RU2780456C1 - Волоконный осциллятор с каскадной системой резонаторов - Google Patents

Волоконный осциллятор с каскадной системой резонаторов Download PDF

Info

Publication number
RU2780456C1
RU2780456C1 RU2021135616A RU2021135616A RU2780456C1 RU 2780456 C1 RU2780456 C1 RU 2780456C1 RU 2021135616 A RU2021135616 A RU 2021135616A RU 2021135616 A RU2021135616 A RU 2021135616A RU 2780456 C1 RU2780456 C1 RU 2780456C1
Authority
RU
Russia
Prior art keywords
fiber
optical
bragg gratings
oscillator
stage
Prior art date
Application number
RU2021135616A
Other languages
English (en)
Inventor
Алексей Юрьевич Кохановский
Анастасия Евгеньевна Беднякова
Евгений Александрович Куприков
Сергей Константинович Турицын
Сергей Михайлович Кобцев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ)
Application granted granted Critical
Publication of RU2780456C1 publication Critical patent/RU2780456C1/ru

Links

Images

Abstract

Изобретение относится к лазерной технике. Технический результат заключается в обеспечении гарантированной стабильной генерации сверхкоротких оптических импульсов, повышении ширины оптического спектра генерируемых импульсов и обеспечении надежности конструкции. Для этого волоконный осциллятор содержит два источника оптической накачки и два последовательно соединенных линейных резонатора, выполненных из элементов, сохраняющих поляризацию. Два линейных волоконных резонатора образованы соединением трех брэгговских решеток, максимумы спектра отражения которых смещены относительно друг друга в спектральной области. Между брэгговскими решетками располагаются участки усиливающего волокна, волоконные ответвители и волоконные системы заведения оптической накачки в волоконный лазерный резонатор. Источниками оптической накачки служат полупроводниковые лазерные диоды непрерывного излучения. 2 ил.

