RU2781369C1 - Источник усиленной спонтанной эмиссии - Google Patents
Источник усиленной спонтанной эмиссии Download PDFInfo
- Publication number
- RU2781369C1 RU2781369C1 RU2021136564A RU2021136564A RU2781369C1 RU 2781369 C1 RU2781369 C1 RU 2781369C1 RU 2021136564 A RU2021136564 A RU 2021136564A RU 2021136564 A RU2021136564 A RU 2021136564A RU 2781369 C1 RU2781369 C1 RU 2781369C1
- Authority
- RU
- Russia
- Prior art keywords
- optical
- port
- digital
- analog
- photodetector
- Prior art date
Links
- 230000002269 spontaneous Effects 0.000 title claims abstract description 24
- 230000003287 optical Effects 0.000 claims abstract description 197
- 239000000835 fiber Substances 0.000 claims abstract description 41
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 38
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims abstract description 37
- 230000003595 spectral Effects 0.000 claims description 28
- 230000003750 conditioning Effects 0.000 claims description 6
- 239000012212 insulator Substances 0.000 claims description 4
- 210000003666 Nerve Fibers, Myelinated Anatomy 0.000 claims description 2
- 238000005086 pumping Methods 0.000 abstract description 8
- 238000011105 stabilization Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000009529 body temperature measurement Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000001228 spectrum Methods 0.000 description 10
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000000087 stabilizing Effects 0.000 description 2
- 241001191345 Osa Species 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- -1 erbium ions Chemical class 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Abstract
Изобретение относится к области волоконно-оптических источников усиленной спонтанной эмиссии. Источник усиленной спонтанной эмиссии, включающий в себя эрбиевые волокна, в которых инверсия населенности создается и изменяется лазерными диодами накачки, контроль и стабилизация параметров выходного излучения осуществляется с оптическими разветвителями и фотоприемными устройствами, информация с которых поступает на блок цифровой обработки и формирования сигналов, который осуществляет управление оптическими мощностями лазерных диодов накачки и измерение температуры с помощью внешнего датчика температуры, наличие температурных зависимостей параметров выходного излучения позволяет стабилизировать и управлять параметрами излучения независимо для нескольких оптических выходов в диапазоне рабочих температур. Технический результат - стабилизация и управление параметрами выходного оптического излучения источника усиленной спонтанной эмиссии независимо для нескольких оптических выходов в диапазоне рабочих температур. 1 ил.
Description
Изобретение относится к области волоконно-оптических источников усиленной спонтанной эмиссии.
Известен источник усиленной спонтанной эмиссии с широкополосной волоконной брэгговской решеткой (ВБР), приклеенной на композитные слои из углеродного волокна [Hsiang Wang, Yeng-Hong Lu, Tsung-Yu Lu, Ren-Young Liu and Shien-Kuei Liaw. Superfluorescent Fiber Source with Ultra-low Thermal Coefficiency Operating in the Conventional Band // CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper Tu3L.1]. В легированное эрбием волокно вводится излучение накачки в обратном направлении, генерируемое излучение спонтанной эмиссии распространяется в направлении ненакачиваемого эрбиевого волокна и ВБР, приклеенной на композитные слои из углеродного волокна; выходное оптическое излучение формируется, как сумма генерируемого излучения спонтанной эмиссии и отраженного от ВБР оптического излучения. Изменение центральной длины волны и формы спектра выходного оптического излучения осуществляется заменой ВБР, приклеенной на композитные слои из углеродного волокна.
Недостатками известного источника усиленной спонтанной эмиссии с широкополосной ВБР, приклеенной на композитные слои из углеродного волокна являются: необходимость изготовления спектрального фильтра для изменения параметров выходного оптического излучения, отсутствие возможности изменения параметров выходного оптического излучения при постоянном значении выходной оптической мощности в ходе работы устройства, отсутствие возможности подключения нескольких устройств к одному источнику с возможностью стабилизации и управления параметрами выходного оптического излучения независимо для каждого подключенного устройства в диапазоне рабочих температур.
