RU2783616C1 - Способ вибродиагностики для обнаружения зарождающихся дефектов промышленного оборудования - Google Patents

Способ вибродиагностики для обнаружения зарождающихся дефектов промышленного оборудования Download PDF

Info

Publication number
RU2783616C1
RU2783616C1 RU2021130458A RU2021130458A RU2783616C1 RU 2783616 C1 RU2783616 C1 RU 2783616C1 RU 2021130458 A RU2021130458 A RU 2021130458A RU 2021130458 A RU2021130458 A RU 2021130458A RU 2783616 C1 RU2783616 C1 RU 2783616C1
Authority
RU
Russia
Prior art keywords
vibration
spectra
envelope
diagnostics
defect
Prior art date
Application number
RU2021130458A
Other languages
English (en)
Inventor
Андрей Викторович Шатохин
Дмитрий Александрович Сивачев
Максим Станиславович Танаев
Алексей Александрович Кирпичев
Original Assignee
Общество с ограниченной ответственностью «ГТЛАБ Диагностика»
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью «ГТЛАБ Диагностика» filed Critical Общество с ограниченной ответственностью «ГТЛАБ Диагностика»
Application granted granted Critical
Publication of RU2783616C1 publication Critical patent/RU2783616C1/ru

Links

Images

Abstract

Изобретение относится к вибродиагностике промышленного оборудования и может быть применимо для вибродиагностики работающих промышленных механизмов (подшипников, насосов, редукторов, электродвигателей и других роторных механизмов). Способ заключается в измерении вибрационных ускорений и преобразовании их в прямые автоспектры и спектры огибающей высокочастотной составляющей сигналов виброускорений, выделении в них локальных максимумов и сравнении их с максимумами на предварительно заданных эталонных автоспектрах и спектрах огибающей, формирование эталонных автоспектров и спектров огибающей вибрационных сигналов осуществляют путем определения набора частот соответствующих каждому дефекту. На этапе вибродиагностирования о наличии дефекта судят по соответствию выделенных на спектрах локальных максимумов и эталонных наборов частот, изменение набора частот, характеристик спектров вибрационных ускорений и числа дефектов производят дополнительно введенными внешними программными модулями без изменения основного программного обеспечения. Технический результат заключается в получении большего количества выходных данных путем варьирования исходными параметрами при обработке сигнала. 2 ил.

