля плотности потока тепловых нейтронов с помощью миниатюрных токовых детекторов прямого заряда (далее - ДПЗ) [см. Цыканов В.А., Самсонов Б.В. Техника облучения материалов в реакторах с высоким нейтронным потоком - М.: Атомиздат, 1973. - 264 с.]. Как правило, чувствительный участок ДПЗ устанавливается на внешней стенке капсулы, содержащей ТО.
Чувствительный участок ДПЗ выполнен в виде тонкого коаксиального кабеля, центральная жила которого - эмиттер, отделена от внешнего металлического чехла - коллектора. В качестве эмиттера используется материал, в котором при захвате тепловых нейтронов образуются бета-активные радионуклиды с коротким периодом полураспада (не более 3-4 мин). В качестве материала коллектора используется нержавеющая сталь, в которой возникает слабая по сравнению с эмиттером бета-активность при захвате нейтронов. Часть электронов, вылетающих из эмиттера, тормозится в коллекторе, в результате чего возникает положительный заряд на эмиттере. Чувствительный участок ДПЗ соединяется с коаксиальным кабелем. На выходе коаксиального кабеля, между центральной жилой и оплеткой, присоединяется прибор, измеряющий силу тока, пропорциональную потоку тепловых нейтронов.
Известен способ непрерывного контроля потока тепловых нейтронов с помощью термонейтронных датчиков (ТНД) [см. Сафин Ю.А., Карпечко С.Г. и др. Применение термонейтронных датчиков для измерения распределения плотности потока тепловых нейтронов // Атомная энергия, т. 46, вып. 2, 1978.]. Как и в случае с ДПЗ, ТНД устанавливается на внешней стенке корпуса капсулы с топливными образцами. ТНД выполнен из двух основных функциональных частей: чувствительный элемент из материала (сплава), в состав которого входит делящийся материал (уран), и энергонезависимый преобразователь энергии с электрическим выходным сигналом, в качестве которого используется дифференциальная термопара. Под действием нейтронного облучения в чувствительном элементе происходит преобразование энергии ядерных реакций деления в тепловую энергию, далее часть тепловой энергии преобразуется в электрическую с помощью дифференциальной термопары, находящейся в тепловом контакте с чувствительным элементом. Чувствительный участок ТНД соединен с токовым прибором термопарным кабелем с минеральной изоляцией.
Недостатком известных способов контроля плотности потока тепловых нейтронов с использованием как ТНД, как и ДПЗ, при высокотемпературном облучении ТО являются невысокая достоверность, обусловленная:
1) невозможностью размещения внутри объема капсулы непосредственно вблизи ТО по причине недостаточно высокой рабочей температуры ТНД (до 100°С) и ДПЗ (до 700°С);
2) низкой помехозащищенностью от электромагнитных наводок, связанной с низким уровнем генерируемого чувствительным участком полезного электрического сигнала, что приводит к снижению отношения «сигнал/шум», а также к необходимости использования усилителя сигнала с источником питания, что, в свою очередь, снижает его энергонезависимость.
Кроме того, необходимо учитывать выгорание делящегося материала ТНД за время длительного облучения ТО (в течение года и более), в ходе которого существенно снижаются показания ТНД при той же плотности потока нейтронов.
Ресурсные испытания ТО в исследовательских ядерных реакторах состоят из нескольких временных кампаний (каждая более десяти суток). Каждая кампания имеет свою историю формирования активной зоны и существенно отличается одна от другой. Трудноучитываемые параметры деградации и выгорания материалов, используемых в ТНД и ДПЗ, не позволяют корректно измерять плотность потока тепловых нейтронов.
Наиболее близким к заявляемой группе изобретений по технической сущности является способ контроля плотности потока тепловых нейтронов [см. Иванов И.И., Иванец В.Н., Филиппов В.В. Автоматизация активационного анализа - М.: Энергоатомиздат, 1985- 128 с., 43-57 с.], заключающийся в том, что делящийся детектор (ДД) помещают в герметичный контейнер из металла или полиэтилена. Контейнеры размещают столбиком на входе двухконцевой транспортной магистрали, затем подачей сжатого воздуха по одному при помощи электромагнита вводят в магистраль и транспортируют в место облучения. По окончании времени облучения контейнер перемещают от места облучения к участку регистрации активности гамма-спектрометром с целью последующего определения нейтронно-физических параметров облучения ТО.