Известен источник усиленной спонтанной эмиссии с возможностью стабилизации и управления параметрами выходного оптического излучения, построенный по двухпроходной схеме с двусторонней накачкой легированного эрбием волокна, описанный в [Патент РФ № 2 688 962 от 30.05.2018, H01S 3/067, H01S 3/13], выбранный в качестве прототипа. Оптическая схема включает эрбиевое оптическое волокно, которое с двух сторон накачивается лазерными диодами накачки, а также светоотражающее зеркало и оптический изолятор. Контроль оптических мощностей лазерных диодов накачки и выходного оптического излучения осуществляется с помощью фотоприемных устройств, оптическое излучение к которым поступает через оптические разветвители. Оптическая схема управляется блоком цифровой обработки и формирования сигналов. Двухпроходная схема с двусторонней накачкой легированного эрбием волокна позволяет устанавливать необходимые параметры выходного оптического излучения (центральную длину волны или ширину спектра и оптическую мощность). Наличие заранее измеренных температурных зависимостей параметров выходного оптического излучения, датчика температуры и системы регулирования оптических мощностей позволяют устанавливать минимальный температурный коэффициент центральной длины волны или ширины спектра при стабильной выходной оптической мощности в широком диапазоне температур.
Недостатками известного источника усиленной спонтанной эмиссии являются: отсутствие возможности подключения нескольких устройств к одному источнику, а также отсутствие возможности стабилизации и управления параметрами выходного оптического излучения независимо для каждого подключенного устройства в диапазоне рабочих температур.
Обеспечиваемый изобретением технический результат - стабилизация и управление параметрами выходного оптического излучения (оптической мощности и центральной длины волны или оптической мощности и ширины спектра) источника усиленной спонтанной эмиссии независимо для нескольких оптических выходов в диапазоне рабочих температур.
Данный технический результат достигается за счет того, что в заявляемом изобретении - источнике усиленной спонтанной эмиссии - первая оптическая схема построена по двухпроходной схеме с сонаправленной накачкой, а N оптических схем каждого выхода построены по однопроходной схеме со встречной накачкой, тем самым это позволяет изменять параметры выходного оптического излучения (длину волны или ширину спектра при сохранении постоянной оптической мощности) для каждого из N независимых оптических выходов при постоянной оптической мощности, стабилизированной посредством пропорционально-интегрально-дифференцирующих регуляторов.
Поставленная задача решается следующим образом.
Источник усиленной спонтанной эмиссии содержит блок цифровой обработки и формирования сигналов и первую оптическую схему, включающую оптически соединенные и расположенные последовательно светоотражающее зеркало, эрбиевое волокно, спектральный соединитель каналов, второе эрбиевое волокно, оптический изолятор, подключенный к первому порту первого оптического разветвителя, при этом первый порт спектрального соединителя каналов подключен ко второму эрбиевому волокну, второй порт спектрального соединителя каналов оптически соединен с первым портом второго оптического разветвителя, а третий порт спектрального соединителя каналов соединен с эрбиевым волокном, размещенным за светоотражающим зеркалом, второй порт второго оптического разветвителя оптически соединен с лазерным диодом накачки, а его третий порт соединен с первым фотоприемным устройством, при этом второй порт первого оптического разветвителя соединен со вторым фотоприемным устройством, а его третий порт соединен с первым портом третьего оптического разветвителя, при этом к N портам третьего оптического разветвителя присоединены N оптических схем, где N≥2, каждая из которых содержит оптически соединенные эрбиевое волокно, спектральный соединитель каналов, первый изолятор, первый разветвитель, при этом в каждой из введенных оптических схем эрбиевое волокно соединено с первым портом спектрального соединителя каналов, второй порт которого подключен к первому изолятору, который подключен к первому порту первого оптического разветвителя, второй порт которого в каждой из упомянутых N оптических схем является ее выходным портом, при этом в N оптических схемах третий порт спектрального соединителя каналов оптически соединен с первым портом второго оптического разветвителя, второй порт которого соединен