Description

Изобретение относится к вибродиагностике промышленного оборудования и может быть применимо для вибродиагностики работающих промышленных механизмов (подшипников, насосов, редукторов, электродвигателей и других роторных механизмов).
Известен способ диагностики повреждения деталей машин (см. патент РФ №2540195, опубл. в Б.И. №4 10.02.2015), основанный на регистрации на ранних стадиях развития дефектов амплитуд выбросов вибрации. В данном способе измеряют вибрацию в информативных точках корпуса машины в характерной полосе частот с помощью системы компьютерного мониторинга, контролируют тренд изменения вибрации во времени, сравнивают его с критическими границами и по результатам сравнения определяют техническое состояние деталей и машины, а именно селектируют скачкообразные изменения (выбросы) вибрации в течение жизненного цикла машины и деградации состояния деталей из-за их повреждения, устанавливают период измерения вибрации существенно меньше, например, на порядок, длительности выбросов вибрации, обусловленных повреждением деталей, запоминают амплитуды выбросов (An), превышающих установленный уровень, например, на 20% от текущего плавного значения тренда вибрации, при этом принимают начальный уровень повреждения деталей машины по амплитуде первого выброса вибрации (A1), контролируют отношение амплитуды последующих выбросов вибрации к амплитуде первого выброса вибрации (An/A1) и/или измеряют относительные приращения амплитуды (An/An-1) каждого последующего выброса вибрации (An) к амплитуде каждого предыдущего выброса вибрации (An-1), строят тренды контролируемых амплитуд выбросов (An), их указанных отношений (An/A1) и приращений (An/An-1), сравнивают с критическими границами и по результатам сравнения судят о состоянии, стадиях и степени повреждения деталей машин.
Известен способ вибродиагностики подшипников (см. патент РФ №2209410, опубл. в Б.И. №21 от 27.07.2003), заключающийся в расчете характерных частотных масок для отдельных элементов подшипника, вносящих доминирующий вклад в его вибрацию, и последующем измерении сигнала вибрации подшипника при его вращении, преобразовании полученного сигнала в цифровую форму с образованием не менее двух его равновеликих реализаций, проведении быстрого преобразования Фурье, выделении амплитудного спектра, сравнении его с рассчитанными частотными масками для отдельных элементов подшипника, определении доли вклада каждого из этих элементов в общую энергию вибрации подшипника и оценке состояния подшипника. В качестве реализации сигнала вибрации подшипника выбирают совокупность сигналов, удовлетворяющих такому условию, что начальное значение сигнала каждой последующей его реализации является конечным значением сигнала соответствующей предыдущей его реализации, после преобразования сигнала в цифровую форму для каждой его реализации выделяют низкочастотный сигнал и прореживают его посредством выборки дискретных значений сигнала с частотой опроса fвыб, удовлетворяющей условию fвыб≥2fmax, где fmax - максимальная частота в спектре процесса, из всего множества реализаций полученных сигналов формируют совокупную временную последовательность, которую подвергают дальнейшему анализу.
Известен способ вибродиагностики зарождающихся дефектов механизмов (см. патент РФ №2680640 от 16.02.2018, опубл. Б.И. №6 25.02.2019), основанный на измерении вибрационных ускорений, их полосовой фильтрации, детектировании и определении энергетического спектра, усредняют энергетические спектры огибающих вибрационных ускорений, выделяют в них существенные локальные максимумы и запоминают их местоположения на оси частот и амплитудные значения этих максимумов на этапе обучения для исправного состояния механизма и при возникновении в нем различных дефектов строят разные эталоны местоположений на оси частот и амплитудных значений существенных максимумов в виде многомерных плотностей вероятностей, а на этапе вибродиагностирования выполняют сравнение выделенных в усредненном энергетическом спектре местоположений на оси частот и амплитудных значений существенных максимумов с эталонами исправного состояния механизма и состояний механизма при возникновении различных зарождающихся дефектов с помощью оптимального решающего правила, например критерия Байеса.
Вышеуказанный способ является наиболее близким по технической сущности к заявляемому способу и поэтому выбран в качестве прототипа. Недостатками прототипа являются ограниченные возможности по обработке полученных сигналов, что снижает информативность и точность вибродиагностики.
Решаемой технической проблемой является создание способа вибродиагностики промышленного оборудования с повышенной достоверностью и точностью результатов вибродиагностики.
Достигаемым техническим результатом является получение большего количества выходных данных путем варьирования исходными параметрами при обработке сигнала.