Устройство, реализующее данный способ, представляет собой комплекс автоматизированной распределительной системы (АРС). Этот комплекс состоит из набора независимых, но совместимых в данной установке специальных изделий, предназначенных для:
- транспортировки ДД;
- размещения ДД в зоне облучения реактора;
- регистрации наведенной активности.
Исходя из весогабаритных характеристик контейнеров и скорости их перемещения (около 100 м/с и более) важным вопросом транспортирования контейнера при помощи сжатого воздуха является демпфирование движения, приходящего на конечные позиции путепровода. В комплексе АРС принят пневматический способ амортизации прихода контейнеров. Это достаточно сложная дроссель-система сжатого воздуха.
Основными недостатками данного способа и системы, его реализующей, являются длительность и сложность процесса измерения, ограниченные функциональные возможности, невысокая точность измерения плотности потока тепловых нейтронов, а следовательно, недостаточная надежность контроля энерговыделения и выгорания в ТО на любом этапе облучения.
Невысокая точность измерения плотности потока тепловых нейтронов обусловлена отсутствием возможности размещения контейнеров с ДД в непосредственной близости к ТО из-за больших геометрических размеров транспортных путепроводов, и, кроме того, сжатый воздух активируется при облучении в реакторе, создавая активность аргона-41, существенно мешающую гамма-спектрометрическим измерениям целевых продуктов активации на тепловых нейтронов. А функциональные возможности ограничивает отсутствие возможности использования в области высоких температур (более 800°С) из-за параметров материалов контейнеров: низкотемпературных - полиэтилена и среднетемпературных -стали 12Х18Н10Т.
Задачей, на решение которой направлена группа изобретений, является обеспечение периодического экспресс-контроля плотности потока тепловых нейтронов при облучении ТО в исследовательских ядерных реакторах.
Техническим результатом, достигаемым заявленной группой изобретений, является ускорение и упрощение процесса измерения, расширение функциональных возможностей, повышение точности измерения плотности потока тепловых нейтронов, а, следовательно, повышение надежности контроля энерговыделения и выгорания в ТО на любом этапе облучения.
Указанный технический результат, касающийся способа, достигается за счет того, что способе контроля плотности потока тепловых нейтронов, заключающемся в том, что осуществляют доставку делящегося детектора по транспортной магистрали под воздействием газа к месту облучения топливных образцов и по окончании облучения осуществляют эвакуацию делящегося детектора к месту регистрации активности реперных радионуклидов делящегося детектора, предложено транспортную магистраль изготовить в виде газорегулируемого двухконцевого капилляра, при этом средний участок транспортной магистрали выполнить из тугоплавкого материала и поместить во внутренний объем капсулы с топливными образцами, в качестве делящегося детектора использовать капсулированное микросферическое топливо, делящийся детектор при помощи инертного газа доставить в средний участок транспортной магистрали со скоростью, не превышающей 20 м/с, и фиксировать его на период T1 для облучения тепловыми нейтронами, а измерение активности реперных радионуклидов в делящемся детекторе в месте регистрации осуществить по истечении времени Т2, при этом плотность потока тепловых нейтронов вблизи топливных образцов определить из соотношения:
Ai - измеренная активность i-го реперного радионуклида в ДД на момент начала измерения (набора гамма-спектра), Бк;
N - исходное число ядер нуклида-мишени в ДД (паспортные данные или расчетная оценка по результатам взвешивания), ядер;
σi(E) - сечение реакции активации нуклида-мишени в ДД нейтронами энергии Е, см2;
λi - постоянная распада i-го реперного радионуклида, с-1;
Т1 - время экспозиции (облучения) ДД, с;
Т2 - время, прошедшее с конца облучения до начала измерения активности реперного радионуклида (начала набора гамма-спектра), с.
Кроме того, предложено в качестве микросферического капсулированного топлива использовать микротвэл для высокотемпературного газоохлаждаемого реактора.
Указанный технический результат, касающийся устройства, достигается за счет того, что в устройстве для контроля плотности потока тепловых нейтронов, включающем транспортную магистраль с расположенным в ней делящимся детектором и гамма-спектрометрическое устройство, предложено транспортную магистраль снабдить системой электроклапанов и для обеспечения заданного перемещения делящегося детектора по транспортной магистрали выполнить в виде газорегулируемого двухконцевого капилляра, который проходит через капсулу с топливными образцами, при этом участок транспортной магистрали внутри капсулы с топливным образцом выполнить из тугоплавкого материала, а в его внутреннем объеме установить дроссельную шайба из тугоплавкого материала с проходным сечением, обеспечивающим доставку делящегося детектора во внутренний объем капсулы, фиксацию делящегося детектора на период его облучения реакторными нейтронами и последующую эвакуацию делящегося детектора из капсулы с топливным образцом к гамма-спектрометрическому устройству.