со вторым оптическим изолятором, соединенным с лазерным диодом накачки, третий порт второго оптического разветвителя соединен с первым фотоприемником, а третий порт первого оптического разветвителя соединен со вторым фотоприемником, при этом блок цифровой обработки и формирования сигналов содержит первый, второй, 2N-1 и 2N аналогово-цифровые преобразователи, первый и N пропорционально-интегрально-дифференцирующие регуляторы, первый и N цифроаналоговые преобразователи, при этом электронный блок управления, выполненный в виде программируемой логической интегральной схемы, соединен с первым и N цифроаналоговым преобразователями, первым, вторым, 2N-1 и 2N аналого-цифровыми преобразователями, при этом первый цифроаналоговый преобразователь первой оптической схемы электрически соединен с первым портом первого пропорционально-интегрально-дифференцирующего регулятора первой оптической схемы, второй порт которого электрически соединен с первым фотоприемным устройством первой оптической схемы и первым аналого-цифровым преобразователем, а третий порт первого пропорционально-интегрально-дифференцирующего регулятора первой оптической схемы электрически соединен с лазерным диодом накачки первой оптической схемы, второй аналого-цифровой преобразователь соединен со вторым фотоприемным устройством первой оптической схемы, N цифроаналоговый преобразователь электрически соединен с первым портом N пропорционально-интегрально-дифференцирующего регулятора, второй порт которого электрически соединен с первым фотоприемным устройством N оптической схемы и 2N-1 аналого-цифровым преобразователем, третий порт N пропорционально-интегрально-дифференцирующего регулятора электрически соединен с лазерным диодом накачки N оптической схемы, 2N аналого-цифровой преобразователь соединен со вторым фотоприемным устройством N оптической схемы.
Сущность изобретения поясняется следующим образом.
В первой оптической схеме лазерный диод осуществляет накачку эрбиевого волокна, сгенерированное оптическое излучение распространяется в направлении второго эрбиевого волокна, которое необходимо для изменения формы оптического спектра и осуществления температурной компенсации параметров выходного оптического излучения, а также в направлении оптического разветвителя 1хN. Наличие светоотражающего зеркала способствует отражению оптического излучения. Таким образом, оптическое излучение на выходе первой оптической схемы формируется как сумма оптических излучений от накачанного сегмента эрбиевого волокна и отраженного от светоотражающего зеркала. Контроль оптической мощности и формы спектра производится с помощью оптического разветвителя на выходе первой оптической схемы. Подбор длин эрбиевых волокон осуществляют в зависимости от необходимой оптической мощности и формы спектра на выходе первой оптической схемы.
Оптический разветвитель 1xN соединяет первую оптическую схему с N оптическими схемами. Для каждой из N оптических схем лазерный диод накачки осуществляет накачку эрбиевого волокна, что позволяет изменить форму спектра и осуществить температурную компенсацию. Стабильность оптических мощностей лазерных диодов накачки и выходного оптического излучения осуществляется с помощью разветвителей и фотоприемных устройств, которые подключены к блоку цифровой обработки и формирования сигналов, в состав которого входят пропорционально-интегрально-дифференцирующие регуляторы, которые формируют управляющие сигналы для лазерных диодов накачки с заданной точностью согласно текущим значениям оптических мощностей лазерных диодов накачки и установленным значениям цифроаналоговых преобразователей. Длина эрбиевого волокна для каждой из N оптических схем подбирается в зависимости от оптической мощности и формы спектра на выходе каждой из N оптических схем источника усиленной спонтанной эмиссии. Изменение длины эрбиевого волокна лазерного диода накачки для каждой из N оптических схем позволяет устанавливать необходимый температурный коэффициент центральной длины волны или ширины спектра, значение выходной оптической мощности для каждого подключенного устройства. В зависимости от мощности лазерного диода накачки каждой из N оптических схем можно регулировать уровень инверсии населенности ионов эрбия по длине легированного эрбием волокна, тем самым осуществляется либо усиление оптического излучения, либо перепоглощение с излучением в более длинноволновую область. В каждой оптической схеме используется изолятор для исключения влияния обратных отражений.
