RU2782411C1 - Воздухозаборное устройство сверхзвукового летательного аппарата - Google Patents

Воздухозаборное устройство сверхзвукового летательного аппарата Download PDF

Info

Publication number
RU2782411C1
RU2782411C1 RU2022115448A RU2022115448A RU2782411C1 RU 2782411 C1 RU2782411 C1 RU 2782411C1 RU 2022115448 A RU2022115448 A RU 2022115448A RU 2022115448 A RU2022115448 A RU 2022115448A RU 2782411 C1 RU2782411 C1 RU 2782411C1
Authority
RU
Russia
Prior art keywords
air intake
intake device
central body
aircraft
coordinate system
Prior art date
Application number
RU2022115448A
Other languages
English (en)
Inventor
Дмитрий Александрович Рахманин
Алексей Николаевич Юрконенко
Original Assignee
Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации filed Critical Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Application granted granted Critical
Publication of RU2782411C1 publication Critical patent/RU2782411C1/ru

Links

Images

Abstract

Изобретение относится к летательным аппаратам. Воздухозаборное устройство сверхзвукового летательного аппарата содержит центральное тело (1), обечайку (2), профилированную переднюю кромку (3), образующую входное отверстие (4) воздухозаборного устройства и канал воздухозаборного устройства. Центральное тело (1) образовано боковыми поверхностями (5) и поверхностью торможения (6), полученной из вырезки обратного конического течения. Достигается повышение эффективности работы двигательной установки в различных скоростных режимах при сохранении габаритных и компоновочных характеристик. 3 ил.

