RU2780597C1 - Способ работы парогазовой установки электростанции - Google Patents

Способ работы парогазовой установки электростанции Download PDF

Info

Publication number
RU2780597C1
RU2780597C1 RU2022109636A RU2022109636A RU2780597C1 RU 2780597 C1 RU2780597 C1 RU 2780597C1 RU 2022109636 A RU2022109636 A RU 2022109636A RU 2022109636 A RU2022109636 A RU 2022109636A RU 2780597 C1 RU2780597 C1 RU 2780597C1
Authority
RU
Russia
Prior art keywords
water
water vapor
steam
turbine
gases
Prior art date
Application number
RU2022109636A
Other languages
English (en)
Inventor
Анатолий Александрович Кудинов
Светлана Камиловна Зиганшина
Евгений Анатольевич Кудинов
Кирилл Русланович Хусаинов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет"
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет"
Application granted granted Critical
Publication of RU2780597C1 publication Critical patent/RU2780597C1/ru

Links

Images

Abstract

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Технический результат - повышение надежности и экономичности парогазовой установки электростанции. Предлагается способ работы парогазовой установки электростанции, по которому атмосферный воздух подают в турбокомпрессор газотурбинной установки, где он сжимается до требуемого давления, сжатый в турбокомпрессоре воздух разделяют на первичный и вторичный, первичный воздух и органическое топливо подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, продукты сгорания смешивают с вторичным воздухом, образовавшиеся в процессе смешения газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, где в процессе охлаждения газов в теплообменной поверхности генерируется водяной пар, водяной пар подают в паровую турбину, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, уходящие газы после котла-утилизатора направляют в теплообменник-утилизатор теплоты уходящих газов, где охлаждают ниже точки росы циркуляционной водой, подаваемой циркуляционным насосом по напорному трубопроводу, при этом водяные пары, содержащиеся в уходящих газах в перегретом состоянии, конденсируются, конденсат водяных паров, выделяющийся из уходящих газов в процессе их охлаждения ниже точки росы, направляют в бак-резервуар обессоленной воды, а уходящие газы после теплообменника-утилизатора теплоты уходящих газов отводят в атмосферу, циркуляционную воду после конденсатора паровой турбины и теплообменника-утилизатора теплоты уходящих газов направляют в градирню с естественной тягой для охлаждения атмосферным воздухом, конденсат водяных паров, выделяющийся из уходящих газов в процессе их охлаждения ниже точки росы в теплообменнике-утилизаторе теплоты уходящих газов, из бака-резервуара по водопроводу из нержавеющей стали подают в поток движущегося в выхлопном патрубке отработавшего в паровой турбине водяного пара, при этом впрыск конденсата водяных паров при температуре 30–35°С в поток отработавшего в турбине водяного пара, имеющего температуру 32,9–39,0°С при давлении 0,005–0,007 МПа, осуществляют посредством форсунок, присоединенных к водораспределительному коллектору. 1 ил.