Аналого-цифровые преобразователи осуществляют преобразование аналоговых сигналов фотоприемных устройств в цифровой код, адаптированный для электронного блока управления. Цифроаналоговые преобразователи преобразуют цифровой код электронного блока в аналоговые сигналы, которые совместно с аналоговыми сигналами фотоприемных устройств поступают на входы пропорционально-интегрально-дифференцирующих регуляторов, с помощью которых осуществляется стабилизация оптических мощностей лазерных диодов накачки. Выходные сигналы пропорционально-интегрально-дифференцирующих регуляторов формируются исходя из установленных цифроаналоговыми преобразователями значений оптических мощностей лазерных диодов накачки и текущих значений оптических мощностей, полученных от фотоприемных устройств.
Электронный блок управления осуществляет прием сигналов аналого-цифровых преобразователей с последующей обработкой согласно управляющей программе и созданием цифровых сигналов для формирования выходных сигналов цифроаналоговых преобразователей. При этом выходные сигналы цифроаналоговых преобразователей формируются в соответствии с установленными оператором параметрами выходного излучения для каждого из N оптических выходов, измеренной температуры и заранее измеренными температурными зависимостям центральной длины волны и оптической мощности или ширины спектра и оптической мощности выходного оптического излучения для каждого оптического выхода.
Наличие заранее измеренных температурных зависимостей параметров выходного оптического излучения для каждого из N выходов, датчика температуры и системы регулирования оптических мощностей позволяют стабилизировать и управлять параметрами выходного оптического излучения (оптической мощности и центральной длины волны или оптической мощности и ширины спектра) источника усиленной спонтанной эмиссии независимо для нескольких оптических выходов в диапазоне рабочих температур, тем самым устанавливать минимальный температурный коэффициент центральной длины волны или ширины спектра при постоянной выходной оптической мощности для каждого оптического выхода.
Количество цифроаналоговых преобразователей, пропорционально-интегрально-дифференцирующих регуляторов определяется количеством оптических схем N. Количество аналого-цифровых преобразователей составляется 2N. Для каждой из N оптических схем используются два аналого-цифровых преобразователя.
Количество оптических схем N определяется мощностью лазерных диодов накачки, длинами эрбиевых волокон, количеством выходов N оптического разветвителя 1xN первой оптической схемы.
Сущность изобретения поясняется чертежом, где представлена принципиальная схема источника усиленной спонтанной эмиссии, которая содержит N идентичных дополнительно присоединенных оптических схем, каждая из которых соответствует представленной на чертеже схеме.