Description

Изобретение относится к области оборудования летательных аппаратов, а именно к воздухозаборным устройствам сверхзвуковых летательных аппаратов.
При создании высокоскоростных летательных аппаратов (ЛА) общей проблемой является разработка эффективных двигательных установок (ДУ), значительное влияние на работу которых оказывают воздухозаборные устройства (ВЗУ).
Лобовые ВЗУ с расположением входа в ВЗУ в носовой части летательного аппарата эффективны при работе на малых углах атаки, но обладают пониженным запасом газодинамической устойчивости при работе на больших углах атаки и при высотных режимах.
Регулируемые ВЗУ с изменяемой геометрией позволяют компенсировать недостатки конструкции входов и каналов ВЗУ и позволяют осуществлять работу ДУ на различных скоростных режимах, но ухудшают весовые и компоновочные характеристики летательных аппаратов, а также приводят к снижению надежности работы ДУ и ЛА.
В связи с этим в настоящее время получили широкое развитие нерегулируемые ВЗУ с постоянной геометрией.
Из уровня техники известно воздухозаборное устройство самолета, образованное обечайкой, передние кромки которой образуют входное отверстие канала воздухозаборника и расположены в плоскости, расположенной под острым углом к продольной оси канала воздухозаборного устройства (описание к патенту США №5249542 от 28.05.1996). Воздухозаборное устройство имеет наплыв, с помощью которого спрофилирован канал воздухозаборника, и который позволяет одновременно отклонить пограничный слой и исключить его попадание в воздухозаборное устройство, за счет чего увеличить эффективную тягу.
К недостаткам воздухозаборного устройства самолета следует отнести то, что оно не позволяет осуществлять эффективную работу ДУ при скорости выше 2-3 М.
Известны воздухозаборные устройства крылатой ракеты ASMP-A, разработанной французской фирмой Aerospatiale (www.dogswar.ru/boepripasy/snariady-rakety/8506-krylataia-raketa-voz.htmU https://missilery.info/missile/asmp, www.airwar.ru/weapon/kr/asmp.html), которые выполнены прямоугольными, с неизменяемой геометрией, и расположены по бокам фюзеляжа.
Известны воздухозаборные устройства авиационной ракеты XASM-3, созданной японской корпорацией Mitsubishi Heavy Industries (foto-i-mir.ru/missile-asm-3-japan/, https.//www.globalsecurity.org/military/world/japan/ asm-3.htm), которые выполнены прямоугольными, сверхзвуковыми, с неизменяемой геометрией, и расположены под фюзеляжем ракеты.
Недостатками известных воздухозаборных устройств ракет ASMP-A и XASM-3 являются неоптимальные параметры входов и каналов воздухозаборных устройств, что не позволяет достичь эффективности работы двигательной установки в различных скоростных режимах без снижения габаритных и компоновочных характеристик летательных аппаратов.
Технической проблемой, на решение которой направлено заявляемое изобретение, является необходимость создания воздухозаборного устройства сверхзвукового летательного аппарата, позволяющего эффективную работу двигательной установки в различных скоростных режимах.
Техническая проблема решается за счет того, что в состав воздухозаборного устройства сверхзвукового летательного аппарата входят центральное тело, обечайка, профилированная передняя кромка, образующая входное отверстие воздухозаборного устройства, канал воздухозаборного устройства, при этом центральное тело образовано боковыми поверхностями и поверхностью торможения, которая получена из вырезки обратного конического течения, является гладкой по второй производной и состоит из поверхности первой ступени и поверхности второй ступени, в сечении центрального тела продольной плоскостью в связанной системе координат воздухозаборного устройства поверхность первой ступени представляет собой прямую с углом наклона к продольной оси связанной системы координат воздухозаборного устройства в диапазоне 10÷20°, а поверхность второй ступени - изоэнтропу, угол наклона касательной к которой к продольной оси связанной системы координат воздухозаборного устройства изменяется в диапазоне 15÷30°, а краевая линия передней кромки входного отверстия воздухозаборного устройства эквидистантна линиям поперечных сечений поверхности торможения плоскостями, перпендикулярными продольной оси связанной системы координат воздухозаборного устройства.
Технический результат заключается в том, что воздухозаборное устройство сверхзвукового летательного аппарата позволяет обеспечить эффективную работу двигательной установки летательного аппарата в различных скоростных режимах при сохранении габаритных и компоновочных характеристик сверхзвукового летательного аппарата.
Сущность предлагаемого изобретения поясняется чертежами:
На фиг. 1 изображена трехмерная модель воздухозаборного устройства сверхзвукового летательного аппарата.
На фиг. 2 изображено сечение поверхности торможения центрального тела продольной плоскостью в связанной системе координат воздухозаборного устройства.
На фиг. 3 изображено сечение центрального тела плоскостью, перпендикулярной продольной оси связанной системы координат воздухозаборного устройства.
На фиг. 1-3 позициями обозначены:
1 - центральное тело;
2 - обечайка;
3 - передняя кромка;
4 - входное отверстие воздухозаборного устройства;
5 - боковая поверхность;
6 - поверхность торможения;
7 - горло канала воздухозаборного устройства.
Воздухозаборное устройство сверхзвукового летательного аппарата (далее воздухозаборное устройство) содержит центральное тело 1, обечайку 2, переднюю кромку 3, образующую входное отверстие воздухозаборного устройства 4, и канал воздухозаборного устройства (на фиг. не показано).
Центральное тело 1 образовано боковыми поверхностями 5 и поверхностью торможения 6, которая получена из вырезки обратного конического течения методом газодинамического конструирования (см. [1], [2]), является гладкой по второй производной и состоит из поверхности первой ступени и поверхности второй ступени.
При сечении центрального тела 1 продольной плоскостью в связанной системе координат воздухозаборного устройства образуется линия Ь, которая для поверхности первой ступени имеет форму прямой, проекция на продольную ось Ох связанной системы координат воздухозаборного устройства имеет длину а1 и имеет наклон Θ1=10÷20° к продольной оси Ох, а для поверхности второй ступени - изоэнтропы, проекция которой на продольную ось Ох связанной системы координат воздухозаборного устройства имеет длину а2, и угол наклона касательной к которой к продольной оси связанной системы координат воздухозаборного устройства Θ2=15÷30°. Краевая линия передней кромки 3 входного отверстия воздухозаборного устройства 4 эквидистантна линиям поперечных сечений поверхности торможения плоскостями, перпендикулярными продольной оси Ох связанной системы координат воздухозаборного устройства.
Передняя кромка 3 выполнена профилированной и имеет сложную пространственную форму с непрерывным изменением кривизны поверхности, определяемой расчетным и/или экспериментальным способом в зависимости от режимов полетов и двигательной установки летательного аппарата. Передняя кромка 3 выполнена с пространственным сопряжением со стенками канала воздухозаборного устройства.
Канал воздухозаборного устройства выполнен криволинейным (на фиг. не показано), и расположен от входного отверстия воздухозаборного устройства 4 до входа в двигательную установку. Площадь горла 7 канала воздухозаборного устройства составляет 0,5÷0,9 площади входного отверстия воздухозаборного устройства 4.
При установке на сверхзвуковом летательном аппарате воздухозаборное устройство расположено в пределах обводов фюзеляжа. Параметры первой и второй ступеней торможения можно варьировать, что позволяет обеспечить компоновочные требования и требования радиолокационной заметности с внутренними характеристиками на уровне или выше вариантов воздухозаборных устройств классической формы при условии использования известных методов разработки, например, способа определения аэродинамического облика летательного аппарата с воздушно-реактивным двигателем, описанного в [3].
Воздухозаборное устройство работает следующим образом:
Производят пуск сверхзвукового летательного аппарата. Сверхзвуковой летательный аппарат начинает движение в набегающем потоке согласно полетному заданию с начальной скоростью, необходимой для запуска двигательной установки, при этом набегающий поток поступает в воздухозаборное устройство с формированием пограничного слоя. При попадании воздушной струи на центральное тело 1 происходит сжатие струи по расходящимся направлениям без интенсивных скачков и градиентов давления, и на входе в канал воздухозаборного устройства реализуют расчетную схему течения, за счет чего обеспечивают работу двигательной установки в заданном режиме.
Воздухозаборное устройство сверхзвукового летательного аппарата предназначено для применения в области оборудования сверхзвуковых летательных аппаратов и позволяет обеспечить эффективную работу двигательной установки сверхзвукового летательного аппарата в различных скоростных режимах при сохранении габаритных и компоновочных характеристик сверхзвукового летательного аппарата.
Источники информации
1. Келдыш В.В., Г.И. Майкапар. «Газодинамическое конструирование гиперзвуковых самолетов». МЖГ, г. Москва, №3, 1969 г.
2. Гунько Ю.П., Мажуль И.И. «Теоретические и экспериментальные исследования тел пространственной конфигурации. Особенности аэродинамики пространственных тел, построенных методом газодинамического конструирования». ИТПМ СО АН СССР, г. Новосибирск, отчет №904, 1977 г.
3. Патент RU №2683017, МПК B64F 5/00, G06F 17/50, B64D 27/02.