Выполнение транспортной магистрали в виде газорегулируемого двухконцевого капилляра позволяет разместить ДД в непосредственной близости от ТО, что позволяет с высокой достоверностью контролировать плотность потока тепловых нейтронов вблизи ТО.
Выбор тугоплавкого материала средней части транспортной магистрали обусловлен высокой температурой ТО (от 1000 до 1800°С).
Выявлена возможность использования в качестве делящихся детекторов микросферического капсулированного топлива, например, микротвэлов для высокотемпературных газоохлаждаемых реакторов (ВТГР), представляющих собой шарики диаметром 0,9-1,0 мм, состоящие из топливного (например, диоксид урана UO2 с обогащением урана до 20% по урану-235) керна диаметром 0,4-0,5 мм с многослойным защитным покрытием (из пироуглеродного РуС и карбидкремниевого SiC слоев), предотвращающих выход продуктов деления из топливного керна наружу (например, патент RU 2333555).
В опубликованных источниках информации [см. Егиазаров Б.Г., Корытко Л.А., Сельдяков Ю.П. Измерительная техника в инструментальном нейтронно-активационном анализе. - М.: Атомиздат, 1972. - 216 с.] приводятся данные по использованию делящихся и активационных детекторов для контроля плотности потока тепловых нейтронов при облучении образцов в реакторах.
Однако, эти детекторы имеют сложную или неудобную форму (делящиеся - таблетки с нанесением слоев урана на поверхности, активационные - фольги толщиной несколько микрон), ограничивающую возможность их доставки в активную зону работающего реактора. Используются относительно крупногабаритные путепроводы, либо пассивные длинномерные штанги с закрепленными на них детекторами.
Надежность использования делящихся индикаторов в виде микротвэлов под облучением доказана успешной эксплуатацией ВТГР и проведенных в исследовательских ядерных реакторах экспериментах при температурах до 1800°С и глубинах выгорания топлива до 15% тяжелых атомов (FIMA) [см. Ядерные энергетические установки с высокотемпературными реакторами: монография Н.Г. Кодочигов и др.; под общей редакцией В.В. Петрунина; Нижегород. гос. техн. ун-т. Нижний Новгород, 2017.].
Перемещение ДД по транспортной магистрали осуществляют со скоростью, не превышающей 20 м/с. При заявленной скорости нет необходимости гашения кинетической энергии при подходе к местам облучения и измерения активности ДД массой около 1,33 мг, поэтому динамическая деформация при ударе о дроссельную шайбу не будет превышать предельно допустимую прочность на сжатие защитного пироуглеродного слоя ДД.
Заявляемая группа изобретений проиллюстрирована чертежом, на котором представлена принципиальная схема устройства для контроля плотности потока тепловых нейтронов вблизи облучаемых ТО.
Способ контроля плотности потока тепловых нейтронов выполняют следующим образом.
Транспортную магистраль изготавливают в виде газорегулируемого двухконцевого капилляра, при этом средний участок транспортной магистрали выполняют из тугоплавкого материала и помещают во внутренний объем капсулы с ТО. В качестве ДД используют капсулированное микросферическое топливо. ДД при помощи инертного газа доставляют в средний участок транспортной магистрали со скоростью, не превышающей 20 м/с, и фиксируют его на период Т1 для облучения тепловыми нейтронами. По окончании облучения осуществляют эвакуацию ДД к месту регистрации активности реперных радионуклидов. По истечении времени Т2 осуществляют измерение активности реперных радионуклидов в ДД в месте регистрации, при этом плотность потока тепловых нейтронов вблизи топливных образцов определяют из соотношения:
Ai - измеренная активность i-го реперного радионуклида в делящемся детекторе на момент начала измерения (набора гамма-спектра), Бк;
N - исходное число ядер нуклида-мишени в делящемся детекторе (паспортные данные или расчетная оценка по результатам взвешивания), ядер;
σi(E) - сечение реакции активации нуклида-мишени в делящемся детекторе нейтронами энергии Е, см2;
λi - постоянная распада i-го реперного радионуклида, с-1;
Т1 - время экспозиции (облучения) делящегося детектора, с;
Т2 - время, прошедшее с конца облучения до начала измерения активности реперного радионуклида (начала набора гамма-спектра), с.