Description

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях.
Известен аналог - способ работы парогазовой установки электростанции (см. патент РФ №2373403, Б.И. 32, 2009), по которому атмосферный воздух подают в турбокомпрессор газотурбинной установки, где он сжимается до требуемого давления, сжатый в турбокомпрессоре воздух разделяют на первичный и вторичный, первичный воздух и органическое топливо подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, продукты сгорания смешивают с вторичным воздухом, образовавшиеся в процессе смешения газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, где в процессе охлаждения газов в теплообменной поверхности генерируется водяной пар, водяной пар подают в паровую турбину, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, уходящие газы после котла-утилизатора направляют в теплообменник-утилизатор теплоты уходящих газов, где охлаждают ниже точки росы циркуляционной водой, подаваемой циркуляционным насосом по напорному трубопроводу, при этом водяные пары, содержащиеся в уходящих газах в перегретом состоянии, конденсируются, конденсат водяных паров, выделяющийся из уходящих газов в процессе их охлаждения ниже точки росы, направляют в бак-резервуар обессоленной воды, а уходящие газы после теплообменника-утилизатора теплоты уходящих газов отводят в атмосферу, циркуляционную воду после конденсатора паровой турбины и теплообменника-утилизатора теплоты уходящих газов направляют в градирню с естественной тягой для охлаждения атмосферным воздухом. Данный аналог принят за прототип.
К причине, препятствующей достижению указанного ниже технического результата при использовании известной парогазовой установки электростанции, принятой за прототип, относится то, что известная парогазовая установка электростанции обладает пониженной надежностью и экономичностью, так как в турбокомпрессор газотурбинной установки подается насыщенный водяными парами в вытяжной башне градирни и содержащий капельную влагу (капельки воды) атмосферный воздух. Капельки воды попадают в цикловой воздух вследствие ее механического уноса в процессе тепломассообмена при противоточном движении теплоносителей (циркуляционной воды и воздуха) в вытяжной башне градирни. Циркуляционная вода содержит механические примеси и виде химические соединения металлов. В процессе работы газотурбинной установки цикловой воздух в турбокомпрессоре сжимается и нагревается, при этом капельки воды вследствие нагрева будут испаряться, а содержащиеся в них механические примеси и химические соединения металлов будут откладываться на лопатках турбокомпрессора, стенках камеры сгорания, и на лопатках газовой турбины, что снижает их надежность. Кроме того, загрязнение элементов газотурбинной установки приведет к снижению ее КПД и экономичности вследствие уменьшения внутреннего относительного КПД турбокомпрессора и газовой турбины. Таким образом, подача в турбокомпрессор газотурбинной установки атмосферного воздуха, содержащего капельки загрязненной циркуляционной воды, значительно снижает надежность и экономичность ее работы.
Сущность изобретения заключается в следующем.
Для повышения надежности и экономичности парогазовой установки электростанции предлагается выхлопной патрубок паровой турбины соединить посредством водораспределительного коллектора и выполненного из нержавеющей стали водопровода с нагнетательным патрубком насоса для подачи конденсата водяных паров (обессоленной воды) при температуре 30–35°С, выделяющегося из уходящих газов в процессе их охлаждения ниже точки росы в теплообменнике–утилизаторе теплоты уходящих газов. Причем для распыления обессоленной воды и образования пароводяной смеси впрыск обессоленной воды в выхлопной патрубок паровой турбины целесообразно осуществлять посредством форсунок, присоединенных к водораспределительному коллектору. Подача обессоленной воды при более низкой температуре 30–35°С в поток отработавшего в турбине водяного пара, имеющего более высокую температуру 32,9–39,0°С (при давлении 0,005–0,007 МПа), позволяет снизить потери энергии в холодном источнике – конденсаторе паровой турбины вследствие конденсации части потока отработавшего в турбине пара на входе в конденсатор. При этом расход циркуляционной воды через конденсатор паровой турбины снизится, а обессоленная вода будет использоваться одновременно в качестве добавочной воды цикла парогазовой установки электростанции, что дополнительно повышаетее экономичность.
Технический результат - повышение надежности и экономичности парогазовой установки электростанции.
Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе работы парогазовой установки электростанции, по которому атмосферный воздух подают в турбокомпрессор газотурбинной установки, где он сжимается до требуемого давления, сжатый в турбокомпрессоре воздух разделяют на первичный и вторичный, первичный воздух и органическое топливо подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, продукты сгорания смешивают с вторичным воздухом, образовавшиеся в процессе смешения газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, где в процессе охлаждения газов в теплообменной поверхности генерируется водяной пар, водяной пар подают в паровую турбину, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, уходящие газы после котла-утилизатора направляют в теплообменник-утилизатор теплоты уходящих газов, где охлаждают ниже точки росы циркуляционной водой, подаваемой циркуляционным насосом по напорному трубопроводу, при этом водяные пары, содержащиеся в уходящих газах в перегретом состоянии, конденсируются, конденсат водяных паров, выделяющийся из уходящих газов в процессе их охлаждения ниже точки росы, направляют в бак-резервуар обессоленной воды, а уходящие газы после теплообменника-утилизатора теплоты уходящих газов отводят в атмосферу, циркуляционную воду после конденсатора паровой турбины и теплообменника-утилизатора