Description

Изобретение относится к лазерам – приборам для генерации когерентных электромагнитных волн и промышленно применимо в устройствах и системах, использующих лазерное излучение.
Из существующего уровня техники известен осциллятор Мамышева с использованием внешнего источника сверхкоротких импульсов для обеспечения само-старта системы (Regelskis K. et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering //Optics letters. – 2015. – Т. 40. – №. 22. – С. 5255-5258.). Архитектура осциллятора в данной работе не обладает независимой инициализацией импульсного режима. Для достижения импульсной генерации используется внешний источник сверхкоротких импульсов.
Известен осциллятор Мамышева (Sidorenko P. et al. //Optics letters. – 2018. – Т. 43. – №. 11. – С. 2672-2675.) с использованием объемных дифракционных решеток и включения в лазерный резонатор стартующего плеча на эффекте нелинейного вращения поляризации. Недостатком данного технического решения является то, что указанный способ генерации сверхкоротких импульсов основан на использовании в конструкции лазера двух и более дискретных объемных (не волоконных) элементов, требующих сложной прецизионной юстировки и настройки как перед первым запуском лазера, так и после транспортировки лазера от завода-изготовителя до конечного потребителя, что требует участия высококвалифицированных специалистов и сопряжено со значительными затратами времени и материальных ресурсов.
Наиболее близким к заявленному техническому решению является волоконный осциллятор Мамышева, содержащий линейный резонатор, образованный двумя Брэгговскими решетками, спектры отражения которых отличаются. (Boulanger V. et al. All-fiber Mamyshev oscillator enabled by chirped fiber Bragg gratings //Optics Letters. – 2020. – Т. 45. – №. 12. – С. 3317-3320.) Недостатком данного технического решения является необходимость использования дорогостоящего полупроводникового насыщающегося поглотителя, который имеет относительно низкое время жизни и слабую устойчивость к оптическим флуктуациям высоких энергий.
Задача, решаемая изобретением – создание полностью волоконного источника сверхкоротких импульсов с гарантированным само-стартом импульсной генерации, надежного и не требующего технического обслуживания в процессе эксплуатации.
Технический результат изобретения заключается в обеспечении гарантированной стабильной генерации сверхкоротких оптических импульсов, увеличении ширины оптического спектра генерируемых импульсов.
Технический результат достигается в волоконном осцилляторе с каскадной системой резонаторов, выполненных на основе оптических волокон с сохранением состояния поляризации, в котором первый каскад выполняет роль задающего оптического генератора, а второй каскад генерирует импульсное излучение с заданными параметрами. Причем первый и второй каскады последовательно оптически связанны и состоят из элементов, сохраняющих поляризацию. Первый каскад содержит первую и вторую волоконные брэгговские решетки, оптически связанные через первое усиливающее оптическое волокно, и первый волоконный объединитель, обеспечивающий заведение оптической накачки первого лазерного диода в первый каскад, причем перекрытие спектров отражения первой и второй брэгговских решеток лежит в диапазоне от 0.01% до 10%. Второй каскад содержит вторую и третью волоконные брэгговские решетки, оптически связанные через второе усиливающее оптическое волокно, и второй волоконный объединитель, обеспечивающий заведение оптической накачки второго лазерного диода во второй каскад.
Сущность изобретения поясняется нижеследующим описанием и прилагаемыми фигурами.
Волоконный осциллятор содержит два источника оптической накачки и два последовательно соединенных линейных резонатора, выполненных полностью из элементов, сохраняющих поляризацию. Два линейных волоконных резонатора образованы соединением трех волоконных брэгговских решеток, максимумы спектра отражения которых смещены относительно друг друга в спектральной области. Частичное перекрытие спектров отражения брэгговских решеток обуславливает гарантированный само-старт многоимпульсной генерации. Между брэгговскими решетками расположены участки усиливающего оптического волокна, волоконные ответвители и волоконные системы заведения оптической накачки в волоконный лазерный резонатор. Источниками оптической накачки служат полупроводниковые лазерные диоды непрерывного излучения.
На Фиг. 1 представлена схема волоконного осциллятора Мамышева с каскадной системой линейных резонаторов, где:
1, 6, 11 - волоконная брэгговская решетка;
2, 7 - усиливающее оптическое волокно;
3, 8 - волоконный объединитель сигналов разных спектральных диапазонов;
4, 9 - лазерный диод оптической накачки;
5, 10 - волоконный ответвитель.
Первый каскад осциллятора Мамышева образован элементами 1 – 6. Брэгговские решетки 1, 6 формируют резонатор первого каскада, усиливающее оптическое волокно 2 компенсирует оптические потери в резонаторе, волоконный объединитель 3 обеспечивает заведение оптической накачки лазерного диода 4 в резонатор, волоконный ответвитель 5 выводит часть излучения из первого каскада для мониторинга состояния импульсного излучения или его иcпользования в приложениях.
Второй каскад осциллятора Мамышева образован элементами 6 - 11. Брэгговские решетки 6, 11 формируют резонатор второго каскада, усиливающее оптическое волокно 7 компенсирует оптические потери в резонаторе, волоконный объединитель 8 обеспечивает заведение оптической накачки лазерного диода 9 в резонатор, волоконный ответвитель 10 выводит часть излучения из второго каскада для мониторинга состояния импульсного излучения или его иcпользования в приложениях.