Также возможно в качестве микросферического капсулированного топлива использовать микротвэл для высокотемпературного газоохлаждаемого реактора.
Устройство для контроля плотности потока тепловых нейтронов включает:
- транспортную магистраль, выполненную в виде газорегулируемого двухконцевого капилляра 1, предназначенного для транспортировки ДД (на чертеже не указан), и имеющего в своей средней части участок 2, который проходит через капсулу 3 с ТО 4, при этом участок 2 транспортной магистрали внутри капсулы 3 с ТО 4 выполнен из тугоплавкого материала;
- камеру ручной загрузки 5 с возможностью герметизации пробкой 6;
- место 7 регистрации активности реперных радионуклидов ДД полупроводниковым детектором 8 гамма-спектрометрического устройства 9 (например, Canberra GC1518);
- дроссельную шайбу 10 с проходным диаметром, обеспечивающим фиксацию ДД в месте его облучения внутри капсулы 3 с ТО 4;
- систему дистанционно управляемых электроклапанов 11-16;
- баллон 17 с газообразным гелием под давлением, обеспечивающий подачу газа-носителя во внутренний объем газорегулируемого двухконцевого капилляра 1 для транспортировки ДД;
- контейнер 18 для приема проанализированных ДД и их временного хранения, которое определяется остаточной активностью продуктов деления, образовавшихся в ДД, обеспечивающих оптимальную работу измерительного тракта гамма-спектрометрической установки;
- форвакуумный насос 19, обеспечивающий по окончании гамма-спектрометрических измерений ДД перемещение ДД от места регистрации 7 активности реперных радионуклидов в контейнер 18.
Работа устройства осуществляется следующим образом.
При выборе ДД в виде микротвэлов ВТГР с топливным керном на основе диоксида урана обогащением до 20% по урану-235 диаметром не более 0,5 мм исходят из возможности не учитывать эффект самоэкранирования нейтронного потока материалом ДД.
ДД по одному помещают в камеру ручной загрузки 5, снабженную герметизирующей пробкой 6 и соединенную с одним из концов транспортной магистрали, выполненной в виде капилляра 1 с внутренним диаметром 1,5-1,6 мм и общей длиной около 30 м. Участок транспортной магистрали выполненный из тугоплавкого материла, например, молибдена длиной 70 мм размещают в капсуле 3 с ТО 4. В качестве ДД используют капсулированное микросферическое топливо.
При помощи баллона 17 с газообразным гелием осуществляют подачу избыточного давления газового носителя 0,2 бар в камеру ручной загрузки 5 с загруженным в нее ДД.
При помощи заданного режима работы электроклапанами 11-16 обеспечивают перемещение ДД в средний участок транспортной магистрали со скоростью, не превышающей 20 м/с, за счет продувки избыточным давлением гелия 0,2 бар внутреннего объема транспортной магистрали по маршруту «загрузочная камера 5 - дроссельная шайба 10 с проходным диаметром 0,6 мм, обеспечивающим (электроклапаны 12, 14 и 16 открыты, 11, 13 и 15 - закрыты, пробка 6 закрыта) задержку на время экспозиции T1 ДД на дроссельной шайбе 10 для наработки реперных радионуклидов в ДД.
По окончании времени экспозиции T1 электроклапаны 12 и 16 закрывают, а электроклапан 13 отрывают.После поступления ДД в место регистрации 7 активности реперных радионуклидов проводят набор гамма-спектра (измерение активности реперных радионуклидов в ДД) в течение времени Т2 (в это время все электроклапаны закрыты).
По окончании набора и обработки гамма-спектра ДД перемещают из места регистрации 7 активности реперных радионуклидов в приемный контейнер 18 (закрывают электроклапан 14, открывают электроклапан 15 на работающий форвакуумный насос 19).
По окончании перемещения ДД из места регистрации 7 активности реперных радионуклидов в контейнер 18 (контроль по скачкообразному снижению мощности дозы гамма-излучения по датчику измерения мощности дозы, размещенному вблизи места регистрации 7 активности реперных радионуклидов) электроклапаны 11-16 закрывают.