теплоты уходящих газов направляют в градирню с естественной тягой для охлаждения атмосферным воздухом, особенность способа работы парогазовой установки электростанции заключается в том, что парогазовую установку электростанции снабжают выполненным из нержавеющей стали водопроводом, соединяющим посредством водораспределительного коллектора и форсунок выхлопной патрубок паровой турбины с баком-резервуаром обессоленной воды, и осуществляют подачу конденсата водяных паров, выделяющегося из уходящих газов в процессе их охлаждения ниже точки росы в теплообменнике-утилизаторе теплоты уходящих газов, из бака-резервуара по водопроводу из нержавеющей стали в поток движущегося в выхлопном патрубке отработавшего в паровой турбине водяного пара, при этом впрыск конденсата водяных паров при температуре 30–35°С в поток отработавшего в паровой турбине водяного пара, имеющего температуру 32,9–39,0°С при давлении 0,005–0,007 МПа, осуществляют посредством форсунок, присоединенных к водораспределительному коллектору.
На чертеже представлена схема парогазовой установки электростанции.
Парогазовая установка электростанции содержит газотурбинную установку, состоящую из газовой турбины 1, турбокомпрессора 2, камеры сгорания 3 и электрогенератора 4, котел-утилизатор 5, паротурбинную установку, состоящую из паровой турбины 6 с выхлопным патрубком 7 и конденсатором 8, электрического генератора 9 и питательного насоса 10, теплообменник – утилизатор 11 теплоты уходящих газов, снабженный конденсатосборником 12 с гидрозатвором 13, систему оборотного водоснабжения, включающую циркуляционный насос 14, напорный трубопровод 15 к конденсатору 8 паровой турбины 6, трубопровод 16 к теплообменнику–утилизатору 11теплоты уходящих газов и сливной напорный трубопровод 17 к градирне, состоящей из вытяжной башни 18 и водосборного бассейна 19, выполненные из нержавеющей стали бак-резервуар 20 обессоленной воды и водопровод 21, соединяющий нагнетательный патрубок насоса 22 посредством водораспределительного коллектора 23 и форсунок 24 с выхлопным патрубком 7 паровой турбины 6.
Способ реализуется следующим образом.
Атмосферный воздух подают в турбокомпрессор 2 газотурбинной установки, где он сжимается до требуемого давления. Сжатый в турбокомпрессоре воздух разделяют на первичный и вторичный, первичный воздух и органическое топливо подают в камеру сгорания 3 газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания. Продукты сгорания смешивают с вторичным воздухом, образовавшиеся в процессе смешения газы направляют в газовую турбину 1. В газовой турбине 1 совершается полезная работа газотурбинного цикла, которая затрачивается на привод турбокомпрессора 2 и электрогенератора 4. Отработавшие в газовой турбине 1 газы подают в котел-утилизатор 5, где генерируется водяной пар высоких параметров, который направляют в паровую турбину 6.
В паровой турбине 6 в процессе расширения водяного пара совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора 9. Отработавший в паровой турбине 6 водяной пар по выхлопному патрубку 7направляют в конденсатор 8. В конденсаторе 8 в процессе теплообмена с циркуляционной водой, подаваемой по напорному трубопроводу 15 циркуляционным насосом 14 из водосборного бассейна 19 градирни, отработавший в паровой турбине 6 водяной пар конденсируется. Конденсат отработавшего в турбине 6 водяного пара из конденсатора 8 питательным насосом 10 подают в котел-утилизатор 5.
Отработавшие в котле-утилизаторе 5 уходящие газы направляют в теплообменник-утилизатор 11 теплоты уходящих газов, где охлаждают ниже точки росы циркуляционной водой, подаваемой циркуляционным насосом 14 по трубопроводу 16. При этом водяной пар, содержащийся в уходящих газах в перегретом состоянии, при температуре 30–35°С конденсируется, образуется конденсат (обессоленная вода). Обессоленную воду, выделяющуюся из уходящих газов в процессе их охлаждения ниже точки росы в теплообменнике-утилизаторе 11, отводят в конденсатосборник 12 и через гидрозатвор 13 направляют в бак-резервуар 20, который выполняется из нержавеющей стали для сохранения чистоты обессоленной воды. Из бака-резервуара 20 обессоленную воду насосом 22 по водопроводу 21 из нержавеющей стали подают через водораспределительный коллектор 23 посредством форсунок 24 в поток отработавшего в паровой турбине 6 водяного пара, движущегося в выхлопном патрубке 7. Подача обессоленной воды при более низкой температуре 30–35°С в поток отработавшего в паровой турбине 6 водяного пара, имеющего более высокую температуру 32,9–39,0°С (при давлении 0,005–0,007 МПа), позволяет снизить потери энергии в холодном источнике – конденсаторе 8 паровой турбины 6 вследствие смешения потоков обессоленной воды и отработавшего в паровой турбине 6 водяного пара, достижения отработавшим в паровой турбине 6 водяным паром температуры насыщения на входе в конденсатор. При этом расход циркуляционной воды через конденсатор 8 паровой турбины 6 снизится, так как часть отработавшего в паровой турбине 6 водяного пара будет конденсироваться в выхлопном патрубке 7. Кроме того, обессоленная вода будет использоваться одновременно в качестве добавочной воды цикла парогазовой установки электростанции, что дополнительно повышает ее экономичность.
Циркуляционную воду после конденсатора 8 паровой турбины и теплообменника-утилизатора 11 теплоты уходящих газов циркуляционным насосом 14 по сливному напорному трубопроводу 17 направляют в вытяжную башню 18 градирни с естественной тягой для охлаждения атмосферным воздухом.
Таким образом, подача конденсата водяных паров, выделяющегося из уходящих газов в процессе их охлаждения ниже точки росы в теплообменнике–утилизаторе теплоты уходящих газов, в поток движущегося в выхлопном патрубке отработавшего в паровой турбине водяного пара, позволяет снизить потери энергии в холодном источнике и повысить надежность и экономичность парогазовой установки электростанции.