Источник усиленной спонтанной эмиссии включает блок цифровой обработки и формирования сигналов 1, электронный блок управления 2, первую оптическую схему, включающую оптически соединенные и расположенные последовательно светоотражающее зеркало 3, эрбиевое волокно 4, спектральный соединитель каналов 5, второе эрбиевое волокно 6, соединенное с первым портом 5a спектрального соединителя каналов 5, и оптически соединенное с изолятором 7, который оптически соединен с первым портом 8a первого оптического разветвителя 8, при этом второй порт 5b спектрального соединителя каналов 5 оптически соединен с первым портом 9a второго оптического разветвителя 9, а третий порт 5c спектрального соединителя каналов 5 соединен с эрбиевым волокном 4, второй порт 9b второго оптического разветвителя 9 оптически соединен с лазерным диодом накачки 10, а его третий порт 9c соединен с первым фотоприемным устройством 11, при этом второй порт 8b первого оптического разветвителя 8 соединен со вторым фотоприемным устройством 12, а его третий порт 8c оптически соединен с первым портом 13a третьего оптического разветвителя 13, при этом к N портам 13b третьего оптического разветвителя 13, присоединены N оптических схем соответственно, каждая из которых содержит оптически соединенные эрбиевое волокно 14, спектральный соединитель каналов 15, первый изолятор 16, первый разветвитель 17, при этом в каждой из введенных оптических схем эрбиевое волокно 14 соединено с первым портом 15a спектрального соединителя каналов 15, второй порт 15b которого подключен к первому изолятору 16, который подключен к первому порту 17a первого оптического разветвителя 17, второй порт 17b которого в каждой из N оптических схем является ее выходным портом 18, при этом в N оптических схемах третий порт 15c спектрального соединителя каналов 15 оптически соединен с первым портом 19a второго оптического разветвителя 19, второй порт которого 19b соединен со вторым оптическим изолятором 20, соединенным с лазерным диодом накачки 21, третий порт 19c второго оптического разветвителя 19 соединен с первым фотоприемником 22, а третий порт 17c первого оптического разветвителя 17 соединен со вторым фотоприемником 23, при этом блок цифровой обработки и формирования сигналов 1 включает первый 24 и N 25 цифроаналоговые преобразователи, первый 26, второй 27, 2N-1 28, 2N 29 аналого-цифровые преобразователи, первый 30 и N 31 пропорционально-интегрально-дифференцирующие регуляторы, при этом электронный блок управления 2 соединен с первым 24 и N 25 цифроаналоговыми преобразователями, первым 26, вторым 27, 2N-1 28, 2N 29 аналого-цифровыми преобразователями, и датчиком температуры 32, при этом первый цифроаналоговый преобразователь 24 электрически соединен с первым портом 30a первого пропорционально-интегрально-дифференцирующего регулятора 30, второй порт 30b которого электрически соединен с первым фотоприемным устройством 11 первой оптической схемы и первым аналого-цифровым преобразователем 26, а третий порт 30c первого пропорционально-интегрально-дифференцирующего регулятора 30 электрически соединен с лазерным диодом накачки 10 первой оптической схемы, второй аналого-цифровой преобразователь 26 электрически соединен со вторым фотоприемным устройством 12 первой оптической схемы, N цифроаналоговый преобразователь 25 электрически соединен с первым портом 31a N пропорционально-интегрально-дифференцирующего регулятора 31, второй порт 31b которого электрически соединен с первым фотоприемным устройством 22 N оптической схемы и 2N-1 аналого-цифровым преобразователем 28, третий порт 31c N пропорционально-интегрально-дифференцирующего регулятора 31 электрически соединен с лазерным диодом накачки 21 N оптической схемы.
Устройство работает следующим образом
Блок цифровой обработки и формирования сигналов 1, включающий электронный блок управления 2, цифроаналоговые преобразователи 24, 25, аналого-цифровые преобразователи 26, 27, 28, 29, пропорционально-интегрально-дифференцирующие регуляторы 30, 31 и датчик температуры 32, формирует электрические сигналы для лазерных диодов накачки 10, 21, согласно заранее измеренным температурным зависимостям параметров выходного оптического излучения для каждого из N оптических выходов от соотношения мощностей лазерных диодов накачки 10, 21. Контроль оптических мощностей осуществляется с помощью оптических разветвителей 8, 9, 17, 19, фотоприемных устройств 11, 12, 22, 23 и аналого-цифровых преобразователей 26, 27, 28, 29, подключенных к электронному блоку управления 2. Стабилизация оптических мощностей лазерных диодов накачки 10, 21 и оптической мощности с выходного порта 18 осуществляется с использованием пропорционально-интегрально-дифференцирующих регуляторов 30, 31, на входы которых 30a, 30b, 31a, 31b поступают сигналы цифроаналоговых преобразователей 24, 25 и сигналы текущей оптической мощности с фотоприемных устройств 11, 22. Посредством спектральных соединителей каналов 5, 15 оптическое излучение накачки создает инверсию населенности в эрбиевых волокнах 6, 14. Сгенерированное во втором эрбиевом волокне 6 первой оптической схемы усиленное излучение спонтанной эмиссии поступает в дополнительно введенное и размещенное за светоотражающим зеркалом 3 эрбиевое волокно 4, после прохождения которого, оптическое излучение отражается от светоотражающего зеркала 3. Оптическое излучение на выходе первой оптической схемы формируется как сумма оптических излучений от эрбиевого волокна 6 и отраженного от светоотражающего зеркала 3 оптического излучения. Сформированное излучение первой оптической схемы через оптический разветвитель 13 поступает на независимые друг от друга N оптические схемы. Для каждой из N оптических схем используется подобранная длина эрбиевого волокна 14 и оптическая мощность лазерного диода накачки 21. Оптические изоляторы 7, 16, 20 используются для исключения влияния обратных отражений.