На этом очередной цикл контроля плотности потока тепловых нейтронов вблизи ТО с помощью ДД заканчивается, и устройство готово к загрузке следующего ДД.
Плотность потока тепловых нейтронов вблизи ТО, измеренная с помощью облученного ДД, определяют по следующей формуле:
где Ai - активность i-го реперного радионуклида в ДД на момент начала измерения (начала набора гамма-спектра), с-1:
Использование заявляемой группы изобретений по сравнению с ближайшим аналогом позволяет проводить экспресс-контроль плотности потока тепловых нейтронов при облучении ТО в исследовательских ядерных реакторах и при этом обеспечивает высокую точность измерения плотности потока тепловых нейтронов, обусловленную его проведением в непосредственной близости от облучаемых ТО при высокотемпературном облучении (от 800 до 1600°С), а следовательно, позволяет повысить надежность контроля энерговыделения и выгорания в ТО на любом этапе облучения.
Кроме того, применение микросферического капсулированного топлива - микротвэлов ВТГР в качестве ДД позволяет исключить необходимость их капсулирования в герметичных контейнерах и допускает их многократное использование.
Claims (10)
1. Способ контроля плотности потока тепловых нейтронов, заключающийся в том, что осуществляют доставку делящегося детектора по транспортной магистрали под воздействием газа к месту облучения топливных образцов и по окончании облучения осуществляют эвакуацию делящегося детектора к месту регистрации активности реперных радионуклидов делящегося детектора, отличающийся тем, что транспортную магистраль изготавливают в виде газорегулируемого двухконцевого капилляра, при этом средний участок транспортной магистрали выполняют из тугоплавкого материала и помещают во внутренний объем капсулы с топливными образцами, в качестве делящегося детектора используют капсулированное микросферическое топливо, делящийся детектор при помощи инертного газа доставляют в средний участок транспортной магистрали со скоростью, не превышающей 20 м/с, и фиксируют его на период Т1 для облучения тепловыми нейтронами, а измерение активности реперных радионуклидов в делящемся детекторе в месте регистрации осуществляют по истечении времени Т2, при этом плотность потока тепловых нейтронов вблизи топливных образцов определяют из соотношения:
Ai - измеренная активность i-го реперного радионуклида в делящемся детекторе на момент начала измерения (набора гамма-спектра), Бк;
N - исходное число ядер нуклида-мишени в делящемся детекторе (паспортные данные или расчетная оценка по результатам взвешивания), ядер;
σi(E) - сечение реакции активации нуклида-мишени в делящемся детекторе нейтронами энергии Е, см2;
λi - постоянная распада i-го реперного радионуклида, с-1;
Т1 - время экспозиции (облучения) делящегося детектора, с;
Т2 - время, прошедшее с конца облучения до начала измерения активности реперного радионуклида (начала набора гамма-спектра), с.
2. Способ по п. 1, отличающийся тем, что в качестве микросферического капсулированного топлива используют микротвэл для высокотемпературного газоохлаждаемого реактора.
3. Устройство для контроля плотности потока тепловых нейтронов, включающее транспортную магистраль с расположенным в ней делящимся детектором и гамма-спектрометрическое устройство, отличающееся тем, что транспортная магистраль снабжена системой электроклапанов и для обеспечения заданного перемещения делящегося детектора по транспортной магистрали выполнена в виде газорегулируемого двухконцевого капилляра, который проходит через капсулу с топливными образцами, при этом участок транспортной магистрали внутри капсулы с топливным образцом выполнен из тугоплавкого материала, а в его внутреннем объеме установлена дроссельная шайба из тугоплавкого материала с проходным сечением, обеспечивающим доставку делящегося детектора во внутренний объем капсулы, фиксацию делящегося детектора на период его облучения реакторными нейтронами и последующую эвакуацию делящегося детектора из капсулы с топливным образцом к гамма-спектрометрическому устройству.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2787139C1 true RU2787139C1 (ru) | 2022-12-29 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117594268A (zh) * | 2023-10-08 | 2024-02-23 | 华能核能技术研究院有限公司 | 一种应用于高温气冷堆的燃料元件阻流、定位与分配装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196047A (en) * | 1978-02-17 | 1980-04-01 | The Babcock & Wilcox Company | Irradiation surveillance specimen assembly |