Claims (1)

  1. Способ работы парогазовой установки электростанции, по которому атмосферный воздух подают в турбокомпрессор газотурбинной установки, где он сжимается до требуемого давления, сжатый в турбокомпрессоре воздух разделяют на первичный и вторичный, первичный воздух и органическое топливо подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, продукты сгорания смешивают с вторичным воздухом, образовавшиеся в процессе смешения газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, где в процессе охлаждения газов в теплообменной поверхности генерируется водяной пар, водяной пар подают в паровую турбину, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, уходящие газы после котла-утилизатора направляют в теплообменник-утилизатор теплоты уходящих газов, где охлаждают ниже точки росы циркуляционной водой, подаваемой циркуляционным насосом по трубопроводу, при этом водяные пары, содержащиеся в уходящих газах в перегретом состоянии, конденсируются, конденсат водяных паров, выделяющийся из уходящих газов в процессе их охлаждения ниже точки росы, направляют в бак-резервуар обессоленной воды, а уходящие газы после теплообменника-утилизатора теплоты уходящих газов отводят в атмосферу, циркуляционную воду после конденсатора паровой турбины и теплообменника-утилизатора теплоты уходящих газов направляют в градирню с естественной тягой для охлаждения атмосферным воздухом, отличающийся тем, что парогазовую установку электростанции снабжают выполненным из нержавеющей стали водопроводом, соединяющим посредством водораспределительного коллектора и форсунок выхлопной патрубок паровой турбины с баком-резервуаром обессоленной воды, и осуществляют подачу конденсата водяных паров, выделяющегося из уходящих газов в процессе их охлаждения ниже точки росы в теплообменнике-утилизаторе теплоты уходящих газов, из бака-резервуара по водопроводу из нержавеющей стали в поток движущегося в выхлопном патрубке отработавшего в паровой турбине водяного пара, при этом впрыск конденсата водяных паров при температуре 30-35°С в поток отработавшего в паровой турбине водяного пара, имеющего температуру 32,9-39,0°С при давлении 0,005-0,007 МПа, осуществляют посредством форсунок, присоединенных к водораспределительному коллектору.
RU2022109636A 2022-04-12 Способ работы парогазовой установки электростанции RU2780597C1 (ru)

Publications (1)

Publication Number Publication Date
RU2780597C1 true RU2780597C1 (ru) 2022-09-28

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2373403C1 (ru) * 2008-03-11 2009-11-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Парогазовая установка электростанции
RU2453712C2 (ru) * 2010-08-20 2012-06-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Парогазовая установка электростанции
RU2738792C1 (ru) * 2019-12-31 2020-12-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Парогазовая установка электростанции

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2373403C1 (ru) * 2008-03-11 2009-11-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Парогазовая установка электростанции
RU2453712C2 (ru) * 2010-08-20 2012-06-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Парогазовая установка электростанции
RU2738792C1 (ru) * 2019-12-31 2020-12-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Парогазовая установка электростанции

Similar Documents

Publication Publication Date Title
RU2373403C1 (ru) Парогазовая установка электростанции
RU2539943C2 (ru) Способ удаления увлеченного газа в системе генерирования мощности с комбинированным циклом
KR20100047813A (ko) 고체연료와 폐열로부터 가스 터빈을 이용한 발전 공정 및 이 공정을 수행하기 위한 장비
WO2013164894A1 (ja) 活性炭製造システム
RU2453712C2 (ru) Парогазовая установка электростанции
RU2780597C1 (ru) Способ работы парогазовой установки электростанции
RU2409746C2 (ru) Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной
RU2411368C2 (ru) Способ работы энергетической установки с газотурбинным блоком
RU2784165C1 (ru) Способ работы парогазовой установки электростанции
RU2793046C1 (ru) Парогазовая установка электростанции
RU2611138C1 (ru) Способ работы парогазовой установки электростанции
RU2738792C1 (ru) Парогазовая установка электростанции
RU2777999C1 (ru) Парогазовая установка электростанции
RU2693567C1 (ru) Способ работы парогазовой установки электростанции
RU2782483C1 (ru) Способ работы тепловой электрической станции
RU2778195C1 (ru) Способ работы парогазовой установки электростанции
RU2803822C1 (ru) Способ работы парогазовой установки электростанции
RU2799696C1 (ru) Парогазовая установка электростанции
RU2756940C1 (ru) Способ работы парогазовой установки электростанции
RU2784164C1 (ru) Тепловая электрическая станция
RU2482292C2 (ru) Парогазовая установка электростанции
RU2787627C1 (ru) Способ работы парогазовой установки электростанции
RU2704364C1 (ru) Парогазовая установка электростанции
RU2620610C1 (ru) Способ работы парогазовой установки электростанции
RU2229030C2 (ru) Способ повышения эффективности работы газотурбинной установки