В качестве примера выполнения предлагается источник усиленной спонтанной эмиссии с тремя оптическими выходами (N=3), у которого в качестве эрбиевого волокна первой оптической схемы используется эрбиевое волокно M-12 длиной 6 метров, в качестве второго эрбиевого волокна используется эрбиевое волокно I-25 длиной 6 метров компании Fibercore. В качестве эрбиевых волокон для каждой из трех оптических схем используется эрбиевое волокно I-25 длиной 3 метра. В первой оптической схеме используется лазерный диод UM96Z460-76 компании II-VI с длиной волны 976 нм и максимальной оптической мощностью 460 мВт. В связи с тем, что большая часть оптического излучения сформирована первой оптической схемой, лазерные диоды накачки для каждой из трех оптических схем выбраны меньшей мощностью LDI-1490-DFB-2.5G-20/80-U-2-SM1-FA-CW-1.0 с длиной волны 1490 нм и максимальной оптической мощностью 20 мВт. В качестве фотоприемных устройств, необходимых для контроля и стабилизации оптической мощности, использовались фотодиоды компании LasersCom PDI-40-P40-4G-K-R40-U-7-BSM06-N-2.0 и PDI-40-P10-4G-K-R50-U-7-BSM1-N-2.0. Блок цифровой обработки и формирования сигналов включает пропорционально-интегрально-дифференцирующие регуляторы, выполненные на операционных усилителях. Изменение температуры источника усиленной спонтанной эмиссии детектируется датчиком температуры, выполненным в виде выносного полупроводникового датчика, электронный блок управления, выполнен в виде программируемой логической интегральной схемы. Длина волны для каждого из трех оптических выходов может быть стабилизирована в диапазоне от 1563 нм до 1566 нм, выходная мощность достигает 5 мВт, ширина спектра составляет около 10 нм. В зависимости от конкретной конфигурации устройства значения центральной длины волны, ширины спектра, выходной оптической мощности будут отличаться.
Таким образом заявленный технический результат достигается за счет возможности подключения нескольких устройств к одному источнику усиленной спонтанной эмиссии с возможностью стабилизации и управления параметрами выходного оптического излучения независимо для каждого подключенного устройства в диапазоне рабочих температур. Кроме того, предлагаемая общая электронная и оптическая схемы для управления несколькими независимыми источниками оптического излучения позволяет уменьшить количество оптических и электронных компонентов, размеры и стоимость конечного устройства по сравнению с использованием нескольких различных источников усиленной спонтанной эмиссии.