Для достижения технического результата в способе вибродиагностики промышленного оборудования, заключающимся в измерении вибрационных ускорений и преобразовании их в прямые автоспектры и спектры огибающей высокочастотной составляющей сигналов виброускорений, выделении в них локальных максимумов и сравнении их с максимумами на предварительно заданных эталонных автоспектрах и спектрах огибающей, формирование эталонных автоспектров и спектров огибающей вибрационных сигналов осуществляют путем определения набора частот (гармоник) соответствующих каждому дефекту, а на этапе вибродиагностирования о наличии дефекта судят по соответствию выделенных на спектрах локальных максимумов и эталонных наборов частот (гармоник), новым является то, что изменение набора гармоник, характеристик спектров вибрационных ускорений и числа дефектов производят дополнительно введенными внешними программными модулями без изменения основного программного обеспечения.
Новая совокупность существенных признаков позволяет в заявляемом способе повысить достоверность и точность результатов вибродиагностики.
На фиг. 1 приведено устройство, реализующее заявляемый способ.
На фиг. 2 приведен пример полученного спектра вибрационных ускорений 13, с выделенными существенными максимумами (фактический набор гармоник) 14, с амплитудами равными абсолютным значениям относительно средней линии 15, а также наложенного на спектр эталонного набора гармоник 16.
Устройство (фиг. 1) состоит из объекта исследования 1 с установленными на нем акселерометрами, аналого-цифрового преобразователя (АЦП) 2 данных, полученных с датчика, персонального компьютера (ПЭВМ) 3, внешних программных модулей 11. Программное обеспечение (ПО) 4 для вибродиагностики включает в себя блок 5 полосового фильтра, вход которого является выходом АЦП 2, спектроанализатор 6, первый вход которого соединен с выходом полосового фильтра для получения спектра огибающей высокочастотной области исходного сигнала, второй вход соединен с выходом АЦП 2 для получения прямого автоспектра исходного сигнала с целью формирования фактического набора гармоник 7. Спектр огибающей и прямой автоспектр являются спектрами вибрационных ускорений 13 (фиг. 2). Предварительно во внешних программных модулях 11 формируют эталонный набор гармоник 8, соответствующих каждому дефекту. В устройстве сравнения 9 производят сопоставление фактически полученного набора гармоник 7 с эталонным набором гармоник 8, результатом сравнения 10 которого является определение необходимого количества совпадающих гармоник, по которому судят о наличии и степени развития дефекта. Выходы внешних программных модулей 11 подключены к соответствующим входам блока полосового фильтра 5, блока спектроанализатора 6, блока фактического набора гармоник 7, блока эталонного набора гармоник 8, устройства сравнения 9. Входом внешних программных модулей 11 являются исходные данные для определения дефектов 12.
Способ реализуется следующим образом.
Исходный сигнал с акселерометров, закрепленных на объекте исследования 1, поступает на аналогово-цифровой преобразователь (АЦП) 2, выход которого соединен с последовательным интерфейсом ПЭВМ 3. Программное обеспечение 4 вибродиагностики позволяет выполнять последовательность действий, а именно: для полученного исходного сигнала осуществляют полосовую фильтрацию 5, после чего строят сигнал огибающей его высокочастотной области и выполняют построение спектров как сигнала огибающей, так и исходного сигнала. На полученных спектрах вибрационных ускорений 13 выделяют фактический набор гармоник 14 (обозначены точками на фиг. 2) и осуществляют наложение эталонных наборов гармоник 16, после чего находят совпадения фактически найденных гармоник 14 эталонному набору 16. Из количества найденных совпадений выбирают те, взаимное расположение которых соответствует наличию дефекта объекта исследования.
Существует множество различных методик вибродиагностики для определения зарождающихся дефектов, которые являются исходными данными 12 для внешних программных модулей 11.
Эти модули необходимы для сравнения и выбора оптимальной методики 12, трансформируемые в последовательность действий для основного ПО.
Внешние программные модули позволяют задавать:
- логику определения центральной частоты и ширины полосы пропускания фильтра 5 в зависимости от конкретного искомого дефекта объекта исследования 1 и частоты его вращения, что придает изменение формы, огибающей сигнала;
- логику определения частотного диапазона, количества точек и усреднений спектров вибрационных ускорений 6 в зависимости от искомого дефекта конкретного объекта исследования 1 и частоты его вращения;
- коэффициент сглаживания средней линии 15 и уровень, относительно которого превышение считается фактически найденной гармоникой;
- логику определения количества эталонных наборов гармоник 16, кратность и количество частотных линий в наборе в зависимости от конкретного искомого дефекта объекта исследования 1;
- логику определения совпадений фактически найденных гармоник эталонному ряду в зависимости от их взаимного расположения;
- логику определения граничных значений количества найденных гармоник 9 для каждого эталонного ряда 12 в зависимости от конкретного искомого дефекта и степени его развития.
Далее происходит смена набора исходных параметров 12, которые соответствуют альтернативной методике вибродиагностики, либо варьирование коэффицентами существующих наборов, цикл основного ПО повторяют до тех пор, пока результат вибродиагностики не будет соответствовать фактическому состоянию оборудования.
Заявляемый способ используется в промышленности для определения зарождающихся дефектов оборудования.