RU2231145C2 (ru) * | 2002-08-19 | 2004-06-20 | Российский научный центр "Курчатовский институт" | Способ определения эффективной интенсивности источника нейтронов ядерной установки |
CN209561014U (zh) * | 2019-01-28 | 2019-10-29 | 中广核核电运营有限公司 | 核电站堆芯测量系统离合器间隙检测装置 |
RU2716018C1 (ru) * | 2019-03-13 | 2020-03-05 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ оценки ядерно-опасного состояния размножающей системы |
RU2743234C9 (ru) * | 2020-09-14 | 2021-05-18 | Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" | Способ контроля плотности нейтронного потока |
RU2779607C1 (ru) * | 2021-05-31 | 2022-09-12 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом) | Способ и устройство контроля плотности потока нейтронов |
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196047A (en) * | 1978-02-17 | 1980-04-01 | The Babcock & Wilcox Company | Irradiation surveillance specimen assembly |
RU2231145C2 (ru) * | 2002-08-19 | 2004-06-20 | Российский научный центр "Курчатовский институт" | Способ определения эффективной интенсивности источника нейтронов ядерной установки |
CN209561014U (zh) * | 2019-01-28 | 2019-10-29 | 中广核核电运营有限公司 | 核电站堆芯测量系统离合器间隙检测装置 |
RU2716018C1 (ru) * | 2019-03-13 | 2020-03-05 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ оценки ядерно-опасного состояния размножающей системы |
RU2743234C9 (ru) * | 2020-09-14 | 2021-05-18 | Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" | Способ контроля плотности нейтронного потока |
RU2779607C1 (ru) * | 2021-05-31 | 2022-09-12 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом) | Способ и устройство контроля плотности потока нейтронов |
Non-Patent Citations (1)
Title |
---|
Сафин Ю.А. и др. Применение термонейтронных датчиков для измерения распределения плотности потока тепловых нейтронов // Атомная энергия, т. 46, вып. 2, 1978. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117594268A (zh) * | 2023-10-08 | 2024-02-23 | 华能核能技术研究院有限公司 | 一种应用于高温气冷堆的燃料元件阻流、定位与分配装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1409480A (en) | Neutron activation analysis system | |
GB2128736A (en) | Apparatus and method for determining the hydrogen content of a substance | |
RU2787139C1 (ru) | Способ контроля плотности потока тепловых нейтронов и устройство для его осуществления | |
Dyer | A comprehensive study of the neutron activation analysis of uranium by delayed-neutron counting | |
Lindstrom et al. | Measuring hydrogen by cold-neutron prompt-gamma activation analysis | |
US2652497A (en) | Temperature measurement | |
Stempien et al. | AGR-2 Irradiation Experiment Fission Product Mass Balance | |
Fütterer et al. | Results of AVR fuel pebble irradiation at increased temperature and burn-up in the HFR Petten | |
US3293434A (en) | Photoneutron monitor for detecting reactor fuel element failures | |
Menlove et al. | A 252Cf based nondestructive assay system for fissile material | |
Gu et al. | Research on Detection Technology of 235U Enrichment and Loading Uniformity for Nuclear Fuel Rods | |
CN201359637Y (zh) | 一种有源探测器的屏蔽钨块 | |
US3842283A (en) | Method for determining the proportion of broken particles in the fuel compacts employed in high temperature reactors | |
Fütterer et al. | Irradiation results of AVR fuel pebbles at increased temperature and burn-up in the HFR Petten | |
Carroll et al. | Techniques for In-Pile Measurements of Fission-Gas Release | |
RU2527489C2 (ru) | Нейтронно-активационный способ контроля выгорания отвс реакторов на тепловых нейтронах и устройство для его реализации | |
Wu et al. | Analysis of signal cable noise currents in nuclear reactors under high neutron flux irradiation | |
JPS61176876A (ja) | 使用済燃料集合体の放射線測定装置 | |
US3125678A (en) | Fast neutron dosimeter for high tem- | |
Williamson et al. | Characterization of an epithermal irradiation facility | |
McNeany et al. | Design and evaluation of a nondestructive fissile assay device for HTGR fuel samples | |
Axtmann et al. | Reactivity Measurements in a Subcritical Pile | |
KR101466247B1 (ko) | 파이로 출력 물질 u/tru 잉곳에 대한 플루토늄 계량 시스템 및 그 계량 방법 | |
Häfner | Irradiation devices for the study of creep and swelling in ceramic fuels | |
Tahtinen | Feasibility Study on In-Reactor Experiments |