Первый каскад выполняет функцию задающего генератора, а второй каскад выполняет роль генератора импульсов с желаемыми параметрами.
Параметры брэгговских решеток 1 и 6 осциллятора определяются исходя из анализа Фарадеевской неустойчивости. Возникновение Фарадеевской неустойчивости в резонаторе приводит к распаду стационарной (непрерывной) волны на последовательность импульсов, тем самым реализуется само-старт импульсной генерации.
Исследование линейной устойчивости стационарного решения было выполнено с использованием теории Флоке (Perego A. M. et al. Pattern generation by dissipative parametric instability //Physical review letters. – 2016. – Т. 116. – №. 2. – С. 028701). Если значение максимального по модулю множителя Флоке Fmax(ω) превышает единицу, происходит экспоненциальный рост малого начального возмущения. Построение карты зависимости Fmax от частоты и ширины брэгговских решёток позволяет определить параметры решёток, образующих первый каскад осциллятора, при которых возможен само-старт.
Из анализа Фарадеевской неустойчивости путем исследования линейной устойчивости стационарного решения с помощью теории Флоке было получено, что требуемое перекрытие спектров отражения брэгговких решеток лежит в диапазоне от 0.01% до 10 %.
На Фиг. 2 приведен порядок включения осциллятора Мамышева.
В начальный момент лазерные диоды оптической накачки 4, 9 выключены и выходное оптическое излучение из осциллятора отсутствует (левая часть Фиг. 2). Затем включается первый каскад Мамышева осциллятора путем включения лазерного диода 4 и повышения его оптической мощности до достижения стохастического многоимпульсного режима (средняя часть Фиг. 2). Затем включается второй каскад осциллятора Мамышева путем включения лазерного диода 9. Наконец, первый каскад осциллятора выключается. Мощность оптической накачки лазерного диода 9 выбирается таким образом, чтобы после выключения первого каскада, обеспечивалась генерация гребенки импульсов (правая часть Фиг. 2).
Работает устройство следующим образом.
Длина волны максимума отражения брэгговской решетки 1 выбирается наименьшей в спектральной области работы осциллятора. Длина волны максимума отражения брэгговской решетки 6 выбирается исходя из анализа Фарадеевской неустойчивости. Многоимпульсная генерация первого линейного резонатора с брэгговскими решетками 1 и 6 осуществляется включением лазерного диода оптической накачки 4. Для достижения многоимпульсной генерации необходимо, чтобы мощность накачки лазерного диода 4 обеспечивала уровень усиления, компенсирующий потери в первом резонаторе. Перекрытие спектров отражения брэгговких решеток 1 и 6 лежит в диапазоне от 0.01% до 10 %. Вывод излучения осуществляется либо через одну из брэгговских решеток 1 и 6, либо через волоконный ответвитель 5. Излучение из ответвителя 5 может использоваться для измерения состояния импульсного излучения первого каскада осциллятора, либо для различных приложений.
Далее цуг импульсов направляется во второй линейный резонатор, образованный брэгговскими решетками 6 и 11. Длина волны максимума отражения брэгговской решетки 11 определяется исходя из требований приложения лазерной системы и определяет максимальную спектральную ширину оптических импульсов.
Одноимпульсная генерация осуществляется последовательным включением лазерного диода накачки 9 и выключением лазерного диода 4. Для достижения одноимпульсной генерации необходимо, чтобы мощность накачки лазерного диода 9 обеспечивала уровень усиления, компенсирующий потери во втором резонаторе. Вывод излучения из лазера осуществляется либо через брэгговскую решетку 11, либо через волоконный ответвитель 10.
Пример осуществления устройства.
Для достижения динамики само-старта, описанного на Фиг. 2, необходимо выбрать следующие параметры:
центральная длина максимума отражения брэгговской решетки 1 = 1064 нм,
центральная длина максимума отражения брэгговской решетки 6 = 1064,7 нм,
центральная длина максимума отражения брэгговской решетки 11 = 1066.3 нм,
длины усиливающих волокон 2 и 7, легированных ионами иттербия = 2.5 м.
Коэффициент ответвления ответвителя 5 = 60%, коэффициент ответвления ответвителя 10 = 10 %. Центральная длина волны лазерных диодов оптической накачки 4, 9 = 978 нм, их оптическая мощность 1 – 10 Вт.
При включении первого каскада осциллятора наблюдается генерация многоимпульсного режима, который представляет собой набор из четырех импульсов разной интенсивности, повторяющихся с фундаментальной частотой резонатора первого каскада. После включения второго каскада и выключения первого каскада осциллятора, на выходе из осциллятора, после решетки 11 наблюдается стабильная импульсная гребенка с частотой повторения равной фундаментальной частоте резонатора второго каскада.
Использованные источники информации
1. Regelskis K. et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering //Optics letters. – 2015. – Т. 40. – №. 22. – С. 5255-5258.
2. Sidorenko P. et al. //Optics letters. – 2018. – Т. 43. – №. 11. – С. 2672-2675
3. Boulanger V. et al. All-fiber Mamyshev oscillator enabled by chirped fiber Bragg gratings //Optics Letters. – 2020. – Т. 45. – №. 12. – С. 3317-3320.
4. Perego A. M. et al. Pattern generation by dissipative parametric instability //Physical review letters. – 2016. – Т. 116. – №. 2. – С. 028701.