Claims (1)
- Источник усиленной спонтанной эмиссии, содержащий блок цифровой обработки и формирования сигналов и оптическую схему, включающую оптически соединенные светоотражающее зеркало, спектральный соединитель каналов, первый порт которого подключен к эрбиевому волокну, оптический изолятор, который подключен к первому порту первого оптического разветвителя, при этом второй порт спектрального соединителя каналов оптически соединен с первым портом второго оптического разветвителя, второй порт которого оптически соединен с лазерным диодом накачки, третий порт второго оптического разветвителя соединен с первым фотоприемным устройством, при этом второй порт первого оптического разветвителя соединен со вторым фотоприемным устройством, при этом блок цифровой обработки и формирования сигналов включает электронный блок управления, первый цифроаналоговый преобразователь, первый и второй аналого-цифровые преобразователи, датчик температуры, при этом электронный блок управления соединен с первым цифроаналоговым преобразователем, первым и вторым аналого-цифровыми преобразователями и датчиком температуры, при этом первый аналого-цифровой преобразователь электрически соединен с первым фотоприемным устройством, второй аналого-цифровой преобразователь электрически соединен со вторым фотоприемным устройством, отличающийся тем, что оптическая схема содержит дополнительное эрбиевое волокно, расположенное между светоотражающим зеркалом и спектральным соединителем каналов и соединенное с его третьим портом, а также - третий оптический разветвитель, первый порт которого соединен с третьим портом первого оптического разветвителя, при этом к N портам третьего оптического разветвителя присоединены N оптических схем, где N≥2, каждая из которых содержит оптически соединенные эрбиевое волокно, спектральный соединитель каналов, первый изолятор, первый разветвитель, при этом в каждой из введенных оптических схем эрбиевое волокно соединено с первым портом спектрального соединителя каналов, второй порт которого подключен к первому изолятору, который подключен к первому порту первого оптического разветвителя, второй порт которого в каждой из упомянутых N оптических схем является ее выходным портом, при этом в N оптических схемах третий порт спектрального соединителя каналов оптически соединен с первым портом второго оптического разветвителя, второй порт которого соединен со вторым оптическим изолятором, соединенным с лазерным диодом накачки, третий порт второго оптического разветвителя соединен с первым фотоприемником, а третий порт первого оптического разветвителя соединен со вторым фотоприемником, при этом блок цифровой обработки и формирования сигналов содержит первый и N пропорционально-интегрально-дифференцирующих регуляторов, N цифроаналоговых преобразователей, 2N-1 и 2N аналого-цифровых преобразователей, при этом электронный блок управления, выполненный в виде программируемой логической интегральной схемы, соединен с N цифроаналоговыми преобразователями, 2N-1 и 2N аналого-цифровыми преобразователями, при этом первый цифроаналоговый преобразователь первой оптической схемы электрически соединен с первым портом первого пропорционально-интегрально-дифференцирующего регулятора первой оптической схемы, второй порт которого электрически соединен с первым фотоприемным устройством первой оптической схемы и первым аналого-цифровым преобразователем первой оптической схемы, а третий порт первого пропорционально-интегрально-дифференцирующего регулятора электрически соединен с лазерным диодом накачки первой оптической схемы, в каждой из N оптических схем N цифроаналоговый преобразователь электрически соединен с первым портом N пропорционально-интегрально-дифференцирующего регулятора, второй порт которого электрически соединен с первым фотоприемным устройством N оптической схемы и 2N-1 аналого-цифровым преобразователем, третий порт N пропорционально-интегрально-дифференцирующего регулятора электрически соединен с лазерным диодом накачки N оптической схемы, 2N аналого-цифровой преобразователь соединен со вторым фотоприемным устройством N оптической схемы.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2781369C1 true RU2781369C1 (ru) | 2022-10-11 |