Claims (1)

  1. Способ вибродиагностики для обнаружения зарождающихся дефектов промышленного оборудования, заключающийся в измерении вибрационных ускорений и преобразовании их в прямые автоспектры и спектры огибающей высокочастотной составляющей сигналов виброускорений, выделении в них локальных максимумов и сравнении их с максимумами на предварительно заданных эталонных автоспектрах и спектрах огибающей, формирование эталонных автоспектров и спектров огибающей вибрационных сигналов осуществляют путем определения набора частот соответствующих каждому дефекту, а на этапе вибродиагностирования о наличии дефекта судят по соответствию выделенных на спектрах локальных максимумов и эталонных наборов частот, отличающийся тем, что дополнительно используют внешние программные модули, с помощью которых осуществляют изменение набора частот, характеристик спектров вибрационных ускорений и число дефектов.
RU2021130458A 2021-10-19 Способ вибродиагностики для обнаружения зарождающихся дефектов промышленного оборудования RU2783616C1 (ru)

Publications (1)

Publication Number Publication Date
RU2783616C1 true RU2783616C1 (ru) 2022-11-15

Family

ID=

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321602B1 (en) * 1999-09-28 2001-11-27 Rockwell Science Center, Llc Condition based monitoring by vibrational analysis
RU2209410C1 (ru) * 2001-11-21 2003-07-27 Открытое акционерное общество "ВНИПП" Способ диагностики подшипников
RU155504U1 (ru) * 2015-04-15 2015-10-10 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Устройство диагностики состояния поршневого компрессора
RU2680640C1 (ru) * 2018-02-16 2019-02-25 Владимир Сергеевич Давыдов Способ вибродиагностики зарождающихся дефектов механизмов
RU2728485C1 (ru) * 2019-12-13 2020-07-29 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Способ мультифункциональной диагностики подшипниковых узлов и устройство его реализации в интегральном исполнении
RU2754476C1 (ru) * 2020-03-23 2021-09-02 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Способ вибродиагностики технического состояния газотурбинных двигателей на ресурсосберегающих режимах с применением теории инвариантов
RU2774697C1 (ru) * 2022-01-16 2022-06-21 Общество с ограниченной ответственностью "ГТЛАБ Диагностика" Способ вибродиагностики для определения степени и скорости развития зарождающихся дефектов промышленного оборудования

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321602B1 (en) * 1999-09-28 2001-11-27 Rockwell Science Center, Llc Condition based monitoring by vibrational analysis
RU2209410C1 (ru) * 2001-11-21 2003-07-27 Открытое акционерное общество "ВНИПП" Способ диагностики подшипников
RU155504U1 (ru) * 2015-04-15 2015-10-10 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Устройство диагностики состояния поршневого компрессора
RU2680640C1 (ru) * 2018-02-16 2019-02-25 Владимир Сергеевич Давыдов Способ вибродиагностики зарождающихся дефектов механизмов
RU2728485C1 (ru) * 2019-12-13 2020-07-29 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Способ мультифункциональной диагностики подшипниковых узлов и устройство его реализации в интегральном исполнении
RU2754476C1 (ru) * 2020-03-23 2021-09-02 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Способ вибродиагностики технического состояния газотурбинных двигателей на ресурсосберегающих режимах с применением теории инвариантов
RU2774697C1 (ru) * 2022-01-16 2022-06-21 Общество с ограниченной ответственностью "ГТЛАБ Диагностика" Способ вибродиагностики для определения степени и скорости развития зарождающихся дефектов промышленного оборудования

Similar Documents

Publication Publication Date Title
CN109883702B (zh) 一种基于时频域统计特征的电机轴承故障诊断方法
CN109855874B (zh) 一种声音辅助振动微弱信号增强检测的随机共振滤波器
US10317275B2 (en) Vibration monitoring systems
CN110987438A (zh) 水轮发电机变转速过程周期性振动冲击信号检测的方法
CN113138011A (zh) 一种新型振动噪声测试方法
CN111122191B (zh) 一种基于ewma控制的设备安康报警阈值设定方法
CN111256993A (zh) 一种风电机组主轴承故障类型诊断方法及系统
CN117272210A (zh) 一种建筑施工异常隐患数据检测方法及系统
CN114486260B (zh) 基于自适应变分模态分解的轴承故障诊断方法
CN114486263B (zh) 一种旋转机械滚动轴承振动信号降噪解调方法
CN109934136B (zh) 基于Duffing振子和本征模式分量的滚动轴承故障诊断方法
Zhao et al. Adaptive scaling demodulation transform: Algorithm and applications
RU2783616C1 (ru) Способ вибродиагностики для обнаружения зарождающихся дефектов промышленного оборудования
Bouaouiche et al. Detection of defects in a bearing by analysis of vibration signals
CN111323233B (zh) 一种用于低速旋转机械故障诊断的局部均值分解方法
RU2774697C1 (ru) Способ вибродиагностики для определения степени и скорости развития зарождающихся дефектов промышленного оборудования
CN112729531B (zh) 配电变压器设备故障研判方法及系统
CN112904088B (zh) 一种宽频介损检测装置中的介质损耗角正切计算方法
He et al. Adaptive fast Chirplet transform and its application into fault diagnosis of rolling bearing under time-varying speed condition
CN114383718A (zh) 一种基于燃机外机匣振动信号的高频叶片通过频率提取方法
WO2022152336A1 (en) A method for monitoring turbine blade vibration
RU2209410C1 (ru) Способ диагностики подшипников
Thanagasundram et al. Autoregressive based diagnostics scheme for detection of bearing faults
CN109357751B (zh) 一种电力变压器绕组松动缺陷检测系统
Satija et al. Development of rolling bearing health diagnosis and prediction system using MEMS accelerometer vibration sensing module