Claims (1)

  1. Волоконный осциллятор с каскадной системой резонаторов, содержащий последовательно оптически связанные первый и второй каскады, состоящие из элементов, сохраняющих поляризацию, первый каскад содержит первую и вторую волоконные брэгговские решетки, оптически связанные через первое усиливающее оптическое волокно, и первый волоконный объединитель, обеспечивающий заведение оптической накачки первого лазерного диода в первый каскад, причем перекрытие спектров отражения первой и второй брэгговских решеток лежит в диапазоне от 0.01 до 10 %, второй каскад содержит вторую и третью волоконные брэгговские решетки, оптически связанные через второе усиливающее оптическое волокно, и второй волоконный объединитель, обеспечивающий заведение оптической накачки второго лазерного диода во второй каскад.
RU2021135616A 2021-12-03 Волоконный осциллятор с каскадной системой резонаторов RU2780456C1 (ru)

Publications (1)

Publication Number Publication Date
RU2780456C1 true RU2780456C1 (ru) 2022-09-23

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523315A (en) * 1982-04-09 1985-06-11 At&T Bell Laboratories Raman gain medium
EP0784217A1 (en) * 1995-07-28 1997-07-16 Nauchny Tsentr Volokonnoi Optiki Pri Institute Obschei Fiziki Imeni A.M.Prokhorova Rossyskoi Akademii Nauk Raman fibre-optical laser, bragg fibre-optical grating and a method of altering the refractive index in germano-silicate glass
RU2152676C1 (ru) * 1998-09-22 2000-07-10 Научный центр волоконной оптики при Институте общей физики РАН Рамановский волоконный лазер (варианты)
WO2001067568A1 (en) * 2000-03-08 2001-09-13 Ntu Ventures Pte Ltd. Quantum well intermixing
RU2269849C2 (ru) * 2001-03-14 2006-02-10 Ойропэише Организацион Фюр Астрономише Форшунг Ин Дер Зюдлихен Хемисфере Узкополосные волоконные лазеры большой мощности с расширенным диапазоном длин волн
RU2321121C2 (ru) * 2002-03-28 2008-03-27 Коммиссариат А Л` Энержи Атомик Оптический резонатор с высокой пиковой мощностью и комбинация из нескольких таких оптических резонаторов, предназначенных, в частности, для возбуждения генератора света в крайнем ультрафиолетовом диапазоне

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523315A (en) * 1982-04-09 1985-06-11 At&T Bell Laboratories Raman gain medium
EP0784217A1 (en) * 1995-07-28 1997-07-16 Nauchny Tsentr Volokonnoi Optiki Pri Institute Obschei Fiziki Imeni A.M.Prokhorova Rossyskoi Akademii Nauk Raman fibre-optical laser, bragg fibre-optical grating and a method of altering the refractive index in germano-silicate glass
RU2152676C1 (ru) * 1998-09-22 2000-07-10 Научный центр волоконной оптики при Институте общей физики РАН Рамановский волоконный лазер (варианты)
WO2001067568A1 (en) * 2000-03-08 2001-09-13 Ntu Ventures Pte Ltd. Quantum well intermixing
RU2269849C2 (ru) * 2001-03-14 2006-02-10 Ойропэише Организацион Фюр Астрономише Форшунг Ин Дер Зюдлихен Хемисфере Узкополосные волоконные лазеры большой мощности с расширенным диапазоном длин волн
RU2321121C2 (ru) * 2002-03-28 2008-03-27 Коммиссариат А Л` Энержи Атомик Оптический резонатор с высокой пиковой мощностью и комбинация из нескольких таких оптических резонаторов, предназначенных, в частности, для возбуждения генератора света в крайнем ультрафиолетовом диапазоне

Similar Documents

Publication Publication Date Title
RU2605639C1 (ru) Способ и устройство для стабилизации оптической мощности и спектрального состава излучения волоконного лазера ультракоротких импульсов
CN106025779A (zh) 一种基于谐波锁模光纤激光器的天文学光学频率梳系统
CN105071212A (zh) 抑制光纤激光器强度噪声的装置及其工作方法
CN111244735B (zh) 一种环形窄带光纤光栅随机激光器及产生随机激光的方法
CN103904534B (zh) 基于可饱和吸收光纤的全光纤主动调q激光器
CN108879302B (zh) 一种基于光参量振荡的光频率梳产生器
RU2780456C1 (ru) Волоконный осциллятор с каскадной системой резонаторов
CN103972772A (zh) 一种单频可调谐2微米脉冲光纤激光器
CN115377783A (zh) 一种双频脉冲激光器
CN215579525U (zh) 一种基于大模场光纤的全光纤飞秒种子激光器
RU2566385C1 (ru) Волоконный источник однонаправленного одночастотного поляризованного лазерного излучения с пассивным сканированием частоты (варианты)
EP4140000A1 (en) Fiber laser system
RU2801639C1 (ru) Волоконный кольцевой источник лазерного излучения с пассивным сканированием частоты
Suga et al. Dispersion Management of Polarization Maintaining Er-doped Figure 9 Ultrashort Pulse Fiber Laser
RU225571U1 (ru) Кольцевой волоконный генератор последовательностей субпикосекундных импульсов с управляемой частотой следования
CN220291344U (zh) 涡旋光激光器
RU2633285C1 (ru) Волоконный задающий генератор
CN214752523U (zh) 一种双谐振腔结构的光纤激光实验教学装置
Cardea et al. Experimental and theoretical investigation of the operating principles of the Figure-9 laser
Mossakowska-Wyszyńska et al. Analysis of light generation in laser with PT-symmetric mirror
RU2762352C1 (ru) Цельно-волоконный импульсный лазер
CN113097846B (zh) 一种紧凑型中红外波段四波长同重频的全光纤激光器
CN213212650U (zh) 一种能提高飞秒脉冲重频的线性主副腔结构锁模激光器
CN211377170U (zh) 基于内腔相位调制器的非线性环形镜锁模光纤激光器
RU122208U1 (ru) Субпикосекундный гольмиевый волоконный лазер с накачкой полупроводниковым дисковым лазером