Family
ID=
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6115401A (en) * | 1996-02-13 | 2000-09-05 | Corning Oca Corporation | External cavity semiconductor laser with monolithic prism assembly |
RU2160949C2 (ru) * | 1997-07-03 | 2000-12-20 | Самсунг Электроникс Ко., Лтд. | Волоконно-оптический усилитель для усиления слабого падающего оптического сигнала |
RU2192081C2 (ru) * | 1999-06-23 | 2002-10-27 | Самсунг Электроникс Ко., Лтд. | Длиннополосный волоконно-оптический лазерный усилитель, использующий затравочный пучок |
US8477410B2 (en) * | 2011-02-08 | 2013-07-02 | Coherent, Inc. | Optical parametric oscillator pumped by femtosecond thin-disk laser |
RU2564517C2 (ru) * | 2014-01-10 | 2015-10-10 | Общество с ограниченной ответственностью "Техноскан-Лаб" (ООО "Техноскан-Лаб") | Волоконный импульсный линейный лазер с пассивной синхронизацией мод излучения (варианты) |
RU2688962C1 (ru) * | 2018-05-30 | 2019-05-23 | федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) | Способ стабилизации параметров выходного оптического излучения источника усиленной спонтанной эмиссии |
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6115401A (en) * | 1996-02-13 | 2000-09-05 | Corning Oca Corporation | External cavity semiconductor laser with monolithic prism assembly |
RU2160949C2 (ru) * | 1997-07-03 | 2000-12-20 | Самсунг Электроникс Ко., Лтд. | Волоконно-оптический усилитель для усиления слабого падающего оптического сигнала |
RU2192081C2 (ru) * | 1999-06-23 | 2002-10-27 | Самсунг Электроникс Ко., Лтд. | Длиннополосный волоконно-оптический лазерный усилитель, использующий затравочный пучок |
US8477410B2 (en) * | 2011-02-08 | 2013-07-02 | Coherent, Inc. | Optical parametric oscillator pumped by femtosecond thin-disk laser |
RU2564517C2 (ru) * | 2014-01-10 | 2015-10-10 | Общество с ограниченной ответственностью "Техноскан-Лаб" (ООО "Техноскан-Лаб") | Волоконный импульсный линейный лазер с пассивной синхронизацией мод излучения (варианты) |
RU2688962C1 (ru) * | 2018-05-30 | 2019-05-23 | федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) | Способ стабилизации параметров выходного оптического излучения источника усиленной спонтанной эмиссии |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3741767B2 (ja) | 光ファイバ増幅器 | |
Park et al. | Multiple wavelength operation of an erbium-doped fiber laser | |
US6111688A (en) | Optical amplifier and system including the same | |
CN103247934B (zh) | 宽带可调谐多波长布里渊光纤激光器 | |
US6507429B1 (en) | Article comprising a high power/broad spectrum superfluorescent fiber radiation source | |
RU2781369C1 (ru) | Источник усиленной спонтанной эмиссии | |
US6788712B2 (en) | Multiple wavelength laser source | |
US11670903B2 (en) | Broadband hybrid optical amplifier operation in eye-safe wavelength region | |
US6704137B2 (en) | Optical amplifier, method for optical amplification and optical transmission system | |
KR100276756B1 (ko) | 이득 평탄화 광섬유증폭기 | |
KR20050045516A (ko) | 장파장 대역 이득제어 광증폭기 | |
US11509108B2 (en) | Tm-doped fiber amplifier utilizing wavelength conditioning for broadband performance | |
JP2000236127A (ja) | 光ファイバ増幅器 | |
US20220181837A1 (en) | Polarization-Maintaining Fiber Laser Tunable Over Two Micron Region | |
KR100236832B1 (ko) | 파장분할다중 방식에서 파장 안정화부를 가지는 송신장치 및 구현방법 | |
JP3458885B2 (ja) | 光ファイバ増幅器 | |
JP3740849B2 (ja) | 光増幅器 | |
JPH05110511A (ja) | 光波長分割多重方式 | |
JP4605662B2 (ja) | ゲインクランプ型光増幅器 | |
KR100487200B1 (ko) | 광섬유 격자를 이용한 다채널 광원 | |
KR100539937B1 (ko) | 이중 출력 구조의 광대역 광원 | |
KR100248059B1 (ko) | 광섬유증폭을위한고전력펌핑장치 | |
RU2688962C1 (ru) | Способ стабилизации параметров выходного оптического излучения источника усиленной спонтанной эмиссии | |
US20030184848A1 (en) | Raman fiber amplification stage, optical system and method to control the Raman amplification | |
JP6660977B2 (ja) | 光検出装置 |