Claims (1)

  1. Воздухозаборное устройство сверхзвукового летательного аппарата, в состав которого входят центральное тело, обечайка, профилированная передняя кромка, образующая входное отверстие воздухозаборного устройства, канал воздухозаборного устройства, отличающееся тем, что центральное тело образовано боковыми поверхностями и поверхностью торможения, которая получена из вырезки обратного конического течения, является гладкой по второй производной и состоит из поверхности первой ступени и поверхности второй ступени, в сечении центрального тела продольной плоскостью в связанной системе координат воздухозаборного устройства поверхность первой ступени представляет собой прямую с углом наклона к продольной оси связанной системы координат воздухозаборного устройства в диапазоне 10÷20°, а поверхность второй ступени - изоэнтропу, угол наклона касательной к которой к продольной оси связанной системы координат воздухозаборного устройства изменяется в диапазоне 15÷30°, а краевая линия передней кромки входного отверстия воздухозаборного устройства эквидистантна линиям поперечных сечений поверхности торможения плоскостями, перпендикулярными продольной оси связанной системы координат воздухозаборного устройства.
RU2022115448A 2022-06-06 Воздухозаборное устройство сверхзвукового летательного аппарата RU2782411C1 (ru)

Publications (1)

Publication Number Publication Date
RU2782411C1 true RU2782411C1 (ru) 2022-10-26

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU138495U1 (ru) * 2013-07-04 2014-03-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Воздухозаборник сверхзвукового летательного аппарата
RU2736670C1 (ru) * 2020-01-14 2020-11-19 Сергей Николаевич Ким Прямоточный воздушно-реактивный двигатель

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU138495U1 (ru) * 2013-07-04 2014-03-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Воздухозаборник сверхзвукового летательного аппарата
RU2736670C1 (ru) * 2020-01-14 2020-11-19 Сергей Николаевич Ким Прямоточный воздушно-реактивный двигатель

Similar Documents

Publication Publication Date Title
US7967241B2 (en) Supersonic aircraft jet engine installation
EP1206384B1 (en) Supersonic external-compression diffuser and method for designing same
US7866599B2 (en) Integrated inward turning inlets and nozzles for hypersonic air vehicles
US8746613B2 (en) Jet engine exhaust nozzle and associated system and method of use
US8292217B2 (en) Hypersonic inlet systems and methods
CA2434163A1 (en) Integrated and/or modular high-speed aircraft
EP3112650B1 (en) Inlet flow restrictor
AU2019292004B2 (en) Flight vehicle engine inlet with internal diverter, and method of configuring
CN117235891B (zh) 一种并联多模块宽速域鼓包可调进气道设计方法
EP1630399A2 (en) Vectorable nozzle with sideways pivotable ramp
RU2782411C1 (ru) Воздухозаборное устройство сверхзвукового летательного аппарата
US20220074369A1 (en) Airframe integrated scramjet with fixed geometry and shape transition for hypersonic operation over a large mach number range
Gorbovskoy et al. STUDY OF THE AERODYNAMICS OF A SUPERSONIC NOZZLE WITH A NOISE SUPPRESSION SYSTEM
Vinogradov et al. CHOICE AND DESIGN OF A 3D FIXED-GEOMETRY INLET FOR A SMALL SUPERSONIC BUSINESS AIRCRAFT
Savoni et al. High Lift Design and Aerodynamic Assessment for an Over-the-Wing Pylon-Mounted Engines Configuration with STOL Capabilities
Vinogradov et al. Scheme and inlet performance of supersonic business aircraft
CA3194359A1 (en) Airframe integrated scramjet with fixed geometry and shape transition for hypersonic operation over a large mach number range
Hwang et al. Sy pressure coefficient